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Abstract: Network worms spread widely over the global network within a short time,
which are increasingly becoming one of the most potential threats to network security. However,
the performance of traditional packet-oriented signature-based methods is questionable in the face
of unknown worms, while anomaly-based approaches often exhibit high false positive rates. It is
a common scenario that the life cycle of network worms consists of the same four stages, in which
the target discovery phase and the transferring phase have specific interactive patterns. To this
end, we propose Network Flow Connectivity Graph (NFCG) for identifying network worm victims.
We model the flow-level interactions as graph and then identify sets of frequently occurring motifs
related to network worms through Cascading Motif Discovery algorithm. In particular, a cascading
motif is jointly extracted from graph target discovery phase and transferring phase. If a cascading
motif exists in a connected behavior graph of one host, the host would be identified as a suspicious
worm victim; the excess amount of suspicious network worm victims is used to reveal the outbreak of
network worms. The simulated experiments show that our proposed method is effective and efficient
in network worm victims’ identification and helpful for improving network security.

Keywords: network worms; network flow connectivity graph; flow behavior analysis; motif
discovery; network security

1. Introduction

Nowadays, network administrators increasingly rely on Intrusion Detection Systems (IDSs) to
ensure security during network communication. However, there is an increasing trend that attackers
are able to launch attacks by utilizing a large number of hosts instead of an individual host, which
could have widespread impact on the entire network. For instance, attackers can scan large numbers
of hosts concurrently in order to search for computer vulnerabilities (e.g., network scans); then, use a
self-replicating program to propagate their malicious codes to target vulnerable hosts in a short time
(e.g., network worms); and, finally, they can use those compromised hosts to flood a targeted system
or host to disturb or disrupt its service (i.e., Distributed Denial-of-Service attack) [1-4].

In the present study, we focus more on network worm detection and evaluate whether the
proposed approach can be extended to other types of attacks. There are two main purposes for
attackers to launch network worms: (1) causing a traffic overload in the networks and congestion
on backbone links, which disrupt affected hosts and lead to financial losses [5] and (2) recruiting
compromised hosts for future attack use [6], as illustrated in Figure 1. For example, in 2013, the
Symantec Internet security threat report [7] pointed out that target attacks increased by 42% in 2012,
of which 31% were using worms to attack business; whereas, in 2016, Kaspersky laboratory [8] reports
claimed that, between 2014 and 2015, the global economic machine was affected by worms, viruses,
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Trojan horses, and other malware attacks. The damage was approximately $1 billion. Even more
seriously, although people can do much in the way of prevention, new types of the network worms
are found from time to time, such as polymorphic worms, which can successfully avoid the capture of
detection tools or antivirus software and infect millions of hosts in a few seconds. Network worms
increasingly pose a great threat to network-based military equipment, economic institutions, and
communication networks. Hence, fast and accurate detection and identification of network worms
play an essential role in establishing a secure, stable, and reliable network environment that covers a
wide range of research in the field of network security and management and has attracted significant
attention from both the academia and industry all over the world.
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Figure 1. Worm propagation in the network.

The approaches to the worm detection problem can be divided into two categories.
Most network-worm detection methods begin by inspecting each file that enters a system (i.e., antivirus
software packages) and then looks for known signatures hiding in network traffic payloads; these
are known as signature-based approaches [9-11]. The main drawback of these approaches is that
their performance is questionable, particularly against unknown worms (a previously unknown
version or unreleased worm) or polymorphic or metamorphic worms. However, anomaly-based
approaches focus on the identification of observations that do not conform to an expected pattern from
normal network traffic instead of looking for fixed regular expressions in payloads. Examples of these
techniques can be found in the literature [12-17]. Unlike signature-based methods, anomaly-based
methods often have high false positive rates since it is difficult to determine the boundary between
normal and abnormal patterns. Therefore, network worm detection is still a challenging problem for
network administrators.

However, many researchers neglect to focus on a common scenario: that the life cycle of network
worms typically comprises the same stages. In addition, network worms have their own specified and
similar connected patterns in each stage. After a network worm has been released, the life cycle of a
network worm consists of four stages: (1) target discovery, in which the worm scans for vulnerable
hosts and then exploits the vulnerability to prepare for the next stage; (2) transferring the malicious
code to the target hosts; (3) activation and (4) infection [16,18]. During the target discovery and
transferring stages, network worms can be detected by a series of tools, such as anti-virus software,
IDSs, and firewalls [18]. However, network worm behaviors in the last two stages are limited since
it is difficult to detect the network worm by IDSs in these activities [5]. A typical example is the
existence of anomalous flows generated by scanning in identifying the vulnerable hosts as well as
worm propagation [19,20].

In this paper, the approach proposed is mainly relying on detecting the inherent connected
patterns of worms during the target discovery and transferring stages. Ideally, these patterns can
be distinct from normal network traffic, just like a network “footprint” for worms. Thus, we take
a moderate stand based on the network flows that record communication between a source and
destination IP addresses to capture those suspicious “footprints” of network worms. In our previous
work, we present the advantage of leveraging a novel graph model called Network Flow Connectivity
Graphs (NFCG) to comprehensively study network-wide flow connectivity relationships. In an NFCG,
G = (V,E) is defined as a set of vertices V (representing network entities, IP addresses in our case)
and edges E (representing interaction relationships between pairs of vertex sets). We could build a
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series of interaction graphs to capture a whole worm propagation process under an NFCG. An NFCG
is consisting of multiple types of motifs, a small, induced subgraph structure that can be seen as the
basic cell of a graph. All of the motifs can be used to describe specific and similar connected patterns
of network worms.

Thereafter, we developed a Cascading Motif Discovery (CMD) algorithm to capture connected
patterns that exhibit typical characteristics of network worms. The CMD algorithm consists of two
phases: the scanning motif discovery (SMD) phase, which is used to find the presence of the scanning
behaviors in the initial stage of a network worm, and the transferring motif detection (TMD) phase,
which is used to detect the similar transferring behaviors within network worms. A host would
be identified as a worm victim if it performs network scanning activities and similar transferring
behaviors. Experimental results with a simulated dataset obtained from the Georgia Tech Network
Simulator (GTNetS) suggest that our approach is effective and efficient in identifying worm victims
and detecting the outbreak of network worms. The main contributions of the present study are
summarized as follows:

The main contributions of the present study are summarized as follows:

e  We reveal the characteristics flow connected patterns during a worm outbreak. The target
discovery and transferring stages of the worm life cycle have a specific fan-out connection mode,
and the cascading appearance and large repetition of these two connection modes are typical
characteristics of the flow-connected behavior of network worms.

o  We propose a technique for worm detection based on network-flow-connected behavior analysis.
Additionally, we develop a novel solution for building the worm-life-cycle motifs. Unlike the
traditional motif discovery methods in a complex network, we focus on the inherent behavior of
network worms and reveal the specific motif classes that conform to the essential characteristics
of a worm outbreak.

e  Due to the scalability of worm connection behaviors and the complexity of subgraph mining, the
CMD algorithm realizes the decomposition of worm attacks in different scales and solves the
scale problem of subgraph matching.

e  We conduct many experiments by collecting dataset through a mature simulation system.
The experimental results demonstrate that our approach effectively detect regardless of known
released worms or never-seen-before worms.

The remainder of this paper is organized as follows: in Section 2, we introduce the preliminaries
and background of the Network Flow Connectivity Graphs (NFCG) and network motif. Section 3
presents the algorithm of using Cascading Motif Discovery for network worm victims’ identification
and gives an illustrative example for the proposed algorithm. In Section 4, we briefly introduce the
GTNetS simulation platform for network worm propagation and present the evaluation results of
the proposed approach. The discussion of our proposed method is presented in Section 5. Finally,
Section 6 gives the conclusions of our work and presents possible future works.

2. Preliminaries and Background

This section first introduces network flows, and then we provide the construction of Network Flow
Connectivity Graph (NFCG) and present the visualization of NFCGs. Finally, we describe the basic
concept and application of the network motif and explain how to apply the motif to worm detection.

2.1. Network Flows

Network flows that record the interaction process between source and destination hosts are
the information carriers of network operation. In literature, there are several definitions of an IP
flow can be found in [21-23]. Traditional network flows give the data (timestamp, IP addresses,
port number, protocol, etc.) to describe the interaction procedure between a pair of IP addresses.
Since each communication between source and destination hosts will generate a flow, the behavioral
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characteristics of network flows could be used to represent the communication patterns among network
servers, end-users, switching-devices and various application services, the architecture of network flow
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llecting and processing process. In general, the architecture of network flow collecting and processing
ocess contains the flow exporter module and flow collector module [24], as Figure 2 shows.
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Figure 2. The architecture of network flow exporting and collecting procedure.

2.2. The Network Flow Connectivity Graph

The detailed processes of NFCG construction are given as in Algorithm 1:

Algorithm 1 Constructing Network Flow Connectivity Graph

In

put: Network flow information sequence N =< H, F >, H: sets of hosts, F: sets of flows;

Output: Network Flow Connectivity Graph G =< V,E,R, W >;

NN

: function GENERATING AGGRE-FLOWS(AF)
: for pairs of hosts /; and h; do
(1) extract all communication flows Fi 7) between h; and h;
(2) create aggre-Flows set AF;; = {AF/, AF;J , AFBU ,---,AFE]}, the set of aggregated flows
originating from ; to h;
end for
: end function

function CONSTRUCT NETWORK FLOW CONNECTIVITY GRAPH(G =< V,E,R,W >)
for All aggre-Flows between h; and h; do B
(1) set up the vector set &, to represent the volume of flow connection, a, = Y }_; Vol (AF]? )
(2) set up the vector set ap,to represent the number of open ports opened during the time
interval, ap, = Y ;1 N op(AF,ij )
end for
foreachh € H do
ranking nodes based on the value of flow properties, and divide nodes into different levels
Ry (with different colors); weighting the edge €ij between h; and h]- by Wij < (h, h]-, 0y, ocpn)
end for
: end function
: return Network Flow Connectivity Graph module G =< V,E,R, W >;
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A. Network flow information sequence extraction

In this paper, we introduce the concept of aggre-flow, which is defined as meeting the following
two conditions: (a) these flows are between the same pair of IP addresses regardless of their protocol
and opened port number, and (b) the time interval between network flow should be relatively small,
so that two flows would not have any associated relationships for a long time. The steps for generating
network information sequence are as follows:

- Collect network traffic data and build network flow trace using the standard definition of the
five-tuple flow.

- Trace initial network flow and consider every flow to be an independent network.

- Merge two flows into an aggre-flow when two flows are between the same pair of IP addresses
regardless of their protocol and opened port number.

- Repeat step 3 until there are no more flows to aggregate; then, you have the new network flow
information sequence.

B. The original structure of NFCG construction using the flow information

Based on the new network flow information sequence, the original graph G =< V, E > is defined
as a set of vertices, v; € V, which represent network entities, and edges, eij € E, which represent
connection between pairs of vertices. However, in modeling a computer network, the traditional
method [25,26] has correlated each unique IP address with a node in the graph, whereas edges were
used to represent the interactions from a source host to a destination host. This is depicted in Figure 3
as an interaction graph. However, the edges in the interaction graph only indicate whether there
exists a connection between two entities, but they cannot provide more information about network
flow behaviors among network hosts. With the development of network infrastructure, it is hard to
perform accurate analysis for computer network activity merely based on whether two hosts have
communication. Therefore, we intend to mine much more useful information from network flows, and
combine flow information to the interaction graph to construct a novel graph model which could be
more flexible and contain much more abundant information. The embedding of this information helps
us to comprehensively understand network flow connectivity behaviors.

C. Graph optimization of NFCG

Intuitively, many researchers believe that there are hierarchical structures in many kinds of
networks [27]. In general, network flow data is often dispersed from high ranking level hosts
(e.g., the nodes have large volume traffic flowing over by) to the low ranking level ones, and aggregated
to the high level hosts from the low level ones, respectively. In order to explore more detailed connected
relations of different hosts, we propose a ranking mechanism based on the statistics of network flow
properties to classify nodes into different levels. Moreover, edges can be weighted so that they contain
as much network flow information as possible. In a general form, we use the feature vector w; ; € W to
represent the weight of an edge. According to different research purposes, various feature vectors are
selected, such as the number of packets during the interaction, ports number opened, live time of the
flow connection, and etc.

In Figure 3, we have 64 nodes the different colors mean the ranking of nodes, and each edge in
the NFCG would have different weighted vectors. In general, network flow data is often dispersed
from high ranking level hosts (e.g., the nodes have large volume traffic flowing over by) to the
low ranking level ones, and aggregated to the high level hosts from the low level ones, respectively.
For different ranking levels of hosts, they may have some similar connected patterns or distinct patterns.
Therefore, in order to explore more detailed connected relations of network flows, we propose a ranking
mechanism based on the statistics of network flow properties to classify nodes into different levels.
Moreover, edges can be weighted so that they contain as much network flow information as possible.
In a general form, we use the feature vector to represent the weight of an edge. According to different
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research purposes, various feature vectors are selected, such as the number of packets during the
interaction, ports number opened, live time of the flow connection, etc. It is clearly that the interaction
graph model shows whether there exist connections between two entities like the plain graph model
while NFCG can be extended to rich representation of weighted graphs which show more network
flow connectivity information by node ranking and edge weighting mechanism.

Interaction graph Network Flow Connectivity Graph Motif of size 4

Figure 3. Visualization example of interaction graph, NFCG and motif. The interaction graph consists of
64 nodes, with each edge representing the interaction relationships between different nodes. The NFCG
graph is an augmented interaction graph that can be encoded with supplementary flow information,
with each node denoted by a different color/style edge, while the motif is a reoccurring subgraph of
the NFCG graph.

2.3. The Concept of a Network Motif

The network motif is a basic concept in the field of complex networks and is an effective method
of studying the local structural characteristics and evolution laws of complex systems [28]. The motif
is a small, connected subgraph and is composed of a few nodes, which can be considered to be the
“molecular” topology describing the connected relationships in a network. As the size of a motif is
typically between an individual node and a network community, a motif can be defined as a pattern
of interconnections that occurs in a graph. Additionally, we can even consider some special network
architectures as an extension of several types of “network motifs.” For example, research conducted by
Milo [29] has found some meaningful network motif structures in complex networks, and it supports
the notion that a small number of motifs occur repeatedly across the entire network, which might have
been widely employed to reveal and understand the dynamic characteristics of a network architecture.
Milo [30,31] has also conducted many experiments in many specific network environments, such as
biological neural networks, food chain networks, and the Internet, and concluded that the general
appearance of these motifs indicates that they are likely to have specific functions in different networks.
This is the key initial point of our proposed approach: the occurrence of some events in networks
brings about corresponding changes in the network structures, which result in some specific network
motifs (let these be defined as highly significant motifs). At this point, we believe that the frequent
appearance of highly significant motifs can help a lot in detecting network events. However, since
many applications or events use the client-server architecture, they may produce the same motif
strucutres in the interaction graph model, which is hard to separate network events. To address this
problem, we propose the augmented interaction graph model called NFCG, in which graphs can be
encoded with supplementary flow information so that nodes and edges can be assigned different
colors and weights. Encoding with flow behavior information helps us to understand the details
of network flow connections better. Thus, this allows for two motifs to share similar structures and
behaviors under the effect of network events.
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3. Proposed Approach

The proposed approach for detecting networks is introduced in this section. In the present study,
the behavior of the target discovery and propagation stages in the worm life cycle can be expressed as
different fan-out connected patterns, which can be represented by corresponding motifs. Since the
characteristics of worm victims are [32]:

1.  Worm victims would generate a lot of similar flows (from one victim to target a lot of target hosts)

2. Each flow generated by worm victims contains only a few packets, but these flow behaviors are
very similar since they are caused by the same source reason.

3.  Worm victims often use particular same port numbers to spread a known worm, except for
polymorphic worms.

Therefore, several cascading motifs can be used to describe the sequential cascading relationships
generated by the whole worm life cycle. Our motif-based method is to find cascading motifs in the
NFCGs that can be seen as the problem of motif discovery and subgraph matching. The traditional
motif discovery method, such as FANMOD [33], is used to enumerate size-N motifs in a graph, so that
it can be used to analyze and summarize the structure and changes of complex networks. However, our
method does not refer to a particular size of motif but a class of motifs with specific fan-out connected
patterns. To perform such motif discovery in our method, subgraph matching often needs to be
completed with exact patterns, and motifs reflected in worm propagation are similar to fuzzy patterns.
Here, we develop a CMD algorithm to capture connected patterns that exhibit typical characteristics
of network worms. The CMD algorithm consists of two phases: the scanning motif discovery (SMD)
phase, which is used to find the presence of scanning behaviors in the initial stage of a network
worm, and the transferring motif detection (TMD) phase, which is used to detect similar transferring
behaviors within network worms. The complete flow chart of the CMD algorithm is presented in
Figure 4.

3.1. The Scanning Motif Discovery Phase

The SMD phase aims to detect scanning activities among network flows. As known from the
worm life cycle and discussed before, a majority of network worms are typically caused by scan
activity (i.e., source host sending packets to a number of destination hosts and/or ports) [34], except
for some special worms, such as the email-spammer. Thus, we need to first distinguish scanning
flows from non-scanning flows. There are three cases in the scanning flows: (a) port scan, in which
the flows have a host scanning several ports on a single destination host; (b) IP scan, in which the
flow from a host scanning a particular port on many destination hosts; and (c) hybrid scan, which
is basically a combination of both port scan and IP scan. To this end, for an NFCG graph, we could
extract the scanning motif structures by measuring the flow property information embedded in the
NFCG weight vector.

Regardless of the type of scanning activities, we group all subgraphs of NFCG into scanning
motifs and non-scan motifs by using a combination of the following flow features, including the
number of destination hosts targeted, the number of packets sent, and the set of destination ports used.
The motifs and network flows would have similar communication features if they caused by the same
reason. The output of the SMD phase is to identify those suspicious motifs in which the source hosts
perform scanning behaviors. However, there would be a large number of suspicious motifs extracted
when those features were calculated for motif discovery. In order to increase accuracy and reduce the
false positive rate of the proposed approach, we set the threshold for SMD to filter out those motifs
which have the exact scanning behaviors. These motifs and network flow data are used for the next
TMD phase.
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Figure 4. Flow chart of our approach operation.

Since the goal of the worm is to spread their malicious codes over the entire network in a short
time, the worm would never stop progressing after successfully infecting a host. The infected hosts
first turn to network victims, and then they will go and scan their neighboring hosts for finding the
next victims. It is clear that, if we count the number of IP addresses scanned by the victim, and if
the amount exceeds a pre-defined threshold, then we can draw a conclusion that a worm has been
detected. Therefore, the TMD phase is used to detect whether a motif that contains the “scanner”
host exhibits strong correlated behaviors in the next step. In particular, a cascading motif that is
created by a scanning motif and a transferring motif depicts the anomalous connection pattern step by
step in the target-finding stage and the transferring stage of worm propagation. It is claimed that, if
a cascading motif exists in the connection behavior graph of one host, the host would be identified as
a worm victim.

The starting point of the TMD phase comes after the SMD approach detects the suspicious motifs
performing scanning behaviors. The primary objective of the correlation approach is to check whether
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suspicious motifs that contain scanner hosts have a strong correlated behavior toward other destination
hosts. The flow chart of the TMD phase is also illustrated in the corresponding part of Figure 4. Figure 5
illustrates the motif discovery procedure of our proposed approach. Through motif discovery, we can
achieve a few motifs that exhibit worm-like behaviors. In addition, these suspicious motifs become
more and more obvious with the interaction of the network.

Target discover

Attackers

(a) Overview of network worm propagation process.

s

(b) Motif discovery process of our proposed approach.

Figure 5. Motif discovery procedure of our proposed approach: (a) overview of the network worm
propagation process and the (b) motif discovery process of the proposed approach.

3.2. The Transferring Motif Detection Phase

Informed by Figures 4 and 5, we need first to determine a motif that contains “scanner” hosts.
If a scanner host has been detected, then this suspicious host must be checked to establish whether it
has strong correlated behaviors toward other hosts. The counter will increase if the suspicious host
does perform this behavior. Afterwards, if the counter exceeds a pre-defined threshold, the alert is
triggered and the IP address of the worm victim is saved in the worm set; otherwise, it is saved in the
non-worm set. The pre-defined threshold in the TMD phase is based on some empirical knowledge
and analysis of the network worm flows.

3.3. An Illustrative Example

We provide an illustrative example to show how to identify network worm victims by our
approach. As Figure 6 shows, supposing we have the input network flow data as follows, the typical
procedure are given as follows:
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Figure 6. An illustrative example of our proposed approach.

1. Input network flow data:

SrcIP DstIP DstPort Pro. #Packets|
192.168.0.1 192.168.0.2 135 TCP 166
192.168.0.1 192.168.0.3 135 TCP 166
192.168.0.1 192.168.0.4 135 TCP 166
192.168.0.5 192.168.0.6 80 TCP 210
192.168.0.5 192.168.0.7 53 ubppP 15

Flow data = |192.168.0.2 192.168.0.8 23 TCP 118
192.168.0.2 192.168.0.9 135 TCP 78
192.168.0.2 192.168.0.10 135 TCP 78
192.168.0.3 192.168.0.11 135 TCP 68
192.168.0.3 192.168.0.12 135 TCP 68
192.168.0.3 192.168.0.13 135 TCP 68
1192.168.0.3 192.168.0.14 135 TCP 68 |

2. Then, we check out whether hosts exist that are performing scanning behaviors (hosts that are
detected by the scanning motif discovery phase):

IP addresses
192.168.0.1
192.168.0.2
192.168.0.3

Scanning hosts =

3. Set the threshold for the Transferring Motif Detection phase; in this case, we set the threshold as
3. It is means when applying the Transferring Motif Detection phase, if the amount of suspicious worm
victims exceed the threshold 3, we can get a conclusion that the network worm has been detected.
In this illustrate example case, the result is given as follows:

Worm victims
192.168.0.1
192.168.0.3

Result =

IP addresses 192.168.0.1 and 192.168.0.3 are firstly detected as scanner hosts as they scan several
hosts on the same port by the scanning motif discovery phase. Additionally, 192.168.0.3 generate
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communication flows to four hosts on destination port 135, which have exceeded the preset threshold;
then, 192.168.0.3 is identified as a worm victim seed by the Transferring Motif Detection phase.

4. Experimental Evaluation

In this section, we explain our experimental validation of the proposed method using a real
network trace from a WIDE trace [35] and a simulated traffic dataset from the Georgia Tech Network
Simulator (GTNetS) [36,37]. The WIDE trace is taken at a US—Japan trans-Pacific backbone line
(a 150 Mbps Ethernet link) on which all IP addresses are anonymous but forty bytes of application
layer payload are kept for each packet. GTNetS, however, is a full-featured network simulation
environment that allows researchers to study the behavior of moderate to large-scale computer
networks under a variety of conditions. The effectiveness of our approach is demonstrated in three
simulation experiments, namely TCP worm, UDP worm, and polyworm scenarios. Figure 7 shows an
NFCQG illustration example with 500 flows of the MAWI Working Group WIDE Project Traffic traces by
using GraphViz tools [38].

5

6y/¢%yfV///f//

Figure 7. An illustration example of NFCG visualization, using the GraphViz tool, 500 flows of MAWI
Working Group WIDE Project Traffic traces on 15 October 2018. The traffic of MAWI Working Group
WIDE Project Traffic traces will be used for simulating network normal traffic. Combined with the
simulated traffic dataset from the Georgia Tech Network Simulator (GTNetS), the ultimate mixed
network flow dataset are validated for identifying hosts in NFCG which act as network worm victims
(the cascading motif exists in the connected behavior graph of a host).

4.1. Simulation Environment

The GTNetS environment allows the creation of simulation network topologies (consisting of
nodes and their associated communication links) and end-user applications describing the flow of data
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over the simulated topology. The GTNetS has been widely used for network worm detection because
it can successfully simulate network worm traffic [15,16]. This simulator starts with an infected host
(also known as network worm initiator) that randomly scans other vulnerable hosts for finding targets.
Then, the designed topologies in the GTNetS are created based on the following input parameters:

- Time duration of the simulation experiment: the total time needed to simulate a target network
worm, within which the network worm must complete its life cycle (target finding, transferring,

activation, and infection);
- The basic topology for a network scenario test;
- Worm infection characteristics: (1) transport layer protocol, (2) the number of victim nodes in the

initial stage, and (3) the scan rate, etc.

4.2. Network Worm Scenario

We have conducted several simulated experiments for different network worm scenarios: TCP,
UDP, and polymorphic network worms. The TCP worm scenario tests our approach in identifying
network victims under TCP worms; the UDP worm scenario tests the presence of UDP network
worms; and the polymorphic worm scenario tests the polyworms that change their appearance while
preserving the semantics each time they spread from one victim to another. The experimental scenarios
are created by the GTNetS based on previously described input parameters. Table 1 presents the details
of our simulated network wormes.

Table 1. Input parameters of experiment configuration for the simulated network worm scenarios.

Experiment Configuration

Network worm type Blaster ~ Qaz, Opasof polyworm
Target service epmap netbios-ns netbios-ns
Target port 135 137 TCP for 135, UDP for 137
Transmission Protocol TCP UuDP TCP, UDP
Target OS Windows Windows KALI system
Success infecting rate 40-60% 60-80% 50-70%
Scan rate 15 host/s 15 host/s 15 host/s
Simulated experiment time 5s 5s 5s
Total row packet number #7150 #10363 #6762
Total aggregated flow numbers #5152 #7140 #5343

4.2.1. TCP Worm Scenario

The worm network initially contains one infected host as an attacker and then launches scanning
behaviors on TCP port 135 for target finding. Once a vulnerable victim has been found, the malicious
code from the attacker node is then transferred to the target victim. In this simulation, we set the
scan rate as 15 host/s and simulation time as 5 s. The dataset consists of 7150 row packets (including
normal flows and worm flows), which are extracted from the simulator log file. Then, we aggregated
the dataset as 5152 flows. At the first stage, the attack starter had scanned eight hosts for vulnerabilities
with four hosts that are successfully infected; the victim topology for TCP worm scenario is shown in
Figure 8. In the next step, those four worm-infected hosts were going to search other hosts, respectively,
on TCP port 135 with a success rate of infecting at 40-60%. Then, they kept repeating this step in
order to spread the TCP worm to the entire network architecture. The green nodes in Figure 8 are
actual network worm victims while 10 red label IP addresses are identified as worm victims by the
CMD algorithm and two black label IP addresses 147.32.84.229 and 173.255.251.17 are missed by
our algorithm.

4.2.2. UDP Worm Scenario

The same methodology used in the aforementioned phase was applied to the UDP worm scenario.
Figure 9 shows the victim topology of the UDP worm scenario with a worm propagated on UDP
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port 137 (In this simulation, we set the scan rate as 15 host/s and simulation time as 5 s), and all the
purple nodes with red label IP addresses in Figure 9 are network worm victims identified by the CMD
algorithm. At the beginning, the attacker of NFCG in this simulation experiment had scanned six hosts
for vulnerabilities with three hosts BEING successfully infected by worm propagation. Then, these
worm-infected victims were proceeding to seek other vulnerable hosts on UDP port 137 with a 60-80%
infection rate. After that, we could have obtained the simulation dataset of a UDP worm scenario.
The dataset consists of 10,363 row packets and finally can be aggregated to 7140 flows.

. 56.205.241.160

100.197.14.157

54.152 127.27

. 141.142.141.75
B " 106.39.240.112
147.32.84.229

, 103.175.224.124

49246.212.175

154.173.201.22
170.169.127.82

181.149.221.76

473.255.251.17

Figure 8. Complete cascading motif captured from the TCP worm test.
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A 214.5.85.96
196.36.241.111
39.149.91.69
/
227.171.42.116 &
64.241.19.194
Q) T010715.149

Figure 9. Complete cascading motif captured from the UDP worm test.

4.2.3. Polyworm Scenario

In a polyworm simulation scenario, we synthesize the polyworm by combining a TCP worm with
a UDP worm together. Figure 10 shows the victim topology of the polyworm scenario. The attacker
node begins scanning five hosts on TCP port 135 with two hosts successfully infected (success rate
of infecting is 50-70%). Then, those worm-infected hosts scanned other hosts on UDP port 137 in
the next infection stage. The dataset consists of 6762 row packets (including normal flows and worm
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flows), and can be aggregated into 5343 network flows. Finally, seven out of eight actual network
worm victims have been identified by our CMD algorithm.

@)
131.178.9.860 O
1 .173108.1830 O O O

@)
o o o

224.101/178.244

204/152.199.6

Figure 10. Complete cascading motif captured from the polyworm test.
4.3. Evaluation Results of Different Network Worm Scenarios

The simulation scenarios we conducted are used to test the accuracy of the proposed approach in
identifying network worm victims. In our simulation experiments, we set the threshold based on some
empirical knowledge for the TMD phase be equal to 3, which means that a host that receives network
packets and then resends a packet to three or more destination hosts is identified as a suspicious host
that demonstrates a strong correlation behavior. Tables 2—4 present the worm victim detected in the
suspicious motif for each flow group under different network-worm simulation experiments. Table 2
indicates that our method can be used for network victim identification. For example, in the first
flow group, only two hosts (103.175.224.124 and 54.152.127.27) have been identified since they have
both scanning and transferring behaviors. However, the number of infected hosts quickly increases to
10 in the fourth flow group that exceeds the predefined threshold. Furthermore, Tables 3 and 4 also
indicate that our method is efficient in identifying worm victims in the UDP worm and polyworm
scenario separately.

Table 2.
simulation experiment.

Infected IP addresses in the dataset for each flow group under the TCP worm

Flow Group Infected IP Addresses
1~1000 103.175.224.124  54.152.127.27
1001~2000  103.175.224.124 54.152.127.27  106.39.240.112
20013000 103.175.224.124  54.152.127.27  106.39.240.112  19.246.212.175
170.169.127.82  141.142.141.75
103.175.224.124  54.152.127.27  106.39.240.112  19.246.212.175
3001~4000  170.169.127.82  141.142.141.75 56.205.241.160 181.149.221.76
100.197.14.157  154.173.201.22
103.175.224.124  54.152.127.27  106.39.240.112  19.246.212.175
4001~5152  170.169.127.82  141.142.141.75 56.205.241.160 181.149.221.76
100.197.14.157  154.173.201.22
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Table 3.
simulation experiment.

Infected IP addresses in the dataset for each flow group under the UDP worm

Flow Group Infected IP Addresses
1~1400 196.36.241.111 202.203.101.4

1401~2800 196.36.241.111 202.203.101.4 68.157.4.147 227.171.42.116
196.36.241.111 202.203.101.4 68.157.4.147 227.171.42.116

2801~4200 514 5.85.96
196.36.241.111 202.203.101.4 68.157.4.147 227.171.42.116

4201~5600 214.5.85.96 145.172.162.131 10.107.15.149 64.241.19.194
175.202.148.155  39.149.91.69
196.36.241.111 202.203.101.4 68.157.4.147 227.171.42.116

5601~7140 214.5.85.96 145.172.162.131  10.107.15.149 64.241.19.194
175.202.148.155  39.149.91.69 208.253.108.4

Table 4. Infected IP addresses in the dataset for each flow group under a polyworm

simulation experiment.

Flow Group Infected IP addresses
1~800 None
801~1600  224.101.178.244 129.173.108.183
1601~2400  224.101.178.244 129.173.108.183  32.89.67.77
24013200 ;(2);1}(;;};593244 129.173.108.183  32.89.67.77 80.114.198.162
30014218 224.101.178.244  129.173.108.183  32.89.67.77 80.114.198.162
204.152.199.6 70.65.87.112 20.196.166.18

4.4. Comparison of Our Proposed Method with a Destination-Source Correlation Algorithm

In this section, we compare our proposed method with the Destination-source Correlation
Algorithm method in [16] under three different worm scenarios. The Destination-source Correlation
Algorithm is used to detect the network worms’ victims in the case that a host received network traffic
on port A and then starts to transfer packets to another vulnerable target host by port A. If the number
of sending packets exceeds the predefined threshold, the host becomes suspicious.

Tables 5-7 illustrate data that confirm the high accuracy of the proposed approach and DCA
method. The accuracy is calculated by the ratio between the True Positive (TP) to the sum of the True
Positive (TP), False Positive (FP), and False Negative (FN) values:

|TP|
|FP| + |TP| + |FN]|

Accuracy = ( ) * 100%,

where TP value reflects the capability of our approach to successfully and correctly identify the worm
victims); FP value is defined to represent the case where hosts are incorrectly detected as worm victims;
and FN value represents the number of worm victims that our approach cannot detect.

As illustrated in Tables 5-7, regardless of known released worms or never-seen-before worms,
in most cases, our proposed approach can achieve higher average detection accuracy than the DCA
method, especially in the polyworm simulated scenario as Table 7 reported. This result is caused by the
use of SMD and TMD phases of our algorithm. The scanning motif discovery phase contributes much
to the detection of network scanning behaviors. Furthermore, the TMD phase verifies worm victims in
the cascading motif. However, the low accuracy of the DCA method in a polyworm simulated scenario
is because it can only detect the host which exhibits destination-source correlation behaviors. Thus, we
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can draw a conclusion that our approach is effective and efficient in identifying worm victims and
detecting network worms.

Table 5.  Evaluated comparison of the Cascading Motif Discovery-based method and
the Destination-source Correlation Algorithm for each flow group under a TCP worm
simulated experiment.

Flow Group 1 2 3 4 5
No. of Infected Hosts 3 5 8 10 10
Approaches CMD DCA CMD DCA CMD DCA CMD DCA CMD DCA
No. of identified victims 2 3 6 4 7 9 11 11 10 13
False Positive 0 1 1 0 0 2 1 3 0 4
False Negative 0 0 0 1 1 1 0 2 2 3
True positive 2 2 5 4 7 7 10 8 10 9
Accuracy 67% 50% 83% 80% 88% 70% 91% 62% 83% 56%

Table 6. Evaluated comparison of the Cascading Motif Discovery-based method and Destination-source
Correlation Algorithm for each flow group under the UDP worm simulated experiment.

Flow Group 1 2 3 4 5
No. of Infected Hosts 4 5 5 10 11
Approaches CMD DCA CMD DCA CMD DCA CMD DCA CMD DCA
No. of identified victims 2 3 4 5 5 5 10 7 11 11
False Positive 0 1 0 1 0 1 0 0 0 2
False Negative 2 2 1 1 0 1 0 3 0 2
True Positive 2 2 4 4 5 4 10 7 11 9
Accuracy 50% 40% 80% 67%  100%  67% 100% 70%  100%  69%

Table 7. Evaluated comparison of the Cascading Motif Discovery-based method and Destination-source
Correlation Algorithm for each flow group under the polyworm simulated experiment.

Flow Group 1 2 3 4 5
No. of Infected Hosts 1 3 4 5 8
Approaches CMD DCA CMD DCA CMD DCA CMD DCA CMD DCA
No. of identified victims 0 2 2 2 5 3 5 3 7 4
False Positive 0 1 0 1 1 1 0 0 0 1
False Negative 1 0 1 2 0 2 0 2 1 4
True Positive 0 1 2 1 4 2 5 3 7 3
Accuracy 0% 50% 67% 25% 80% 40% 100%  60% 88% 38%

5. Discussion

In this paper, our proposed algorithm is designed for worm detection through detecting the
outbreak of connected patterns of network worms. In other words, the connected motifs of worms
are used to successfully identify worm victims. Many worm detection methods often need the help
of a detailed packet payload, such as the Honeypot logs. However, we propose a flow-based worm
detection method without analyzing the payload, which mainly focuses on the connected patterns
flowing over the entire network, and then digging out those suspicious flow patterns matched with
the lifecycle of network worms. However, there are still several problems existing in our algorithm
which require improvement regarding applicability.

The first and practical problem for our proposed method is that of the time interval used for
flow data collection and graph construction procedure. It is infeasible to visualize all node pairs
and edges due to the large scale nature of network size nowadays. As the time interval we selected
increases, numerous nodes need to be visualized and processed; thus, selecting a large time interval
has an influence on the fact that the graph is poorly visualized and it is hard to do real-time analysis.
At the same time, however, if choosing a small time interval, NFCGs are becoming sparse so that
they cannot provide abundant information for flow connectivity behaviors, which leads to false
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negatives increasing. On the other hand, some low rank level nodes which generate irrelative or
insignificant edges can also affect results of the analysis. In this case, these edges are often treated
as happening occasionally and easily make the analysis fall into confusion. To address this problem,
we can adopt filtering rules to remove the insignificant and irrelative nodes and edges generated by
network redundant information based on the quantity of flow attributes (e.g., 1000 flows visualization)
or time-window (e.g., 30 s time window for large scale network, 3 min time window for small scale
network) and select the edges whose weights are larger than a certain suitable value in order to
accurately capture the principal connected relationships among network flows (e.g., opened port
number larger than 100).

Another issue in our algorithm is that the threshold set up in our CMD algorithm would produce
false positives and false negatives. If the threshold is set too large, this would result in more false
negatives; while if the threshold is smaller, the false positive value is increasing. Actually, the threshold
we used should have an adaptivity-element that is different under different scales of network size. For
example, in the wide-area network (e.g., the Backbone Communication Network), the scale of worm
attacks in this kind of network is relatively larger than others because of the size of the network and
large-volume traffic. In this case, we can decrease the false positive rate of worm victim identification
by setting an appropriate threshold value, such as more than 100 hosts in the Scanning Motif Detection
Phase. In the Local Area Networks, such as company or campus networks, the threshold would be
lower if there are 10 or 20 more hosts being found that have been scanned by the same target host or
group hosts.

Moreover, for other worm behaviors, such as email-slammers (worms in Email), they do not
have the scanning behaviors to hosts through network flow interacting (e.g., they find vulnerable
hosts through an attachment to a mail [39]), which results in the fact the SMD of our algorithm fails in
detection. Hoever, for most scanning worms, our algorithm is effective in identifying network victims
no matter if they are known-released or zero-day worms. Although the connected patterns of worms
may be similar in graphical visualization with other behaviors, the cascading motifs discovered by
our CMD algorithm are completely differential from normal flow behaviors and other anomalous
flow behaviors. The current algorithm is designed for communication networks because we mainly
consider flow behavior analysis in these networks. If the worm behaviors in other types of networks
do not have scanning behavior, the performance of our method would not be good. It is our next step
to classify more worm patterns or other anomalous behaviors that produce large-scale similar flow
behaviors and also apply our method under different network scenarios.

6. Conclusions and Future Work

The ability of an approach to detect and identify anomalous events that are active on a computer
network is critical for network management and security. In this paper, we propose a behavioral
detection approach towards the network worm victims identification. Instead of matching the fixed
signature in network traffic payloads, our approach focused on discovering specific connected patterns
that depicted the inherent behaviors of network worms.

We developed NFCGs, which contain plenty of network-flow behavior characteristics, in order to
model the social behaviors among network hosts; and then presented a CMD algorithm to capture
scanning and transferring behaviors of network worms. We used the SMD phase to find motifs that
perform scanning activities and the TMD phase to detect whether the strongly correlated behaviors
exist in the next step of the scanning motif. With the use of the GTNetS simulation platform, we
have conducted a variety of experiments for network worms. Experimental results suggest that our
approach is effective and efficient in identifying network worm victims. Additionally, we addressed
three types of worm propagation situations in our experiment. The results demonstrate that our
approach has high detection accuracy, regardless of whether a worm is a known worm or a new
polymorphic worm.
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In the future, aiming at increasing the robustness and effectiveness of the proposed approach,
we would start from sensitive analysis to improve the accuracy of our approach, and performance
characteristics will be reported in comparison with some classical worm detection methods. Moreover,
our approach can be extended to utilize motif structures to discover anomalous characteristics for
more network events and help in the evolution analysis of worm outbreaks.
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