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Abstract: Currently, positioning, navigation, and timing information is becoming more and more 

vital for both civil and military applications. Integration of the global navigation satellite system 

and /inertial navigation system is the most popular solution for various carriers or vehicle 

positioning. As is well-known, the global navigation satellite system positioning accuracy will 

degrade in signal challenging environments. Under this condition, the integration system will fade 

to a standalone inertial navigation system outputting navigation solutions. However, without 

outer aiding, positioning errors of the inertial navigation system diverge quickly due to the noise 

contained in the raw data of the inertial measurement unit. In particular, the micromechanics 

system inertial measurement unit experiences more complex errors due to the manufacturing 

technology. To improve the navigation accuracy of inertial navigation systems, one effective 

approach is to model the raw signal noise and suppress it. Commonly, an inertial measurement 

unit is composed of three gyroscopes and three accelerometers, among them, the gyroscopes play 

an important role in the accuracy of the inertial navigation system’s navigation solutions. 

Motivated by this problem, in this paper, an advanced deep recurrent neural network was 

employed and evaluated in noise modeling of a micromechanics system gyroscope. Specifically, a 

deep long short term memory recurrent neural network and a deep gated recurrent unit–recurrent 

neural network were combined together to construct a two-layer recurrent neural network for 

noise modeling. In this method, the gyroscope data were treated as a time series, and a real dataset 

from a micromechanics system inertial measurement unit was employed in the experiments. The 

results showed that, compared to the two-layer long short term memory, the three-axis attitude 

errors of the mixed long short term memory–gated recurrent unit decreased by 7.8%, 20.0%, and 

5.1%. When compared with the two-layer gated recurrent unit, the proposed method showed 

15.9%, 14.3%, and 10.5% improvement. These results supported a positive conclusion on the 

performance of designed method, specifically, the mixed deep recurrent neural networks 

outperformed than the two-layer gated recurrent unit and the two-layer long short term memory 

recurrent neural networks. 

Keywords: global navigation satellite system (GNSS); inertial navigation system (INS); long short 

term memory (LSTM); gated recurrent unit (GRU); microelectronics system (MEMS) 
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With the booming of location based services (LBS), positioning, navigation, and timing (PNT) 

information is more essential than at any time in human history, since more and more smart 

devices relies on PNT information [1]. Currently, the global navigation satellite system (GNSS) has 

been the most widely used PNT information provider and generator, due to its easy access, low cost, 

and high accuracy. Broadly speaking, the GNSS refers to all satellite based navigation systems, 

including global and regional systems. Among them, the USA Global Positioning System (GPS), 

China BeiDou Navigation System (BDS), Europe Galileo Satellite Navigation System (Galileo), and 

the Russia Global Navigation Satellite System (GLONASS) are capable of global coverage, and 

other regional systems, for instance Japan’s Quasi-Zenith Satellite System (QZSS) and the Indian 

Regional Navigation Satellite System (IRNSS), offer an augmentation of GPS for performance 

enhancement in specific regions [1–3]. Generally, their working principles are similar, and the 

details are as follows: (1) firstly, the satellites in orbit broadcast navigation signals to the Earth, and 

the signals are modulated with information of the satellites’ orbit description parameters and some 

other information; (2) secondly, the user receives the broadcast signals and de-modulates the 

information, which can be employed to obtain the distance between the user and satellites; (3) 

thirdly, with at least four satellites in view, the PNT information can be determined precisely using 

a least-square algorithm or Kalman filter [1–5]. The advantages of GNSS are summarized as: (1) 

GNSS is able to provide precise navigation solutions at low cost, since a handheld chip receiver is 

cheap and sufficient for common applications; (2) GNSS is an all-weather navigation system 

covering the earth, and its positioning accuracy does not diverge over time. However, apart from 

these advantages, it also has some drawbacks limiting its further application: (1) firstly, the 

satellites are far away from the Earth, thus, the signals are pretty weak when they reach the Earth; 

(2) secondly, GNSS civil signal structure is open to the public, which makes GNSS extremely 

sensitive to interference and spoofing; (3) thirdly, temporary signal blockages or obstruction can 

also render the GNSS receiver unavailable to the satellite signals [6–10]. A standalone GNSS is not 

sufficient to provide seamless PNT information, thus they are commonly integrated with an inertial 

navigation system (INS) to provide ubiquitous navigation solutions [6–10]. While the GNSS is 

unavailable, the INS outputs the positioning information for users during the signal outage.  

INS is another navigation system capable of providing position, velocity, and attitude 

information. An INS is constructed through processing raw data or signals from the inertial 

measurement unit (IMU). Commonly, an IMU consists of three accelerometers and gyroscopes. 

Positioning errors divergence is usually caused by the noise contained in raw signals from the 

gyroscopes and accelerometers. Recently, due to the low cost and small size of the advanced 

micro-mechanics system (MEMS) manufacturing technology, the MEMS IMU has become more 

popular in the community for developing low cost and highly accurate GNSS/INS integrated 

navigation systems. However, as the MEMS IMU experiences more complex errors and noises, it is 

of great significance to develop a noise modeling method for the MEMS IMU [11–19], especially for 

improving positioning accuracy during GNSS signal outages. 

In INS, gyroscopes play an important role in INS positioning accuracy, thus, past works have 

mostly focused on modeling and suppressing the noise of the MEMS gyroscopes [11–19]. Various 

methods have been proposed and evaluated in MEMS gyroscope noise analysis and modeling; and 

basically, the methods can be classified into two approaches: statistical method and artificial 

intelligence method. In the statistical methods, Allan Variance (AV) and Auto Regressive Moving 

Average (ARMA) are the most popular. AV was first employed in MEMS IMU noise analysis and 

errors description in 2004 [19]. In the AV method, five basic parameters are introduced to describe 

the gyroscopes’ and accelerometers’ noise, and the parameters are termed as: quantization noise, 

angle random walk, bias instability, rate random walk, and rate ramp [19–24]. ARMA is another 

method for MEMS gyroscope noise modeling and compensation, in which the raw data are treated 

as time series. Variants of ARMA have also been proposed to furtherly improve the performance 

[26–29]. Moreover, artificial intelligence methods, such as support vector machines (SVM) and 

neural networks (NN), have also been employed in this application to obtain better de-noising 

performance [30–32]. The results demonstrate the effectiveness of these methods in this application. 
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However, both of the two solutions have some drawbacks, the statistical method usually has fixed 

parameters, which are not sufficient for certain applications; the artificial methods usually have 

limited ability to learn the model, due to their simple structures.  

Recently, Deep Learning (DL) has gained a boom and performed excellently in various 

applications including image processing, Nature Language Processing (NLP) and sequential signal 

processing [30-37]. In aspects of time series processing, a recurrent neural network (RNN) was 

always the most feasible selection [30–37]. A common RNN was not sufficient, thus, variants of 

RNN were proposed for enhancing the performance. Among the variants, Long Short Term 

Memory (LSTM) and the Gated Recurrent Unit (GRU) were most popular. LSTM-RNN and 

GRU-RNN both obtained excellent performance in NLP [30–37]. In addition, in our previous paper, 

LSTM was employed and compared in MEMS gyroscope de-noising [8]. With fixed or identical 

length of training examples, LSTM had better training accuracy, but GRU had better convergence 

efficiency for its unique design [8]. Commonly, GRU was designed with less parameters than LSTM, 

and this made GRU coverage faster and quickly than LSTM in training procedures. 

Inspired by the multi-layer RNN design scheme, a new architecture combing LSTM and GRU 

together was explored for MEMS gyroscope noise modeling in the paper. As aforementioned, since 

the GRU and LSTM had different characteristics, it was meaningful to explore the mixed LSTM and 

GRU in this application. Specifically, in this paper, two multi-layer RNNs with different 

architectures (LSTM–GRU: first layer, LSTM; second layer, GRU. GRU–LSTM: first layer, GRU; 

second layer: LSTM) of LSTM and GRU combination were investigated.  

In this method, a GRU unit was substituted by a LSTM unit in a two layer GRU-RNN, thus, the 

method was expected to combine the advantages from the LSTM and GRU. An MEMS IMU dataset 

was collected to evaluate the proposed method, and compare the results with a common multi–

layer GRU-RNN and multi-layer LSTM-RNN. Firstly, LSTM–GRU and GRU–LSTM were compared 

to select the proper structure for this application. Secondly, the new method was compared with a 

multi-layer LSTM-RNN and multi-layer GRU-RNN for a more specific analysis of performance. 

Finally, the standard deviation of the filtered signals and the attitude errors were presented. We 

thought the contributions of this paper could be summarized as:  

1) It was the first time a mixed LSTM and GRU method has been applied to MEMS gyroscope 

noise modeling, which might be an inspiration for applying DL in MEMS IMU de-noising.  

2) It was a bright idea to develop a mixed multi-layer RNN; detailed analysis of the 

multi-layer LSTM, multi-layer GRU, LSTM–GRU, and GRU–LSTM were presented and 

compared, which could provide valid reference while selecting proper methods for MEMS 

gyroscope noise modeling. 

The remainder of this paper is organized as follows: Section 2 describes the structures and the 

equations of the employed RNN, including the LSTM unit, GRU unit, and the mixed LSTM and 

GRU. Section 3 introduces the experiments, results, and analysis of these methods. The remaining 

sections are the discussion, conclusion, acknowledgements, and the references.  

2. Methods 

In this section, the basic structure and detailed mathematical equations are listed. This section is 

divided into four subsections. Subsection 2.1 is the basic introduction of the LSTM unit, subsection 

2.2 is about the GRU, subsection 2.3 presents the combination of LSTM and GRU, and subsection 2.4 

gives the training procedure of the employed RNNs. 

2.1. Long Short Term Memory (LSTM)  

As is well-known, LSTM is built using a unique ‘gate’ structure. Figure 1 shows the basic 

components of a LSTM. ‘Forget,’ ‘Input,’ and ‘Output’ gates work cooperatively to accomplish the 

function of a LSTM unit and control the information flow. As presented in Figure 1, from left to the 

right, the first component is the ‘forget’ gate, and a sigmoid function   
 

is employed in this gate 

to decide what information will be memorized from the previous state cell. The details of this 

procedure are listed as the following Equation (1). 
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  1,t f t t f   f W h x b                                  (1) 

Where,     is the sigmoid function, fW and fb are the parameters that will be determined 

after training, 1th is the hidden state at time epoch 1t  , and tx is the input vector at time epoch t . 

Vector tf  is the output of the sigmoid function.  

The inputs of the function are the hidden state from the previous LSTM unit and input vector. 

Outputs of the functions are values ranging from 0 to 1, which correspond to each number in the 

cell state from the previous LSTM unit. The values represent the forgetting degree of each number 

in the previous cell state -1tC . A value of ‘1’ means ‘completely keeping this,’ and, oppositely, a 

value of ‘0’ means ‘completely forgetting or excluding. 

After the “forget“ gate, the following is the ‘input’ gate, which controls the input and decides 

what part of the new information will be stored in the current cell state. The procedure is operated 

using the following two functions, Equations (2) and (3). Equation (2) is a sigmoid function similar to 

Equation (1). This function is employed to decide the updating degree of each number in the input 

vector. Equation (3) is a tanh layer, which outputs a new cell state t
C . Later, the new, hidden t

C  is 

multiplied with the vector i , and then added to the current cell state.  

  1,t i t t i   i W h x b                                   (2) 

  1tanh ,t C t t C  C W h x b                                (3) 

Where     is a sigmoid function, iW , ib , CW , and Cb are the parameters will be determined 

through training procedure, 1th is the hidden state at time 1t  , and tx is the input vector.  

Thirdly, an ‘output’ gate is employed to decide and control the outputs. This ‘gate’ is also 

composed of two functions: a sigmoid function and a tanh function. The details are listed as 

Equations (4) and (5). The output of the sigmoid function is to , which decides the outputs of the 

hidden state. The cell state is then put through a tanh function and multiplied with the vector to , 

deciding the outputs of the LSTM unit. 

  1,t o t t o   o W h x b                                  (4) 

 t ttanh th o C                                     (5) 

Where, oW and ob are the parameters determined during the training, and tC  is the cell state at 

time t . 

 

Figure 1. Basic structure of a long short term memory (LSTM) unit. 

2.2. Gated Recurrent Unit (GRU) 

The gated recurrent unit is another popular variant of the common RNN, and was first 

proposed by Cho in 2004 [32]. In a GRU, the information flow is also controlled and monitored 

based on a ‘gate’ structure, however, a GRU has no separate state cells. A GRU basic structure is 
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shown in Figure 2. In the figure, 1th is the hidden state at time 1t  , and th is the hidden state at 

time epoch t . The relationship between 1th  and th  is as Equation (6): 

  11t t t t t    z h z h h                                (6) 

Where t
h is the candidate activation or hidden state, and the updating gate tz  decides how 

much the unit updates its hidden state, which is as Equation (7): 

  1,t z t t  z W h x                                 (7) 

Where    is a sigmoid function, and determining the degree of the new hidden state will be 

added to the hidden state at time epoch t . In above, zW is the parameters which will be 

determined after training. 

In addition, the new or candidate hidden state t
h  calculation is as Equation (8): 

  1,t t t ttanh   h W r h x                               (8) 

Where tr is a set of reset gates, and when tr is close to 0, the unit acts as forgetting the 

previously computed state. tr  is calculated as: 

  1,t r t t  r W h x                                  (9)   

 

Figure. 2. Basis structure of a gate recurrent unit (GRU). 

2.3. Mixed LSTM and GRU 

As presented in Figure 1 and Figure 2, the LSTM and GRU are just a single unit. A deep 

LSTM-RNN or deep GRU-RNN is set up as Figure 3, the LSTM and GRU units are assembled and 

connected in the time domain, and the parameters propagation is also illustrated in detail. The 

output is determined by a LSTM or GRU sequence, thus, long term memory could also affect the 

current epoch output. Furtherly, Figure 4 presents the mixed LSTM and GRU deep RNN structures, 

Figure 4(a) shows the LSTM–GRU. In this structure, the cell state and hidden state are converted to 

the LSTM unit at the next epoch. The hidden state is also converted to the parallel GRU unit, and 

the hidden state propagates among the GRU units. In the GRU–LSTM structure (Figure 4(b)), the 

hidden state of GRU is converted to the next GRU unit and the parallel LSTM unit. Since the GRU 

has no cell state, in the mixed LSTM–GRU structure the cell state only propagates among the LSTM 

units. 
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(a) 

 

(b) 

Figure 3. Deep LSTM and GRU with single layers. (a) A single layer LSTM; (b) a single layer GRU. 

 
(a) 

 

 
(b) 

Figure 4. Structures of the mixed LSTM and GRU. (a) LSTM–GRU; (b) GRU–LSTM. 

3. Results 

This section introduces the experimental setup and the results. Figure 5 presents the data 

collecting procedure; a MEMS IMU (MT Microsystem Company, Hubei, China) is employed, and 

the details are listed in Table 1 [33]. The MEMS IMU is same model that is employed in our 
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previous paper, but they are not from the same batch [8]. Thus, they have similar parameters, but 

are actually different after precise calibration. This difference is caused by the MEMS 

manufacturing technology. 

Figure 5 presents the data collecting equipment. The power supply delivers 12 V and 0.11 A 

while the MEMS IMU is connected. A computer is also connected to the MEMS IMU through a USB 

2.0 cable. Control software is run by the computer to monitor the data collecting procedure, obtain, 

and store the data. The sampling frequency is set at 200 Hz, and the collecting time length is 

approximately 600 seconds.  

The remainder of this section is divided into three sections: Section 3.1 illustrates the formulae 

of the gyroscope output data errors, the structure of the input, and output data for training and 

testing. Section 3.2 details the investigation of the training data length on the proposed mixed LSTM 

and GRU method, since the GRU had better performance with less training data length compared 

to the LSTM. The aim of the section 3.2 was to explore the performance of the mixed LSTM and 

GRU RNN, as compared with multi-layer LSTM and multi-layer GRU. In section 3.3, the 

performance of the new method was compared with the two-layer LSTM and two-layer GRU to 

provide a detailed description of the proposed method. Attitude errors are also presented for 

further comparison of these methods. 

Table 1. Specifications of MSI3200 IMU. 

MEMS  

IMU 

Gyroscope 

range  300 o/s 

Bias stability (1  )  10 o/h 

Bias stability (Allan)  2 o/h 

Angle random walk  10 o/ h  

Accelerometer 

range  15 g 

Bias stability (1  ) 0.5 mg 

Bias stability (Allan) 0.5 mg 

Power consumption 1.5 W 

Weight 250 g 

Size 70 54 39mm mm mm   

Sampling rate 400 Hz 

 

Figure 5. MEMS Gyroscope data collecting procedure. 

3.1. Input Data and Training 

As illustrated in Figure 5, the gyroscope dataset was collected. The bias was calculated using 

the mean values of the collected data. After subtracting the bias, the processed dataset was labeled 

as  1 2 3, , , ..., Nx x x xX . The subscript N  was termed as the number of input gyroscope samples. In 

the experiments, the dataset was divided into two parts: training part ( trainingX ) and testing part 
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( testingX ). The training dataset was employed to train the model, and the testing dataset was utilized 

to evaluate the performance of the trained model. The input vector of the RNNs could be described 

as:  

1, ,..., , 1,i i i i step trainingx x x i N step 
        input                     (10) 

Where iinput is the input vector of the RNNs and the variable step  is the length of the iinput

vector. The output vector ioutput  is described by: 

1 , 1,i i step trainingx i N step 
        output                       (11) 

Equations (10)–(11) give the dataset for the training procedure, and the dataset in the testing 

step was similar to that of training procedure. 

RNNs were trained using the errors back propagation method (BP). Since the RNNs were 

designed to process time series datasets, the BP method is termed BPTT (back-propagation through 

time) [36–38]. 

3.2. Comparison of LSTM–GRU and GRU–LSTM 

As aforementioned in Section 2.3, there were two different architectures in mixed LSTM and 

GRU. This section aimed to compare these two architectures in aspects of training loss and 

prediction accuracy. The date lengths of the training dataset and testing dataset were 1000 and 

100,000, respectively. The learning rate was 0.01 for both, the hidden unit was 1, and the training 

epoch was 50. Figure 6, Figure 7, and Figure 8 present the training loss comparison of the LSTM–

GRU and GRU–LSTM in the three-axis MEMS gyroscope de-noising. In addition, training loss 

means the errors between the predicted values and the real signal values were not included in the 

training dataset. 

In these figures (Figure 6, Figure 7, and Figure 8), the red line represents the LSTM–GRU 

training loss, and the blue line represents the GRU–LSTM results. Figure 6 shows the x axis MEMS 

gyroscope results; the GRU–LSTM and LSTM–GRU both converged within 50 training epochs, but 

the GRU–LSTM delivered a lower convergence speed with smaller training loss. In Figure 7, the 

GRU–LSTM and LSTM–GRU seemed not to converge, while the LSTM–GRU had a better 

performance in reducing training loss. For the z axis MEMS gyroscope, LSTM–GRU converged fast 

to a stable value, while the GRU–LSTM did not converge within the set training epoch. We thought 

the difference was caused by the different architectures between LSTM–GRU and GRU–LSTM. 

LSTM-RNN had more parameters, which needed to be determined during the training procedure, 

When the LSTM was placed on the second layer, it was not sufficient for LSTM unit training. 

Overall, the LSTM–GRU was more feasible for this application, compared with the GRU–LSTM. 

Specifically, the prediction results are not presented, since the GRU–LSTM was not well trained 

with the settings. 

 

Figure 6. LSTM–GRU and GRU–LSTM training loss for the x axis gyroscope. 
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Figure 7. LSTM–GRU and GRU–LSTM training loss for the y axis gyroscope. 

 

Figure 8. LSTM–GRU and GRU–LSTM training loss for the z axis gyroscope. 

3.3. Comparison of LSTM–GRU, Two-Layer LSTM, and Two-Layer GRU 

This sub-section presents the comparison results from the two-layer LSTM, two-layer GRU, and 

the mixed LSTM–GRU. Table 2, Table 3, and Table 4 show the training loss, standard deviation of 

the prediction results, and standard deviation of the raw MEMS gyroscope signals. In particular, the 

structure of the LSTM–GRU is shown in Figure 4. For the x axis gyroscope, the LSTM–GRU 

delivered the smallest training loss, however, the standard deviations of the de-noised signals were 

minor. In aspects of the y axis results, the training loss decreased by 12.2% and 14.7%, compared 

with that of the two-layer LSTM and two-layer GRU. However, the standard deviation of the 

de-noised signals did not show a significant improvement. For the z axis gyroscope results, the 

differences in the training loss between the two-layer LSTM, two-layer GRU, and LSTM–GRU were 

trivial. 

In addition, Figure 9, Figure 10, Figure 11, and Figure 12 present the detailed training losses 

during the training procedure. In these figures, the red line represents the training loss of the LSTM, 

the blue line shows the GRU results, and the last green line shows the LSTM–GRU training loss. 

Specifically, in Figure 9, the two-layer GRU and two-layer LSTM had better performance than the 

LSTM–GRU. For the LSTM–GRU, the training loss remained almost unchanging, and it converged 

quickly from the 10th to the 20th training epoch. In Figure 10, the LSTM–GRU outperformed the 

LSTM and GRU. Figure 11 and Figure 12 show the z axis gyroscope de-noised results. Figure 12 

shows a magnified picture of the results from the 5th to the 20th epoch. 

Basically, LSTM–GRU showed a slower convergence speed, especially the training epochs from 

1 to 10. The phenomenon is obvious in Figure 9 and Figure 11. However, in Figure 10, the training 

loss of the LSTM–GRU was always below the two-layer LSTM and two-layer GRU. Moreover, the 

LSTM–GRU delivered smaller training loss than the two-layer LSTM and two layer GRU for the 

de-noised y axis and z axis gyroscope signals. 
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Table 2. Standard deviation of gyroscope outputs (two-layer LSTM-RNN). 

 X (degree/s) Y (degree/s) Z (degree/s) 

Training loss 0.00132 0.00534 0.00139 

LSTM-RNN 0.060 0.037 0.025 

Original signals 0.069 0.083 0.047 

Table 3. Standard deviation of gyroscope outputs (two-layer GRU-RNN). 

 X (degree/s) Y (degree/s) Z (degree/s) 

Training loss 0.00136 0.0055 0.00142 

LSTM-RNN 0.059 0.034 0.026 

Original signals 0.069 0.083 0.047 

Table 4. Standard deviation of gyroscope outputs (mixed LSTM–GRU RNN). 

 X (degree/s) Y (degree/s) Z (degree/s) 

Training loss 0.00127 0.00469 0.00134 

LSTM-RNN 0.060 0.035 0.0246 

Original signals 0.069 0.083 0.047 

 

Figure 9. LSTM, GRU, and LSTM–GRU training loss comparison for x axis gyroscope. 

 

Figure 10. LSTM, GRU, and LSTM–GRU training loss comparison for x axis gyroscope. 



Electronics 2019, 8, 181 11 of 14 

 

  

Figure 11. LSTM, GRU, and LSTM–GRU training loss comparison for z axis gyroscope. 

 

Figure 12. Zooming out of Figure 11 from the 5th to 25th epoch. 

Furthermore, Table 5 presents the attitude errors comparison of the three recurrent neural 

networks (60 seconds). In Table 5, the three axes referred to pitch, roll, and yaw angles respectively. 

From the results, three major conclusions were obtained: 

1) There was an obvious improvement in the attitude errors for all the three deep neural 

networks. The two-layer LSTM performed 64.4%, 49.3%, and 53.3% improvements in 

attitude errors, the two-layer GRU performed 56.3%, 54.5%, and 47.9% decreases in 

attitude errors, and the attitude errors of LSTM–GRU decreased by 72.2%, 69.3%, and 

58.4%. 

2) Specifically, for the x axis gyroscope data, LSTM–GRU had a large training loss, but the 

LSTM–GRU still showed 7.8% and 15.9% improvements compared with the two-layer 

LSTM and two-layer GRU. The minor difference of the standard deviation of the de-noised 

signals may account for this. 

Table 5. Attitude errors comparison. 

 X (degree) Y (degree) Z (degree) 

two-layer LSTM 0.136 0.240 0.184 

two-layer GRU 0.167 0.215 0.205 

LSTM–GRU 0.104 0.145 0.164 

Original signals 0.382 0.473 0.394 

4. Discussion 

In this paper, the influence of data length on the training performance was not presented and 

analyzed, as we were limited by the computer computation capacity. Longer training datasets 

might improve the performance of the deep recurrent neural network. 
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In the experiment, only static data were employed to evaluate the proposed method; a 

trajectory from field testing might be more feasible for sufficient testing. 

As we were limited by computer capacity, only two-layer LSTM or GRU were employed and 

implemented in this paper. It may be meaningful to explore the LSTM or GRU with more layers. 

5. Conclusions 

In this paper, a proposed artificial intelligence method was employed and evaluated in MEMS 

three-axis gyroscope signal de-noising. Through the experiments, the following conclusions were 

obtained: 

1) Two-layer LSTM, two-layer GRU, LSTM–GRU, and GRU–LSTM were effective for this 

application. The two-layer LSTM performed a 64.4%, 49.3%, and 53.3% improvement in 

attitude errors, the two-layer GRU performed a 56.3%, 49.3%, and 47.9% decrease in 

attitude errors, and the attitude errors of LSTM–GRU decreased by 72.2%, 69.3%, and 

58.4%; 

2) With a limited training dataset, LSTM–GRU outperformed GRU–LSTM; LSTM–GRU had a 

large training loss, but the LSTM–GRU still showed an improvement compared with the 

two-layer LSTM and two-layer GRU. 

Future works might include: It might be meaningful to explore the LSTM and GRU with more 

layers, which might give better performance; a dynamic trajectory could be employed to evaluate 

the performance of the artificial intelligence in this application; as this paper deals only with MRMS 

gyroscope de-noising, artificial intelligence could be integrated with the GNSS/INS method to 

improve the accuracy during GNSS signal outages.  
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