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Abstract: This research focuses on a decomposed-weighted-sum particle swarm optimization
(DWS-PSO) approach that is proposed for optimal operations of price-driven demand response
(PDDR) and PDDR-synergized with the renewable and energy storage dispatch (PDDR-RED)
based home energy management systems (HEMSs). The algorithm for PDDR-RED-based HEMS
is developed by combining a DWS-PSO-based PDDR scheme for load shifting with the dispatch
strategy for the photovoltaic (PV), storage battery (SB), and power grid systems. Shiftable home
appliances (SHAs) are modeled for mixed scheduling (MS). The MS includes advanced as well as
delayed scheduling (AS/DS) of SHAs to maximize the reduction in the net cost of energy (CE). A set
of weighting vectors is deployed while implementing algorithms and a multi-objective-optimization
(MOO) problem is decomposed into single-objective sub-problems that are optimized simultaneously
in a single run. Furthermore, an innovative method to carry out the diversified performance analysis
(DPA) of the proposed algorithms is also proposed. The method comprises the construction of a
diversified set of test problems (TPs), defining of performance metrics, and computation of the
metrics. The TPs are constructed for a set of standardized dynamic pricing signal and for scheduling
models for MS and DS. The simulation results show the gradient of the tradeoff line for the reduction
in CE and related discomfort for DPA.

Keywords: price driven demand response; dispatch of renewables and energy storage systems;
decomposed-weighted-sum method; multi-objective particle swarm optimization; diversified
performance analysis; advanced and delayed scheduling; testing of HEMS algorithms

1. Introduction

Demand-side management (DSM) has emerged as an efficient method for energy management
focusing on the consumer side. A home energy management system (HEMS) is used to implement
DSM in a home. The DSM utilizes demand response (DR) programs which are classified as price-driven
and incentive-driven. Price-driven DR (PDDR) is the most important DR category that makes use
of a control signal for energy management. Utilities offer dynamic pricing signal (DPS) in order to
encourage consumers to shift their load towards off-peak hours. The DPSs offered by the renowned
utilities in the past few years include time of use pricing (ToUP), real-time pricing (RTP), critical peak
pricing (CPP) and inclined block rate (IBR) [1,2].

Shifted operations of home appliances (HAs) for dynamic pricing result in a reduced cost of
generation for the utility, whereas the consumer benefits from the reduced net cost of energy (CE).
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Numerous algorithms have been developed to solve the problem for PDDR-based HEMS while
making use of the aforementioned DPSs [3–14]. These algorithms are mainly based on optimization
techniques, such as linear programming (LP), mixed integer LP (MILP), and advanced meta-heuristics
which have been used to solve HEMS problems for reducing CE, time-based discomfort (TBD),
and the peak load. Multi-objective optimization (MOO) approaches like weighted sum method (WSM),
E-constraint method and Pareto optimization (PO) have been used to handle the HEMS problems.
Anees et al. presented an algorithm based on LP for PDDR-based HEMS. The problem for single
objective optimization (SOO) has been solved to reduce CE based on delayed scheduling (DS) of
shiftable HAs (SHAs). The algorithm has been validated for day-ahead (DA) RTP with IBR [3].
LP-based methods can be used to solve small-scale problems only. The large-scale problems, due to
high computational cost, are solved using advanced meta-heuristics. Hussain et al. proposed a
non-dominated-sorted genetic algorithm (NSGA) to reduce the values of CE and TBD for 2S-ToUP
with IBR. The problem was solved as MOO using PO to provide a diversified set of trade-offs (TOs) for
the CE and TBD [5]. Zhao et al. solved a similar problem for DS of SHAs using genetic algorithm (GA)
for DA-RTP. The authors applied WSM to handle the MOO problem [6]. Particle swarm optimization
(PSO) is a meta-heuristic based on swarm intelligence which has the capability to solve even the most
complex and diversified problems. Danish et al. presented a binary PSO algorithm for HEMS for
2S-ToUP. The MOO problem for CE and TBD was solved using WSM as priori [7]. Hussain et al.
proposed a PSO algorithm for DS of SHAs in order to minimize the CE. The performance of the
algorithm was validated for DA-RTP, 2S-ToUP, and 3S-ToUP combined with IBR [8]. Research on
hybrid meta-heuristics has recently been expedited to solve PDDR- based HEMS [9–12]. The author
in [11] modeled the problem for HEMS as MOO and solved it for the CE and a peak-to-average
ratio (PAR) using WSM as priori. All of the DPSs except IBR have been used for a diversified
performance analysis (DPA).The abbreviations and nomenclature used in paper are given in Table 1
and Table 2, respectively.

Presently, researchers are expediting meta-heuristics like PSO, ant colony optimization (ACO),
bacterial foraging optimization (BFO), bat algorithm (BA), gray wolf optimization (GWO) and
enhanced differential evolution (EDE) and hybrid meta-heuristic techniques like bat-genetic algorithm
(BGA), hybrid gray wolf differential evolution (HGWDE), and bacterial foraging and genetic algorithm
(HBG) to solve problems for HEMS. Danish et al. presented a BPSO based algorithm for PDDR-
based HEMS for 2S-ToUP. In order to decrease TBD, HAs are bounded for their operations in already
assigned windows. To handle MO, OFs for reducing CE and delayed operation of SHAs are combined
through WSM [7]. Hussain et al. proposed a PSO algorithm to solve HEMS problem for DS of SHAs.
The problem was formulated as SOO to minimize CE. The algorithm was evaluated for DA-RTP,
2S-ToUP and 3S-ToUP schemes combined with IBR [8]. Latif et al. presented HEMS algorithms for
GA, BA and a hybrid to solve HEMS problem to reduce CE for 2S-ToUP. SHAs are modeled for DS and
are classified as interruptible and non-interruptible [9]. Naz et al. proposed a hybrid meta-heuristic
while merging EDE and GWO schemes. The problem for HEMS was formulated for load shifting to
reduce CE. The algorithm was evaluated for RTP and CPP [10]. Khalid et al. proposed a hybrid of
BFO and GA to solve the HEMS problem for DS of SHAs. To handle MO, OFs for CE and PAR were
combined through WSM. The algorithms were evaluated for DA-RTP, ToUP and CPP [11]. Javaid et
al. proposed EDE, teacher learning-based optimization (TLBO) and a hybrid of the two techniques.
OFs were defined to reduce CE, PAR, and TBD. The algorithms for TLBO, EDE, and the hybrid were
evaluated for DA-RTP and CPP [12]. Khan et al. presented a GA-based model for HEMS scheduling.
HAs were assigned with time varied priorities for time-based and device-based domains. The HEMS
problem is solved for absolute comfort within the user’s allocated budget [13]. In [14], the authors
used GA, EDE, BPSO, and optimal stopping rule strategies to reduce the CE and also mitigate rebound
peaks created in the off-peak hours.
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Table 1. Abbreviations.

AC Air conditioner AIPC Ameron Illinois Power Company

AS Advanced scheduling/advanced
scheduled

ACO Ant colony optimization

BFO Bacterial foraging optimization BA Bat algorithm

BPSO Binary particle swarm
optimization

BGA Bat-genetic algorithm

CPP Critical peak pricing CE Cost of energy

DPA Diversified performance analysis DPS Dynamic pricing scheme/signal

DSM Demand side management DR Demand response

DS Delayed scheduling/delayed
scheduled

DG Dispatchable generator

DWS-PSO Decomposed-weighted-sum PSO DA-RTP Day-ahead real time pricing

ESS Energy storage system EDE Enhanced differential evolution

EVs Electric vehicles GWO Gray wolf optimization

GA Genetic algorithm HA Home appliance

HGWDE Hybrid gray wolf differential
evolution

HBG Hybrid bacterial foraging and
genetic algorithm

HEMS Home energy management
system

IBR Inclined block rate

LP Linear programming LOOT Length of operational time

MS Mixed scheduling/mixed
scheduled (scheduling includes

both AS and DS SHAs)

MO Multi-objective/Multi-objectivity

MOGA Multi-objective GA MILP Mixed integer linear
programming

MOO Multi-objective optimization NSHA Non-shiftable home appliance

NSGA Non-dominated-sorted genetic
algorithm

OF Objective function

PDDR Price-driven demand response PDDR-RED PDDR synergized with RESs and
ESS optimal dispatch

PO Pareto optimization PAR Peak-to-average ratio

PTE Pareto tribe evolution PSO Particle swarm optimization

PV Photovoltaic RTP Real-time pricing

RES Renewable energy source SHA Shiftable home appliance

SCF Single compound function SOO Single objective optimization

SB Storage battery 2S-ToUP 2-stage time-of-use pricing

3S-ToUP 3-stage time-of-use pricing TO Tradeoff

TLBO Teacher learning-based
optimization

TBD Time based discomfort

TP Test problem ToUP Time-of-Use Pricing

WT Wind turbine WSM Weighted sum method
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Table 2. Nomenclature.

B Vector for numbering SHAs

STslt Vector of the starting slots of the SHAs’ operating time intervals

ENslt Vector of the ending slots of the SHAs’ operating time intervals

CE Cost of energy purchased from the grid

CEnet Net cost of energy

CEsold Cost of energy sold to the grid

DEP Vector of dynamic electricity pricing from the grid

DEP f Vector of feed-in pricing

EP Electricity price

IBR Inclining block rate

Itter Number of iterations

N Number of slots in the scheduling horizon

k Number of SHAs

LOOT Vector of the lengths of the SHA operating times

Ng_mx Maximum number of generations for the GA

Papp Vector of per-slot power values for the SHAs

Pch Vector of SB charging power values

Pch_mx Maximum SB charge rate

Pds Vector of SB discharging power values

Pds_mx Maximum SB discharge rate

Pgd Vector of values representing power from the grid

Ppv Vector of PV power values

Psch Vector of scheduled loads

Psold Vector of values representing energy sold to the grid

PT Power threshold for IBR application

SOCG Vector of states of charge

SOCG_mx Maximum SOCG limit

SOCG_mn Minimum SOCG limit

SOCG(init) Initial SOCG at the start of the scheduling horizon

SHtype Vector of the scheduling types for the SHAs

T Vector of number of scheduling slots

TBD Time-based discomfort due to scheduling

TBD(A) Average time-based discomfort due to AS

TBD(D) Average time-based discomfort due to DS

TBD(M) Average time-based discomfort due to MS

Tst Decision vector for the start times of the SHAs

Pb Power vector based on Tst for the bth SHA

Peak Peak demand from the grid

WTV Vector of weights for constituent OFs to compute value of SCF

Furthermore, a rapid increase in the installations of renewable energy sources (RESs) and energy
storage systems (ESSs) has motivated the researchers to focus on methods to combine PDDR- based
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HEMS operations with dispatch schemes and the power grid. In this regard, various algorithms have
been proposed for optimal operations of PDDR-RED-based HEMSs [15–21]. Lujano et al. presented
a GA-based scheme for the management of SHAs, electric vehicles (EVs) and the local generation
including the photovoltaic (PV) system for a RES- based HEMS. The electricity bill was reduced
nearest to the consumer budget. The model was formulated as a constrained problem for the CE
[15]. Rasheed et al. presented a GA-based algorithm for an optimal operation of RES-based HEMS for
DA-RTP. The HAs are modeled for shifted operations and for thermostatic control, whereas non-SHAs
(NSHAs) are dispatched to a dispatchable generator (DG) [16]. Rahim et al. developed heuristic HEMS
controllers based on GA, PSO and ACO techniques for a RES- based HEMS. The authors combined
the objectives for CE and the TBD using WSM as priori [17]. The power supply from the RES is
intermittent by nature; ESSs are integrated with RESs in order to introduce dispatch-ability to the
system. Elised et al. proposed a GA- based optimal dispatch scheme for PV system, wind-turbine (WT),
ESS, and the grid. The problem for MOO was formulated for the system operating cost constrained for
emission [18]. Shakeri et al. proposed an algorithm for optimal operation of HAs using storage battery
(SB) and the grid. The RESs are only used to charge the SBs. The problem is formulated to minimize
the overall CE. The TBD has been reduced by shifting HAs preferably towards the SB [20]. A few
authors have handled the MO making use of Pareto optimality concepts as posteriori. Wang et al.
proposed an evolutionary algorithm for Pareto tribe evolution (PTE) with Nash equilibrium-based
decision-making. Three objectives, including satisfaction, CE, and PAR are optimized by PTE [21].
Hussain et al. presented an NSGA- based algorithm for an optimal operation of PDDR-RED-based
HEMS for 2S-ToUP. A model based on MS of HAs was introduced in order to maximize the usage of
the PV energy and shifting of the peak load to increase economy. The PO method was used to generate
the optimal TOs for CE and TBD [5].

The handling of MO is a major issue in the present research. Most of the researchers have used
WSM as priori to handle the issue. The method solves the problem combining all of the objectives into
a single compound function (SCF) while assigning fractional weights as priorities to the constituent
objective functions (OFs). Such methods do not provide any feedback to the consumers that may
enable to improve their selection of choices. The MO issue can be resolved by achieving a diversified
set of TO solutions. A few authors achieved such TO solutions by using PO method combined with the
evolutionary algorithms like GA for non-dominated solutions [5]. The techniques like WSM combined
with advanced meta-heuristics, however, have rarely been used to achieve such TO solutions as
posteriori. Furthermore, most of the algorithms proposed in the recent research have not been tested
for their performance for a diversified set of TPs. Moreover, still not much work has been done on
the development of the standardized performance metrics that might be used for DPA for algorithms.
This research proposes a DWSM-PSO algorithm for MOO for PDDR- and PDDR-RED-based HEMSs.
The obtained TO solution helps the consumer in making decisions as per his needs. A method to carry
out the DPA for a HEMS algorithm based on the construction of the TPs and the formulation of the
performance metrics is also proposed.

1.1. Limitations of the Recent Research and Proposed Resolutions

The following limitations were identified while reviewing the recent state-of-the-art work on
PDDR- and PDDR-RED-based HEMSs:

(a) A large number of HEMS algorithms in recent research are based on SOO [3,8–10,12,15],
whereas the real life problems for HEMS are mostly based on MOO with conflicting objectives. In order
to handle MO, such problems are desired to be solved for a diverse set of TOs between the objectives.
A few authors have introduced a PO method to meta-heuristics algorithms for HEMS to achieve the
desired TO solutions [5,21].

(b) MO in the recent research on HEMS has mainly been managed through WSM, which
transforms an MOO problem for HEMS into an SOO for an SCF as priori [4,6,7,11,17,19]. This approach
does not provide a diversified set of TOs.
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(c) Most of the algorithms for HEMS have not been evaluated for a diversified performance
for an adequate number of TPs. The algorithms have mostly been tested for a single TP based on a
DPS [3–9,13–17,20,21]. The optimal performance of an algorithm, however, does vary if evaluated for
a diversified set of TPs [22]. Some of the algorithms, however, might be competitive for a diversified
set of TPs [23]. Furthermore, the recent research does not provide much information regarding the
selection of TPs for DPA for HEMS algorithms. Typical realistic TPs for HEMS need to be formalized
and used to evaluate the algorithms for DPA.

(d) The recent research does not persuade serious efforts for defining the performance metrics for
DPA for HEMS algorithms.

In order to address the limitations at (a) and (b), a decomposed weighted-sum (DWS) method
is proposed as an alternative to PO in order to solve MOO problems for HEMS for the TO solutions.
In this approach, all of the OFs are aggregated into a SCF while assigning a weighted coefficient to
each of the OF, known as the weight vector. By deploying a set of such vectors, MOO is decomposed
into a number of SO sub-problems that can be optimized simultaneously in a single run [23].

In order to address the limitation at (c), a method for developing a diverse set of TPs for HEMS
algorithms is proposed. The method takes the formulation of CE and a vital metric to evaluate HEMS
performance. The OF for the CE is a linear function made up of the product of a two-row vector, each
of dimensions 1 × N, comprising: (i) DEP, for the price of energy and (ii) Psch, having the sum of the
energy consumed by HAs in the respective slots. The value for CE thus depends on the coefficient
vector DEP and the scheduling vector Psch. TPs with varied values of the constituent vectors of
CE (DEP and Psch) have been determined as a rationale for the selection of a diversified set of TPs
as follows:

• Selection of a diversified set of pricing schemes for DEP is hereby proposed as the first feature for
developing TPs for a HEMS algorithm.

• The vector Psch can be varied by changing the bounds (STslt and ENslt) laid down for the
operating limits of SHAs. Such a variation in the bounds can be achieved by changing the
scheduling mode of SHAs from DS to MS and vice versa and is proposed as the second feature
for the construction of TPs for HEMS.

• Moreover, the value of the CE decreases with increasing number of slots in a scheduling horizon.
TPs with varying numbers of slots in a scheduling horizon can be another feature to construct the
TPs for HEMS.

In order to address the issue raised in (d), a set of metrics to quantify the performance of HEMS
algorithms for MOO has also been proposed. CE and TBD are the two most important objectives for
HEMS in a consumer’s perspective that are mutually conflicting. The following performance metrics
are thus proposed for the evaluation of an algorithm for MOO-based HEMS for its quality for TO
solutions: (i) the maximum reduction in the CE/CEnet and (ii) the gradient of the trend line for the
curve between the CE/CEnet and TBD.

This research introduces DWS-PSO algorithms for optimal operations of PDDR- and PDDR-
RED-based HEMSs. The algorithms have been developed to handle MO and are based on TO solutions
for posteriori. The proposed algorithm for PDDR-RED-based HEMS is developed by combining a
DWS-PSO-based PDDR scheme for load shifting with a dispatch strategy for the photovoltaic system,
the SB and the grid. A diversified set of TPs for DPSs for 2S-ToU, 3S-ToU, RTP, CPP and IBR and
HEMS models for MS and DS are also proposed. Simulations for HEMSs have been carried out to
compute the TO solutions for the proposed TPs and to generate the performance metrics. The DPA is
performed based on the results of the simulations.

The work presented in the remaining sections is arranged as follows. The system model is
presented in Section 2. Section 3 deals with the formulations for PDDR- and PDDR-RED-based
problems for HEMS and the advanced techniques to solve such problems. The algorithms, proposed
for PDDR- and PDDR-RED-based HEMSs are elaborated in Section 4. Simulations to validate the



Electronics 2019, 8, 180 7 of 40

algorithms for the PDDR- and PDDR-RED-based HEMS are presented in Section 5. This section also
includes a DPA of the algorithms for a diversified set of TPs. The conclusions of the present research
and future plans are discussed in Section 6.

2. System Model

The components of HEMS are shown in Figure 1, including HAs, RESs, an ESS, a HEMS controller,
a local communication network, a smart meter for the exchange of information between the consumer
and the utility for energy pricing, and the consumer’s electricity profile. In PDDR-based HEMS,
the operations of HAs are shifted in time for a specified DPS in order to minimize the peak demand for
the utility and the cost of energy for the consumer, whereas, in PDDR-RED-based HEMS, the shifted
operations of SHAs are integrated with the dispatch scheme for renewable energy sources, ESSs,
and the grid in order to reduce peak as well as overall demand and CEnet for the utility and the
consumer, respectively. While minimizing the CE/CEnet for the consumers, TBD should remain
within acceptable limits. HEMS operation has been modeled for a time horizon of 24 h length. HAs are
supposed to be operated for specified lengths of operational time (LOOT) vector within the proposed
time intervals (as per the vectors STslt and ENslt) as given in Section 3. The dispatch model for the
power sources is based on the operation of the PV unit, the SB system, and the power grid in parallel
based on the availability of the PV energy, and vector of states of charge (SOCG) and the limiting
values of charge/discharge rates for the SB. The PV units are modeled as the preferred source of energy
to supply the scheduled loads. The un-used PV energy is preferably stored in the SB that is used
to supply the load during high pricing time to reduce CEnet. The excess energy, in case of a fully
charged storage unit, is transmitted for monetary benefits. The strategy for scheduling of HAs and the
dispatch protocols for the local resources is taken from [5] where a MOGA-based algorithm was used
to implement the strategy. This research makes use of DWS-PSO-based algorithms to implement the
strategies for optimal operations of PDDR- and PDDR-RED-based HEMS. The proposed algorithms,
as detailed in Section 5, are designed to handle MO and are based on the TO solutions. A procedure
for DPA based on the construction of a diversified set of TPs and the performance metrics has also
been proposed and the developed algorithms have been validated for DPA accordingly.

Remote

control
Internet RESs

U�lity company

Smart meter

Local DG

Figure 1. HEMS architecture for a smart home [5].

2.1. HAs

The HAs are classified into NSHAs and SHAs [5,10]. The NSHAs comprised of electric lamps,
fans, etc., are assumed to work when required and they cannot opt for scheduling. The forecasted
load for NSHAs used in the simulation section is presented in Figure 2. The SHAs are supposed to
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be scheduled towards the off-peak hours and the PV energy harnessing hours for optimized HEMS
operation. In order to maximize the reduction in the cost of energy, SHAs are modeled as AS and DS.
MS (a combination of AS and DS)- based model for SHAs enables more reduction in the cost of energy
making use of an enhanced flexibility in the price-driven shifting of HAs and an increased direct usage
of the PV energy from the PV unit. Technical specifications along with the consumer’s defined settings
for the accomplishment of the required operations of AS and DS type SHAs used in the simulation
section are described in Table 3 [5]. The TBD to be borne by the consumer due to the AS, DS and MS
of SHAs has been discussed in Section 3 in detail.
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Figure 2. Fixed load profile for a smart home.

Table 3. SHAs and scheduling specifications for the DS and MS scenarios.

SHA Power (kWh) LOOT (slots) MS (Start/End Limits) DS (Start/End Limits)

AC-1 (Reversible) 1 18 01-36 (DS) 01-36 (DS)
AC-2 (Reversible) 1 9 37-54 (DS) 37-54 (DS)
AC-3 (Reversible) 1 9 103-120 (DS) 103-120 (DS)
AC-4 (Reversible) 1 12 121-144 (DS) 121-144 (DS)
Dishwasher DW-1 0.6 3 49-102 (DS) 49-102 (DS)
Dishwasher DW-2 0.6 3 127-144 (DS) 127-144 (DS)

Electric Geyser EG-1 0.8 6 01-36 (DS) 01-36 (DS)
Rice Cooker RC-1 (Manual) 0.4 3 73-81 (DS) 73-81 (DS)

Computer (CP) (Manual) 0.1 6 114-144 (DS) 114-144 (DS)
Washing Machine (WM) 0.7 9 93-123 (AS) 114-144 (DS)

Water Pump (WP) 0.7 3 37-117 (AS) 114-144 (DS)
Electric Geyser EG-2 0.8 6 55-121 (AS) 115-126 (DS)

Rice Cooker RC-2 (Manual) 0.4 3 100-117 (AS) 114-120 (DS)
Iron (IR) (Manual) 0.6 3 55-117 (AS) 114-144 (DS)

2.2. DPSs

Dynamic prices are the key to implementing PDDR as well as PDDR-RED-based HEMSs. They are
introduced to motivate consumers to modify their energy consumption profiles. Such modifications
in the consumption profiles enable reducing the peak demand, the overall demand as well as the
greenhouse gas (GHG)-emissions for the utility. The types of DPSs include DA-RTP, ToUP, and CPP
that are discussed next.
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2.2.1. ToUP

The ToUP schemes are based on predefined price values. The price pattern is maintained typically
for a period of 3 to 6 months. New prices are proposed on the yearly based operational cost and
long-term investments of the utilities.

ToUP schemes are offered for a specified period of time and are based on different electricity rates
for peak, mid-peak and off-peak times. The 2S-ToUP and 3S-ToUP schemes are adopted from the
national transmission and distribution company in Lahore, Pakistan and a Baltimore gas and electric
company, MD, USA has been shown in Figures 3 and 4 [8]. The algorithms for HEMS are designed
for shifting of SHAs from the on-peak hours to the off-peak hours based price signal received from
the utility.
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Figure 3. 2S-ToUP scheme.
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Figure 4. 3S-ToUP scheme.

2.2.2. DA-RTP

In the DA-RTP scheme, the electricity price varies on an hourly basis. In such schemes, the price
signal is typically communicated on a 24 h ahead basis. This helps and motivates the consumer to
participate in the PDDR programme. RTP enables utility companies to better distribute the price
of electricity reflecting the demand-supply elastics. The nature of the scheme characterized by a
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diversified price elasticity ought to motivate the consumer to adjust their demand more precisely [1].
The DA-RTP scheme adopted from the Ameren Illinois Power Company (AIPC), IL, USA, is shown in
Figure 5 [6].
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Figure 5. DA-RTP scheme.

2.2.3. CPP

The CPP is an event-based scheme. To manage the energy in an event, a control signal for
extra high electricity prices is communicated to affect electricity demand during critical peak hours.
The scheme can also be imposed if the system is expected to be severely constrained due to the
extremely cold/warm period for a limited number of hours. The consumers can participate in CPP
based PDDR programme for very high incentives for reducing the CEnet by either reducing their peak
demands or shifting energy consumption towards off-peak times. CPP-based PDDR program is event
based and not a daily based DR program.

Furthermore, CPP values are always higher than the corresponding ToUP values. A CPP scheme
based on the proposed scheme for 2S-ToUP with the critical peak price double that of the daily
peak time price has been shown in Figure 6 [1]. The aforementioned scheme for CPP, based on the
criteria adopted by the San Diego gas and electric company, CA, USA, which has been used in the
simulation section.

2.2.4. IBR

At high levels of demands, the aforementioned standardized DPSs are introduced with higher
rates of electricity, called IBR. Such schemes are introduced in order to discourage the consumers from
over-shifting of the loads towards the off-peak hours. The scheme enables avoiding the re-emergence
of peaks that may appear as a result of PDDR- based scheduling. A DPS with the related IBR vector is
computed as follows:

DEP = [(DEP1, PT1, IBR1), ..., (DEPn, PTn, IBRn)], (1)

where DEP1, DEP2 to DEPn are the normal energy prices during the nth time slots. Further DEPn×
IBRn pricing schemes are applied with the power threshold levels of PT1, PT2 to PTn in the respective
time slots.

An IBR value of 1.4 as opted by British Columbia Hydro has been adopted in the proposed
models for DPSs. IBR factor beyond a power threshold of 2.4 kW (0.4 kWh/slot) has been applied
while simulating the model for various DPSs [5].
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Figure 6. CPP scheme (2-stage).

2.3. RESs

Solar PV units are one of the most widely used types of RESs at homes. The proposed model
for HEMS operation is included with the PV unit based on the forecasted value of solar irradiations.
The power obtained from the PV unit is formulated as follows [24]:

Ppv = Aplate × Pirrad × ξpv × ξconv, (2)

where
Ppv = PV power in kWh,
Aplate = PV plate area in m2,
Pirrad = PV irradiation in kWh/m2,
ξpv = PV electrical efficiency,
ξconv = Converter efficiency.

The data for solar irradiations measured by the Pakistan Engineering Council in Islamabad is
applied for the simulated operations of PDDR-RED-based HEMS.The parameter details are provided
in Table 4. The profile of electrical power harnessed from the PV unit is displayed in Figure 7. The cost
of electricity generation from the local PV unit has not been included in the model.
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Figure 7. PV power profile.
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2.4. SBs

SBs are introduced into the PV-based HEMSs in order to introduce flexibility in the dispatch of
the PV energy. The surplus PV energy is stored in the SB that can be used to supply the load during
peak hours to minimize the CE. Technical specifications of the PV unit, the SB and the inverter that
were used in the simulations are given in Table 4.

Table 4. PV unit, SB and inverter specifications [5].

Parameter Value

Total capacity of the PV unit 5 kW
Rating of each panel 250 W

Number of panels and panel area 20, 32 m2

Efficiency of PV panels 15%
Inverter rating 5 kW

Inverter efficiency 70%
SB Ah 600 Ah

SB voltage 48 V
SB capacity 4.8 kWh/slot

SB charge rate 0.48 kWh/slot
SB discharge rate 0.32 kWh/slot
Minimum SOCG 30%
Maximum SOCG 95%

SB efficiency 80%

3. Formulating the HEMS Optimization Problem

The energy management problem is formulated for specified objective under a set of constraints.
The problem is solved for a set of input variables that can provide the optimal values of the desired
objectives. The formulation is founded on the scheduled load profile based on the following
control parameters:

B = [b1, b2, ..., bk],

T = [1, 2, 3, ..., N],

Papp = [P1, P2, ..., Pk],

LOOT = [LOOT1, LOOT2, ..., LOOTk],

STslt = [STslt1, STslt2, ..., STsltk],

ENslt = [ENslt1, ENslt2, ..., ENsltk],

DEP = [DEP1, DEP2, ..., DEPN],

IBR = [IBR1, IBR2, ..., IBRN],

Tst = [Tst1, Tst2, ..., Tstk].

The formulation for the scheduled load is based on the input vector for Tst. In the proposed
algorithms, the specified vector is generated through PSO. A decision vector Pa (dim: 1× N), based on
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the generated Tst, is derived for the scheduled power profile of the bth shiftable home appliance,
as follows:

Pb(i) =

{
Papp(b) : f or Tst(b) + LOOT(b) > i ≥ Tst(b),
0 : f or Tst(b) > i ≥ Tst(b) + LOOT(b).

Similarly, vectors P1, ..., Pk are developed for each of the SHA, based on the respective value of
Tst(b) for the SHA, numbered as B = 1, 2, ..., k.

The decision vectors P1, ..., Pk are joined into a matrix called as Power_matrix as given below:

Power_matrix = [P1, P2, ..., Pk]t. (3)

Power_matrix is summed up column-wise to develop a scheduling vector Psch_sh. The developed
vector specifies the power requirement for each of the slot in the scheduling horizon. The power
scheduling vector for the HEMS problem is thus formulated as follows:

Psch_sh =
N

∑
n=1

k

∑
b=1

P(b, n), (4)

where P(b, n) is a generalized element of the derived Power_matrix. The final scheduled load vector,
Psch is then developed by adding the load vector for NSHAs, Pload_nsh, to the vector Psch_sh
as follows:

Psch = Psch_sh + Pload_nsh. (5)

3.1. Objectives for Optimal HEMS Operation

The major objectives for HEMS include minimizing the CE to be supplied from the grid,
minimizing the discomfort borne by the consumer, and reducing the peak load. These objectives are
discussed next.

3.1.1. Minimization of CE

The OF for minimizing the CE for a PDDR- based HEMS is formulated as follows:

Minimize
N

∑
n=1

(Psch× DEP), (6)

where DEP and Psch are the pricing vector and the load scheduling computed through Equations (1)
and (5), respectively. For DR-RED-based HEMSs Pgd is computed using Algorithm 2 as follows:

Pgd = Psch− Ppv + Psold + Pch− Pds. (7)

In this case, the OF for minimizing the CEnet is formulated as follows:

Minimize
N

∑
n=1

(Pgd× DEP− Psold× DEP f ), (8)

where Pgd and Psold are the vectors denoting the purchased/sold energies from/to the utility,
and DEP and DEP f are the respective vectors for the pricing. We have assumed a value of DEP f
equal to 0.7× DEP in the simulations section.
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3.1.2. Minimization of TBD

For DS-type SHAs, the average TBD due to the delayed starting of SHAs, denoted by TBD(D),
is formulated as follows:

TBD(D) =
k1

∑
b=1

((Tst− STslt)/ (ENslt− LOOT − STslt + 1))/k1, (9)

where k1 is the number of SHAs chosen for DS.
Furthermore, TBD(D) assumed a minimum value of 0 when the SHAs started their operations

at STslt. The parameter achieved a maximum value of 1 when the SHAs started their operations
at ENslt(b)− LOOT(b) + 1. These limits must be followed while computing the vector Tst and are
formulated below:

Lb = STslt and Ub = ENslt− LOOT + 1. (10)

For AS-type SHAs, the average TBD due to the advanced completion of the jobs, designated as
TBD(A), is computed as follows:

TBD(A) =
k2

∑
b=1

((ENslt− Tst− LOOT + 1)/(ENslt− LOOT − STslt + 1))/k2, (11)

where k2 is the number of SHAs chosen for AS. The TBD(A) assumes a minimum value of 0 when
all of the SHAs complete their jobs at their proposed job ending time in ENslt(b), and will achieve a
maximum value of 1 when Tst(b) equals STslt(b). In MS, some of the SHAs are selected for AS, whereas
the others for DS. In this mode, the average value of TBD for a total number of k SHAs, designated as
TBD(M), is expressed as follows [5]:

TBD(M) = TBD(D) + TBD(A). (12)

3.1.3. Minimization of Peak

The objective to minimize the peak load fed from the grid is computed as follows:

Minimize Peak(Pgd). (13)

3.2. Constraints

The constraints were applied for HAs, pricing schemes, SB, and the energy balance as per our
previous research designed for MOGA [5].

3.3. Meta-Heuristic Techniques to Solve Energy Management Problems

Over the past few years, meta-heuristics tools have been used very successfully for obtaining
robust solutions to complex HEMS optimization problems. The renowned meta-heuristics include
GA, PSO, ACO, and evolutionary programming [5]. In this study, we have introduced PSO to reach
the optimal solutions to PDDR- and PDDR-RED-based HEMSs. The technique uses swarm behavior
of the birds known as swarm intelligence. PSO is simple, faster in convergence and has an ability
to quickly search in extra large search spaces. The technique is capable of solving a diversified set
of complex optimization problems very quickly. At the start, the algorithm generates a population
of solutions called as particles that move towards the best position in the search space with random
velocities. Each particle remembers his own best and global (swarm’s) best positions (Pbest and Gbest)
and moves with jth particle velocity (in ith iteration) formulated as follows:

Vj(i) = Vj(i− 1) + clr× ran1× [Pbest− Xj(i− 1)] + slr× ran2× [Gbest− Xj(i− 1)], (14)
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where
j = 1, 2, ..., N,
clr= cognitive learning rate,
slr = social learning rate,
ran1 and ran2 are uniformly distributed random numbers.

A new position of jth particle is found as:

Xj(i) = Xj(i− 1) + Vj(i), (15)

where
j = 1, 2, ..., N.

Each of the particles correspond to the values of decision variables that are related to the values of
OFs as F1(X1(i)), F2(X2(i)), ..., FN(XN(i)). The method is said to be converged if positions of all particles
converge to the same set of values, otherwise more iterations are carried out [25,26].

3.4. Handling of Multi-Objectivity in Energy Managment Problems

Most of the problems for HEMS in real life are MOO with mutually conflicting objectives.
The main objective in the recent research is minimizing the CE [3–12,16–21], whereas, minimizing
TBD is the second most important objective [5–7,16,17,19,20] from the consumer’s perspective. A TO
exists between the reduction in CE and the TBD that makes home energy management problems
interesting to the issue of MO. The following methods, in recent research, have been used to handle
MO: PO [5,21], E-constraint [13–15], and WSM [4,6,7,11,17,19]. Algorithms for MOO based on PO,
like NSGA, have been used to compute a Pareto-optimal set (POS) containing non-dominated TO
solutions for the specified objectives. The method provides a diverse set of TOs between the objectives
for CE and TBD that helps consumers making decisions as per their needs. In recent research, PO has
been the one and only method used for TO solutions as posteriori. An e-constraint method was
introduced by Haimes et. al. in 1971. In this method, just one OF is kept while the rest of the OFs are
transformed into constraints within the user-specified values. The vector for the constrained values
has to be chosen very carefully so that it remains within minimum/maximum limits of the constrained
OFs. The method was used by Khan et al. to compute the value of the discomfort using the value
of the consumer budget as constraint [13]. Algorithms based on WSM solve MOO problems while
transforming all of the OFs into a SCF using respective weights for individual OFs. The SCF mentioned
for WSM is formulated as follows [27]:

MinimizeSCF(X) =
M

∑
m=1

WmFm(X), (16)

where ∑k
m=1 Wm = 1.

The method is characterized by the assigning of fractional weights to the constituent OFs in order
to reflect their priorities while computing the SCF. The method has mostly been used as priori. Use of
WSM with a posteriori approach, as an alternate to PO, has been focused on in this research for its
application to HEMS. Moreover, WSM can be combined with population-based meta-heuristic like
PSO for posteriori in order to achieve the TO solutions. In a decomposition approach for WS-PSO, a set
of weighting vectors is deployed, and an MOO is decomposed into a number of SO sub-problems that
are optimized simultaneously in a single run. The solution obtained through decomposition WS-PSO
based algorithm provides a set of TOs that helps consumers to make decisions after evaluating a
diverse set of choices.
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4. Algorithms for a PDDR- and PDDR-RED-Based HEMSs Using DWS-PSO

The following algorithms have been proposed:
—–Algorithm 1 for a PDDR-based HEMS using DWS-PSO
—–Algorithm 2 for a PDDR-RED-based HEMS using DWS-PSO

The algorithms are presented in the following subsections.

Algorithm 1 Algorithm for a PDDR-based HEMS using DWS-PSO.

Input: DEP, IBR, PT, Papp, SHtype, STslt, ENslt, LOOT, Pload_nsh,

WTV

Output: Optimal TOs for CE and TBD and the related set of Tst

1: Initialize input parameters

2: M = Count (WTV); counting the required number of TO solutions

3: For p = 1:M

4: Do

5: Initialize Tst within the defined bounds as per Equation (10)

6: for itter = 1:Ng_mx

7: if itter > 1

8: Generate new populations for Tst within the defined

bounds using PSO operations

9: end

—–Computation for Psch vector for PDDR- based HEMS—–

10: Tend = Tst+LOOT-1

11: for i = 1:k

12: for j = 1:N

13: if (j ≥ Tst(i) &&j ≤ Tend(i))

14: Power_matrix(i,j) = Papp(i)

15: else

16: Power_matrix(i,j) = 0

17: end

18: end

19: end

20: Psch = sum(Power_matrix)+ Pload_nsh

—–Computation for tariffs combined with IBR—–

21: for j = 1: N

22: if Psch(j) > PT

23: DEP(j) = IBR × DEP(j)

24: end

25: end

—–Computation of the fitness function for CE—–

26: Compute CE = sum(DEP × Psch)

—–Computation for fitness function for TBD—–

27: for b = 1:k

28: if SHtype = DS

29: TBD(D)(b) = (Tst(b)−STslt(b))/ (ENslt(b)−LOOT(b)

−STslt(b) + 1)

30: else

31: TBD(A)(b) = (ENslt(b)−Tst(b)−LOOT(b) + 1)/(ENslt(b)

−LOOT(b)−STslt(b) + 1)

32: end

33: end

34: Compute TBD = (sum(TBD(D)) + sum(TBD(A)))/k

—–Computation of single compound function (SCF) to apply

WSM———–

35: Compute SCF = sum (WTV(1) × CE) + WTV(2) × TBD )

36: end

37: end DO

38: end; return of results from DWS-PSO for CE, TBD and Tst for M

number of TOs

39: Selection of a feasible TO solution by the consumer

4.1. Algorithm 1 for a PDDR-Based HEMS Using DWS-PSO

The algorithm computes a set of solution that provides optimal TOs for CE and TBD for PDDR-
based scheduling of SHAs using PSO. For optimal scheduling, Tst is heuristically generated based
on the specified bounds using PSO. The computations for Psch, CE, and, TBD mentioned on line
numbers 10–34 are taken from [5]. The value of SCF is then computed for the OFs for CE and TBD
and the relative weights to be allocated to each of the OF. This important computation is presented on
line 35. The TO solutions for CEnet and TBD achieved using DWS-PSO are mentioned on line 38.
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Algorithm 2 Algorithm for a PDDR-RED-based HEMS using DWS-PSO.

Input: DEP, IBR, PT, Papp, SHtype, STslt, ENslt, LOOT, Pload_nsh,

SOCG(init), SOCG_mx, SOCG_mn, Pch_mx, Pds_mx, Ppv, WTV

Output: Optimal TOs for CE and TBD and the related set of Tst

1: Initialize input parameters

2: M = Count (WTV); counting the required number of TO solutions

3: for p= 1:M

4: do

5: Initialize Tst within the defined bounds as per Equation (10)

6: for itter = 1: Ng_mx

7: if itter > 1

8: Generate new populations for Tst within the defined

bounds using PSO operations

9: end

—-Computation of Psch vector for PDDR-based load scheduling—–

10: Compute Psch using the method given in Algorithm 1,

lines 10–20

—–Computation of the dispatch for the PV system, SB and grid—–

11: for j = 1:N

12: Pres(j) = Ppv(j)−Psch(j)

——Dispatch when PV energy > Psch——-

13: case (Ppv(j) > Psch(j)) do

14: if SOCG(j) ≥ SOCG_mx

15: Psold(j) = Pres(j)

16: SOCG(j+1) = SOCG(j)

17: else

18: Pch(j) = min(Pch_mx,Pres(j),SOCG_mx-SOCG(j))

19: if Pch(j) 6= Pres(j)

20: Psold(j) = Pres(j)−Pch(j)

21: end

22: SOCG(j + 1) = SOCG(j) + 0.8* Pch(j)

23: end

24: endcase

——-Dispatch when PV energy ≤ Psch——-

25: case (Ppv(j) ≤ Psch(j)) do

26: if (SOCG(j) ≤ SOCG_mn) | ((SOCG(j) > SOCG_mn)

&& (DEP(j) ≤ price_set))

27: Pgd(j) = −Pres(j)

28: SOCG(j + 1) = SOCG(j)

29: elseif ((SOCG(j)> SOCG_mn) && (DEP(j) >

price_set))

30: Pds(j) = min(Pds_mx,−Pres(j),SOCG(j)−SOCG_mn)

31: if Pds(j) == Pds_mx

32: Pgd(j) = Psch(j)−Ppv(j)−Pds_mx

33: elseif Pds(j) == SOCG(j)−SOCG_mn

34: Pgd(j) = Psch(j)−Ppv(j)−(SOCG(j)−SOCG_mn)

35: end

36: SOCG(j + 1) = SOCG(j)−Pds(j)

37: end

38: endcase

——-Computation of tariffs with IBR———

39: if Pgd(j) > PT

40: DEP(j) = IBR × DEP(j)

41: end

42: end

—–Computation of fitness function for CEnet—–

43: Compute CEnet = sum (DEP × Pgd−DEPf × Psold )

—–Computation of fitness function for TBD—–

44: Compute TBD using the method given in Algorithm 1,

lines 27–34

—–Computation of single compound function (SCF) to apply

WSM———–

45: Compute SCF = sum (WTV(1)× CEnet) + WTV(2)× TBD )

46: end

47: end DO

48: end; return of results from DWS-PSO for CEnet, TBD and Tst for

M number of TOs

49: Selection of a feasible TO solution by the consumer

4.2. Algorithm 2 for a PDDR-RED-Based HEMS Using DWS-PSO

This algorithm provides a set of solutions for optimal TOs between CEnet and TBD for
PDDR-RED-based HEMS operations using DWS-PSO. The algorithm combines the scheduling of
SHAs with the dispatch scheme of the PV system, the storage unit, and the power grid. For optimal
scheduling, Tst is generated using PSO based on the specified bounds. The computations for Psch;
dispatch scheme for PV units, SB, and the power grid; DEP combined with IBR; CE, and TBD as given
on line numbers 10–44 are taken from [5]. The SCF is computed while making use of the values of
OFs for CE, TBD, and the relative weights allocated to each of the OF. This important computation is
presented on line 45. The TO solutions for CEnet and TBD achieved using DWS-PSO is mentioned on
line 48.

5. Simulations for PDDR- and PDDR-RED-Based HEMS Using DWS-PSO

The simulations reported in this section were carried out to validate the performance of DWS-PSO
based algorithm for optimal operations of PDDR- and PDDR-RED-based HEMSs. In order to achieve
the TO solutions, WSM was combined with the PSO. The SCF for DWS-PSO-based algorithm has been
computed using Equation (16). The SCF combines the OFs for the CE (CEnet) and the TBD through
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relative weights that impart priorities to the respective objectives. The simulation was carried out for a
set of a critical pair of weights for CE and the TBD as follows:

WTV = [(1, 0), (0, 1)], (17)

where WTV is a vector comprising pairs of weights to compute the required SCF to implement
DWS-PSO. The first pair of weights provides the solution with the minimal value of CEnet based
on optimal scheduling of SHAs, whereas the second pair provides the solution with the minimal
value of TBD. To evaluate the algorithm’s performance, a set comprising eight number of TPs is
designated. Four TPs are based on the diversified DPS implemented in various parts of the world.
DPS including 2S-ToUP, 3S-ToUP, DA-RTP, and CPP are selected for implementation. In order to
avoid the re-emergence of the peak load, each of the DPS has been combined with IBR. A factor of
1.4 has been applied as IBR for an energy consumption of above 0.4 kW/slot. The remaining four
TPs in the set are based on the modeling of SHAs for DS or MS. Problems based on any one of these
approaches differ from their counterparts in the bounds laid down for the operation of SHAs. Taking
the aforementioned bases into the account, the following set of TPs was proposed for the DPA of
DWS-PSO-based algorithms for PDDR- as well as PDDR-RED-based HEMS:
—A 2S-ToUP scheme (with DS),
—A 2S-ToUP scheme (with MS),
—A 3S-ToUP scheme (with DS),
—A 3S-ToUP scheme (with MS),
—A DA-RTP scheme (with DS),
—A DA-RTP scheme (with MS),
—A CPP scheme (with DS),
—A CPP scheme (with MS).

Detailed specifications for the SHAs, PV system, SB and inverter used to implement the algorithms
for simulated operations of PDDR- and PDDR-RED-based HEMSs are given in Tables 3 and 4.

The hardware and software used for the simulations include the following:
Machine: Core i7-4790 CPU @3.6 GHz with 16 GB of RAM,
Platform: MATLAB 2015a software tool,
Optimization tool: Particle swarm optimization,
Swarm size: 140,
Maximum iterations: 2800,
Inertia range: 0.1–1.1.

5.1. Simulations for PDDR-Based HEMS Using DWS-PSO

The performance of the algorithm is analyzed for the TO solutions for CE and the TBD based on
DWS-PSO. The SCF for WSM is achieved by combining the OFs of CE and TBD through the relative
weights. In order to minimize the parameter for the CE a pair of weights of value (1, 0) was adopted
reflecting a maximum priority on the reduction in CE, whereas, in order to minimize the value of TBD,
a pair of weights of value (0, 1) was adopted that reflects a maximum priority to the reduction in TBD.

Simulations were carried out for DPA of DWS-PSO algorithm for PDDR-based HEMS.
The algorithm was tested for a set of TPs for HEMS based on 2S-ToUP (DS/MS), CPP (DS/MS),
3S-ToUP (DS/MS) and DA-RTP (DS/MS) for the TOs for CE and TBD.

The percentage reduction in CE based on the optimal HEMS operations is computed as follows:

%RHEMS
CE = (CEbase − CE)/(CEbase), (18)

where CEbase is the base value of the CE for the unscheduled load scenario. A formulation similar to
Equation (18) has also been adopted to compute percentage reduction in Peak as well. The mentioned
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values for each of the DPSs are presented in Table 5. The maximum reductions in CE along with the
related TBD for PDDR-based HEMS using DWS-PSO with values of weights as (1, 0) are shown in
Figure 8. The simulation results of the proposed algorithm for the designated set of TPs are summarized
in Table 5. The table furnishes the achieved performance parameters for the maximal reductions in the
CE, the related values of TBD, and the peak load for the complete set of TPs.
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Figure 8. DWS-PSO for PDDR-based HEMS: A comparative performance for maximal reduction in CE
using weights of (1,0)

Table 5. DWS-PSO for PDDR-based HEMS: reductions in CE, peak load and TBD for a diversified set
of TPs.

Tariff
Scheme

PDDR
HEMS

Approach

Base Values of CE
(Cents), Peak (kW)

and TBD

After PDDR-Based
HEMS Scheduling

Performance Achieved through
PDDR-Based HEMS

CE
(Cents)

Peak
(kW)

Reduction in CE (%)
(Performance Metric 1)

TBD
(%)

Reduction
in Peak (%)

2S-ToU
DS 218.99; 0.608 and 1 197.69 0.36 9.7 46.6 41.12

MS 184.46 0.34 15.8 62.18 43.80

3S-ToU
DS 206.85; 0.608 and 1 173.88 0.36 15.9 58.16 41.07

MS 167 0.34 19.3 62.8 43.80

RTP
DS 68.48; 0.608 and 1 54.58 0.39 20.3 59.37 35.58

MS 54.45 0.34 20.5 64.07 43.80

CPP DS 327.44; 0.608 and 1 255.97 0.68 21.8 61 −11.02

MS 220.46 0.34 32.7 65 43.80

The minimal values of TBD were achieved while selecting the value of weight (0, 1) for DWS-PSO.
The algorithm minimized the value of TBD to zero and accordingly all of the loads were operated as
per the preferred starting times (STslt) and ending times (ENslt) of HAs for DS and AS based models,
respectively. Under this scenario, percentage reductions in CE, peak load, and TBD remained zero.
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5.2. Simulation Results Discussion for PDDR-Based HEMS

The performance of the algorithm for reductions in CE, the related values of TBD, and Peak
achieved for different TPS were analyzed while comparing the profile of the load before scheduling
with the optimally scheduled profile achieved after the application of the algorithm. The performance
of the algorithm for achieving the maximum reductions in CE through optimal scheduling was based
on shifting of the load from the peak time (with higher electricity price (EP) towards the off-peak
(with lower EP).

The problem based on a 2-stage ToUP scheme was considered as a benchmark for analyzing the
performance of the other TPs. The scheme consists of a price of 15 cents/kWh during the peak time
from 7:00 p.m. to 11:00 p.m. (slots numbered 115–138) and 9 cents/kWh during the rest of the day as
shown in Figure 3. While moving from peak towards off-peak times, the price coefficient reduces by
0.62 times. The algorithms use this price elasticity as a pressure for shifting of the peak load towards
off-peak times. While pressurizing, the algorithm has to take into account the limiting bounds (STslt
and ENslt) and the LOOT of each of the SHAs. For the DS scenario, the algorithm can shift the load
from peak hours slots numbered 115–138 towards the off-peak hour’s slots numbered 139–144 in the
forward direction. Referring to Table 3, such shifting is applicable to HAs like AC-4, DW-2, CP, WM,
WP, and IR. Furthermore, some of the HAs are bounded to operate during the peak hours like EG-2
and RC-2, due to the specified values STslt and ENslt, and cannot be shifted on a timeline, known
as non-pressurized (NP) HAs. Similarly, the AS-type HAs can be pressurized for advanced shifting.
The algorithm generates combinations of starting times of SHAs as vector Tst based on the constraint
for each of the aforementioned types of HAs. The load profile corresponding to Tst vector is computed
as per Equation (5), and the same profile has been used to discuss the algorithm performance for a
specified set of TPs.

The scenario for the 2S-ToUP scheme (with DS) showed that the algorithm attempted the DS- type
HAs for their shifted operations in the forward direction in order to achieve an optimal load profile
that might result in a minimum CE. The simulated load profile for this scenario is shown in Figure 9.
The algorithm curtailed the peak time load ranging from 0.35 to 0.6 kWh to a value of 0.15–0.35 kWh.
A load of 0.31 kWh was shifted from the peak time towards the off-peak time slots numbered 139–144.
That shifting of the load resulted in a 9.7% reduction in the CE under this scenario.
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Figure 9. Load profile with maximal reduction in CE for 2S-ToUP (DS).

Refer to the scenario for the 2S-ToUP scheme (with MS), some of the SHAs were modeled as AS
while the others as DS. The algorithm attempted the DS-type HAs like AC-3, AC-4, DW-2, and CP for
their shifted operations towards the off-peak slots in the forward direction, whereas the AS- type HAs
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like WM, WP, EG-2, RC-2, and IR were pressurized for their shifted operations towards the off-peak
slots in the advanced direction.

The simulated load profile after MS of HAs is shown in Figure 10. The algorithm curtailed the
peak time load ranging from 0.35 to 0.6 kWh, to a value of 0.25 kWh supplied during slots numbered
133–138. The peak hour load was reduced because loads of 0.31 and 0.15 kWh were shifted towards
off-peak time slots numbered 139–144 (forward direction) and numbered 92–102 (advanced direction),
respectively. This bi-directional shifting of the load out of the peak hours resulted in 15.8% reduction
in the CE for this scenario.

Time slots

0 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

P
g
d
(k
W
h
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

without scheduling

DR (2S-ToU)- based MS, Wt
1,0

Figure 10. Load profile with maximal reduction in CE for 2S-ToUP (MS).

The scenario for the 3S-ToUP scheme (with DS) revealed that the algorithm attempted for the
shifted operation of the SHAs from peak time slots numbered 103–102 towards the off-peak time slots
numbered 133–144 in the forward direction. The simulated scheduled load profile for this scenario
is shown in Figure 11. The algorithm curtailed the peak time load ranging from 0.35 to 0.6 kWh to a
lower range of 0.15–0.3 kWh. A load of 0.33 kWh was shifted from the peak time towards the off-peak
time. The shifting mentioned under this scenario resulted in 15.9% reduction in CE.
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Figure 11. Load profile with maximal reduction in CE for 3S-ToUP (DS).
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Referring to the scenario for the 3S-ToUP scheme (with MS), the increased number of the pricing
stages and multiple options for shifting of the load in the forward and in the advanced directions
enabled the algorithm for a larger load shifting towards the slots with cheaper EP. Accordingly,
the algorithm successfully shifted the peak time load, initially supplied during slots numbered 103–132,
towards the off-peak time slots numbered 133–144 in the forward and the mid-peak/off-peak time
slots numbered 1–102 in the advanced direction. Furthermore, the algorithm could move the mid-peak
time load towards the off-peak time as well.

The simulated load profile after MS of HAs for 3S-ToUP is shown in Figure 12. The algorithm
curtailed the peak time load ranging from 0.35-0.6 kWh to a lower range of 0.05–0.2 kWh; only the
fixed and NP loads were fed during the peak hours. Loads of 0.31 and 0.2–0.3kWh supplied during
peak hours were shifted towards off-peak slots numbered 133–144 in the forward and towards the
mid-peak/off-peak slots numbered 1–102 in the advanced directions, respectively. This bi-directional
shifting of the load out of the relatively higher energy pricing slots resulted in 19.3% reduction in CE
for the scenario of 3S-ToUP (MS).
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Figure 12. Load profile with maximal reduction in CE for 3S-ToUP (MS).

The scenario for DA-RTP scheme (with DS) depicted that a larger number of pricing stages
are provided to implement PDDR. The peak times EP ranges from 4.5–5.3 Cents/kWh during slots
numbered 85–132. To achieve an optimal value of CE, the algorithm shifted the peak time load towards
the slots with relatively lower EP. As the model is based on DS, the peak load could only be shifted
in the forward direction to reduce the CE. The simulated load profile for this scenario is shown in
Figure 13. The algorithm curtailed the peak hour load ranging from 0.35 to 0.6 kWh to a lower range
of 0.1–0.2 kWh. The load pertaining to NP type HAs like AC-3, WM and RC remained for supplying
during the peak hours. A load of 0.3–0.35 kWh was shifted from the peak towards the off-peak hours
in the forward direction. The DS-based shifting under RTP resulted in 20.3% reduction in CE.

In a scenario DA-RTP scheme (with MS), the EP changes on an hourly basis. Such a model
for DEP provides a larger number of pricing stages to implement PDDR. The multi-stage scheme
combined with MS for HAs introduces diversified and larger number of options for shifting of the
load in the forward as well as in the advanced directions. The simulated load profile after MS of
HAs for DA-RTP is shown in Figure 14. The algorithm curtailed the peak hours load ranging from
0.35–0.6 kWh to a lower range of 0.2–0.3 kWh; only the fixed and NP-type loads like AC-3, WM and
RC were fed during the peak hours. The algorithm shifted most of the load from the peak time slots
numbered 85–132 towards the slots with lesser EP in the forward direction (slots numbered 133–144)
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and in the advanced direction (slots numbered 11–60). The shifting mentioned towards the time slots
with diversified and more reduced EPs resulted in 20.5% reduction in CE under this scenario.
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Figure 13. Load profile with maximal reduction in CE for DA-RTP (DS).
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Figure 14. Load profile with maximal reduction in CE for DA-RTP (MS).

The CPP is an event-based scheme that is used to manage extra critical power demands.
The scheme for CPP is based on extra high electricity prices during the highly critical peak hours.
Such prices motivate the consumers to shift their load from the extra critical peak times towards the
off-peak times. The scenario for the CPP scheme (with DS) showed that the algorithm attempted the
HAs supplied during the critical peak times for their shifted operations towards the off-peak time in
the forward direction. The simulated load profile for this scenario is shown in Figure 15. The algorithm
curtailed the peak time load ranging from 0.35 to 0.6 kWh to a lower range of 0.05–0.18 kWh.
The curtailed peak time load was shifted towards the off-peak slots numbered 139–144 in the forward
direction. A load shift in the forward direction combined with a very large reduction in the pricing
co-efficient (0.32 times) while moving from critical-peak towards off-peak time resulted in 21.8%
reduction in CE. However, the peak load was increased due to larger shifting of the demand towards
the limited one hour off-peak period in the forward direction. The proposed value of 1.4 times of the
normal EP for IBR was not sufficient in that case to avoid the re-emergence of the peak load.
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Figure 15. Load profile with maximal reduction in CE for CPP (DS).

Referring to the scenario for CPP (with MS), some of the SHAs are modeled as AS while the
others as DS. The algorithm can shift the operations of peak time loads like AC-3, AC-4, DW-2, and
CP towards the off-peak slots numbered 139–144 in the forward direction, whereas the operations of
loads like WM, WP, EG-2, RC-2, and IR can be shifted towards the off-peak slots numbered 1–114 in
the advanced direction.

The simulated load profile after MS of HAs is shown in Figure 16. The algorithm curtailed the
peak hours load range of 0.35–0.6 kWh to a lower value of 0.22 kWh supplied during slots numbered
133–138. The load curtailed out of the peak time load was shifted towards off-peak time slots numbered
139–144 in the forward and slots numbered 92–102 in the advanced directions. This bi-directional
shifting of the load out of the peak time and the related very large reduction in the pricing co-efficient
resulted in 32.7% reduction in CE for this scenario. Furthermore, MS-based load shifting successfully
avoided the emergence of the peak load as well.

Time slots

0 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

P
g
d
 (

k
W

h
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

without scheduling

DR (CPP)- based MS, Wt
1,0

Figure 16. Load profile with maximal reduction in CE for CPP (MS).
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5.3. A DPA of the DWS-PSO Algorithm for PDDR-Based HEMS

Two metrics were established for DPA of DWS-PSO for PDDR- based HEMS. The first metric
pertains to the maximum reduction in the CE. The metric mentioned for the diversified set of TPs have
been furnished in Table 5. The second metric, the gradient of the TO line between percentage reduction
in CE and TBD, is defined for the responsiveness of the algorithm for the reduction in the CE while
increasing the value of TBD. The second metric was computed while drawing the TO solutions for the
two parameters as follows:

(i) The solution for the maximal reduction in the CE was computed by selecting weights of (1, 0) for
the CE and TBD, respectively, while minimizing the SCF given in Equation (16).

(ii) The solution for a minimal TBD was achieved while selecting values of weights as (0, 1) for the
respective objectives of CE and TBD. These values of weights allocated a maximum priority to
the minimization of the value of TBD while computing the SCF. Under this scenario, TBD is
minimized to zero and, accordingly, all of the loads are operated as per the preferred starting
times (STslt) and ending times (ENslt) of HAs for DS and AS, respectively, as shown in Figure 17.
The percentage reductions in CE, peak load, and TBD remained zero.

Time slots

0 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

P
g
d
(k
W
h
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

without scheduling

DR (2S-ToU)-, (3S-ToU)-, RTP-, and CPP- based, DS/ MS, Wts
0,1

Figure 17. Load profile with minimal value of TBD with weights = (0, 1).

The aforementioned two scenarios for maximal and minimal reductions in CE and the
corresponding TBDs are reflected in Figure 18.

The information revealed by Figure 18 are summarized in Table 6. The tabulated data were used
for DPA of the DWS-PSO algorithm for PDDR- based HEMS. In this regard, the following conclusions
were made:

(i) When tested for the diversification in the modeling of SHAs, the algorithm showed better
performance for MS-based HEMS as compared to the ones based on DS. The MS-based HEMSs
outperformed for metrics 1 and 2.

(ii) When tested for diversification for DPSs, the algorithm exhibited the best performance for TP
based on CPP. Metric 1 stood at a value of 32.67% for a reduction in the CE, whereas metric 2
showed a value of 0.5026 kWh that was 2.41 times greater than the corresponding benchmark
value of 0.2087 kWh for the TP for 2S-ToUP (DS). This highest value of metric 2 for CPP-based
TPs seems sufficient to motivate the consumers to participate in PDDR for critical peak reduction.
The scheme, however, has event-based application and is not available on a daily basis for PDDR.

(iii) The algorithm could not avoid the peak rebounds due to the lesser value of IBR ratio for CPP
(DS)- based TPs. The algorithm is proposed to be used with a CPP (MS)-based scheme for
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achieving the highest performance for metrics 1 and 2 and avoidance of the peak rebounds
simultaneously.

(iv) When tested for the diversification for DPSs used on a daily basis, the performance of the
algorithm was ranked 1–6 for DA-RTP (MS), DA-RTP (DS), 3S-ToUP (MS), 3S-ToUP (DS), 2S-ToUP
(MS), 2S-ToUP (DS)-based TPs, respectively. This indexing of the algorithm for DPA is based on
the proposed metrics 1 and 2.

(v) The algorithm showed the best performance for CPP (MS) and DA-RTP (MS) for the event-based
and daily based pricing schemes, respectively.
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Figure 18. Trade-offs between CE and TBD for PDDR-based HEMS.

Table 6. Performance metrics of DWS-PSO-based algorithm for PDDR-based HEMS.

Tariff
Scheme

HEMS
Approach

Performance Metrics for PDDR-Based HEMS

Reduction
in CE (%)

Range of
TBD (%)

Average Reduction in CE
per Unit of TBD

(Performance Metric 2)

Relative Value of
Performance Metric 2

2S-ToU DS 0∼09.73 0∼46.60 0.2087 1

MS 0∼15.77 0∼62.18 0.2536 1.22

3S-ToU DS 0∼15.94 0∼58.16 0.2741 1.31

MS 0∼19.26 0∼62.80 0.3067 1.47

RTP DS 0∼20.30 0∼59.37 0.3419 1.64

MS 0∼20.50 0∼64.07 0.32 1.53

CPP DS 0∼21.83 0∼61.00 0.3578 1.71

MS 0∼32.67 0∼65.00 0.5026 2.41

5.4. Simulations for PDDR-RED-Based HEMS Using DWS-PSO

Simulations were also carried out for DPA of DWS-PSO algorithm for PDDR-RED-based HEMS.
The algorithm was tested on a set of TPs for HEMS for 2S-ToUP (DS/MS), CPP (DS/MS), 3S-ToUP
(DS/MS), and DA-RTP (DS/MS). The capability of DWS-PSO for maximum reductions in CEnet along
with the related TBD for PDDR-RED-based HEMS, while using weights of values (1, 0), is reflected in
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Figure 19. Table 7 furnishes the achieved performance parameters for the maximal reductions in the
CEnet, and the corresponding values of TBD and peak load for the complete set of TPs.
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Figure 19. DWS-PSO for PDDR-RED-based HEMS: A comparative performance for maximal reduction
in CEnet using weights of (1,0).

Table 7. DWS-PSO for PDDR-RED-based HEMS: maximum reductions in CE, peak load and TBD for
diversified TPs using weights (CE, TBD) = 1,0.

Dynamic
Pricing
Scheme

HEMS
Approach

Without PDDR-RED-
Based Operation

With PDDR-RED-Based
HEMS Operation

Performance Achieved with
PDDR-RED-Based HEMS Operation

CEnet (Cents),
Peak (kW) and TBD CEgrid CEsold CEnet

(Cents)
Peak
(kW)

Reduction in
CEnet (%)

(Per. metric 1)

TBD
(%)

Reduction in
Peak (%)

2S-ToU
DS

218.99; 0.608 and 0
103.86 70.54 33.33 0.39 84.8 58.37 35.53

MS 72.49 54.30 18.19 0.33 91.7 62.04 45.23

3S-ToU
DS

206.85; 0.608 and 0
83.38 67.95 15.43 0.36 92.5 60.25 41.12

MS 58.83 52.93 5.89 0.33 97.2 58.17 45.23

RTP
DS

68.48; 0.608 and 0
23.00 29.94 −6.94 0.39 110.1 73.1 35.58

MS 18.58 27.07 −8.49 0.34 112.4 61.39 43.80

CPP
DS

327.44; 0.608 and 0
115.15 70.54 44.61 0.68 86.4 59.1 −11.02

MS 72.49 54.30 18.19 0.33 94.4 63.7 45.23

The capability of DWS-PSO for achieving a minimal value of TBD with weights of values (0, 1)
for PDDR-RED-based HEMS was also analyzed. In this scenario, the algorithm minimized the value of
TBD to zero and accordingly all of the loads were operated as per the preferred starting times (STslt)
and ending times (ENslt) of HAs for DS and AS, respectively. However, contrarily to the same scenario
for PDDR- based HEMS, a reduction of CEnet was achieved as shown in Figure 20. This reduction was
based on the optimal dispatch of the existing power sources at home, including PV and SB system
for supplying a non-scheduled (fixed) load corresponding to a zero value of TBD. The strategy for
optimal dispatch had already been embedded in algorithm 2. The RED-based strategy, as a part of
algorithm 2, was primarily based on (a) preferred direct usage of the energy from the PV system;
(b) storage of the excess energy from the PV into the SB during off-peak hours; (c) discharge of the SB
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during peak hours to supply the load; (d) parallel operation of the SB with the power grid under the
limiting conditions for SOCG and the discharge rates; and (e) selling of the excess energy to the grid.
The proposed scheme was designed for the optimal dispatch of the PV, SB, and the power grid for
supplying of the consumer load and selling back the extra PV energy to the utility in order to minimize
the CEnet.
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Figure 20. DWS-PSO for RED-based HEMS: A comparative performance at minimal TBD using
weights of (0, 1).

The simulation results for RED-based HEMS using weight values (0, 1) for a minimum value
of TBD are summarized in Table 8. The algorithm achieved the maximum reductions of 96.6% in
the CEnet for the TP based on DA-RTP when applied merely for the optimal dispatch of the sources
without opting any PDDR based shifting of HAs.

Table 8. DWS-PSO for RED-based HEMS: reductions in CE and PEAK load for diversified TPs using
weights (CE, TBD) = (0, 1) for minimal TBD.

Tariff
Scheme

HEMS
Approach

Without PDDR-RED-
Based HEMS Operation

With PDDR-RED-Based
HEMS Operation

Performance Achieved with
PDDR-RED-Based HEMS Operation

CEnet (Cents),
Peak (kW) and TBD

CEgrid
(Cents)

CEsold
(Cents)

CEnet
(Cents)

Peak
(kW)

Reduction
in CEnet (%)
(Per. metric 1)

TBD Reduction
in Peak (%)

2S-ToU
DS

218.99; 0.608 and 0
124.78 77.53 47.25 0.33 78.4 0 45.23

MS 124.78 77.53 47.25 0.33 78.4 0 45.23

3S-ToU
DS

206.85; 0.608 and 0
115.25 75.44 39.82 0.34 80.7 0 43.80

MS 115.25 75.44 39.82 0.34 80.7 0 43.80

RTP
DS

68.48; 0.608 and 0
34.36 32.06 2.30 0.34 96.6 0 43.80

MS 34.36 32.06 2.30 0.34 96.6 0 43.80

CPP
DS

327.44; 0.608 and 0
174.71 77.53 97.18 0.33 70.3 0 45.23

MS 174.71 77.53 97.18 0.33 70.3 0 45.23
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5.5. Simulation Results Discussion for PDDR-RED-Based HEMS

In this section, the performance of the algorithm is discussed for solving PDDR-RED-based HEMS
problems for the proposed set of TPs. Furthermore, the algorithm is used to solve HEMS problems
with respective weights of (1, 0) and (0, 1) for the TO solutions with a maximal reduction in the CEnet
and a minimal 0 value of TBD, respectively.

The TP for 2S-ToUP (non-shifted) was solved with weights of (0, 1) for a minimal TBD.
The resulting energy profiles are shown in Figure 21. Under this scenario, the SB was charged
through the PV energy available during off-peak slots numbered 45–63. The SB transported that energy
towards the peak hours and supplied some of the peak time load during slots numbered 115–126.
However, due to the limited discharge rates and the capacity of the SB, the load during peak time slots
numbered 113–118 and 126–138 had to be supplied through the grid at higher prices. The RED-based
operation resulted in 78.42% reductions in the CEnet based on the 218 Cents per day for the 2S-ToUP
scheme in PDDR- based HEMS. The load shifting was not taken into accounts under this scenario
and the reduction in the CEnet is based on the optimal dispatch strategy implemented for the PV/SB
system (installed at a home) and the power grid.
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Figure 21. Load profile for minimal TBD using 2S-ToUP (Non-shifted) for PDDR-RED-based HEMS.

Referring to TP for 2S-ToUP (DS), which was solved with weights of (1, 0) for a maximal reduction
in CEnet. The resulting energy profiles are depicted in Figure 22. The SB was charged with the PV
energy during off-peak slots numbered 45–63. Based on DS, the peak time load is shifted forward
towards slots numbered 138–144. The remaining un-shifted load lying within the peak-hours was
supplied through the SB. However, due to the limited capacity of the SB, 0.37 kWh of the load was
supplied through the grid during peak time slots numbered 136–138. The algorithm, while combining
the effect of PDDR-based DS with the optimal dispatch of the PV system, the SB, and the grid has
achieved a reduction of 84.78% in CEnet for 2S-ToUP with DS.

The results for TP for 2S-ToUP (MS) with weights of (1, 0) is shown in Figure 23 for a maximal
reduction in CEnet. The SB was charged with the PV energy available during off-peak slots numbered
45–70. Based on MS, some of the peak time load was shifted forward towards the off-peak time slots
numbered 138–144, whereas the rest of the load was shifted in the advanced direction towards the
off-peak slots numbered 45–115. The AS load was supplied through the PV system directly in order to
achieve a higher reduction in the CEnet. The remaining un-shifted peak hours load was completely
supplied through the SB that was charged through the PV units ahead in time. The algorithm achieved
a 91.69% reduction in the CEnet for TP based on 2S-ToUP (MS).
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Figure 22. Load profile for maximal reduction in CE using 2S-ToUP (DS) for PDDR-RED-based HEMS.
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Figure 23. Load profile for maximal reduction in CE using 2S-ToUP (MS) for PDDR-RED-based HEMS.

The TP for CPP solved with weights of (0, 1) for minimal TBD are shown in Figure 24. Under the
proposed CPP scenario, the SB was charged through the extra PV energy during slots numbered 45–63.
The energy stored in the SB was used to supply the peak time load during slots numbered 115–126.
However, due to the limited discharge rate and the capacity of the SB, the battery could not supply
all of the peak time load completely. Consequently, a large amount of the load was supplied through
the grid at higher prices during peak times slots numbered 113–118 and 126–138. The RED-based
operation resulted in 70.32% reductions in the CEnet. A bit lesser reduction in CEnet in this scenario as
compared to the 2S-ToUP is due to the supply of a large amount of the load at double the price during
peak hours in this scenario. The reduction in CEnet in this scenario is due to the optimal dispatch
strategy implemented for the PV, SB and the grid without combining the PDDR-based shifting of
the load.
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Figure 24. Load profile for minimal TBD using CPP (Non-shifted) for PDDR-RED-based HEMS.

The energy profiles for CPP (DS)-based HEMS are shown in Figure 25 for a maximal reduction
in CEnet having weights of value (1, 0). The SB was charged with the PV energy during off-peak
slots numbered 38–64. Based on DS, the peak time load was shifted forward towards slots numbered
138–144. The peak time load that remained un-shifted was supplied through the SB. However, due to
the limited capacity of the SB, a load of 0.37 kWh was supplied through the grid during peak time slots
numbered 136–138. The rest of the peak time load was shifted towards the off-peak slots numbered
139–144 in the forward direction. Due to the limited number of off-peak slots in the forward direction
and for the large peak to off-peak prices ratio, the load shifted in the forward direction exceeded
the limiting value of 0.4 kWh in spite of the implementation of IBR ratio. Thus, a large peak load
was observed during off-peak slots numbered 139–144 in this scenario. That high peak load can be
managed by opting MS-based scheduling or by increasing the values of IBR for these specific slots.
The algorithm, while combining the effect of PDDR- based DS with the optimal dispatch of the PV
system, the SB, and the grid, achieved a reduction of 86.38% in CEnet for CPP (DS)-based TPs.
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Figure 25. Load profile for maximal reduction in CE using CPP(DS) for PDDR-RED-based HEMS.



Electronics 2019, 8, 180 32 of 40

Referring to TP for CPP (MS) solved with weights of (1, 0) for a maximal reduction in CEnet,
the resulting energy profiles are shown in Figure 26. The SB was charged through the extra PV energy
during slot numbered 45–70. Based on MS, some of the peak time load was shifted forward towards
the off-peak slots numbered 138–144, whereas the rest of the load was shifted in the advanced direction
towards the off-peak slots numbered 45–115. The advanced shifted load was supplied through the
PV system directly to reduce the CEnet. The remaining un-shifted peak time load was completely
supplied through the SB. The algorithm achieved a 94.44% reduction in the CEnet for TP based on
CPP (MS).
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Figure 26. Load profile for maximal reduction in CE using CPP(MS) for PDDR-RED-based HEMS.

The TP for 3S-ToUP (non-shifted) solved with weights of (0, 1) for minimal TBD showed that the
SB was charged with the PV energy available during off-peak time slots numbered 45–63, as shown in
Figure 27. The energy stored in the SB during off-peak hours was used to supply the peak time loads
during slots numbered 103–117. However, due to the limited discharge rate and the capacity of the
SB, the load during peak time slots numbered 117–132 was supplied through the grid at higher prices.
The RED-based operations resulted in 80.75% reduction in the CEnet based on the optimal dispatch
strategy implemented for the PV/SB system and the power grid. The scenario did not take the shifting
of the load into consideration.

Referring to TP for 3S-ToUP (DS) solved with weights of (1, 0) for a maximal reduction in CEnet,
the resulting energy profiles are shown in Figure 28. The SB was charged with the extra PV energy
available during off-peak slot numbers 42–66. Based on DS, the peak time load is shifted forward
towards slots numbered 138–144. The remaining un-shifted load lying within the peak-hours was
supplied through the SB. However, due to the limited capacity of the SB, loads of values 0.18 and
0.37 kWh were supplied through the grid during peak time slots numbered 126–132 and 133–138
respectively. The algorithm, while combining the effect of DS with the optimal dispatch of the PV/SB
system and the grid, achieved a reduction of 92.54%.in CEnet.

The TP for 3S-ToUP (MS) is solved with weights of (1, 0) for a maximal reduction in CEnet
is revealed in Figure 29. The SB was charged with the PV energy available during off-peak slots
numbered 45–70. Based on MS, some of the peak time load was shifted forward towards the off-peak
slots numbered 138–144. The rest of the load was shifted in the advanced direction towards the mid
peak slots numbered 45–102 where it was supplied through the PV system directly to reduce the CEnet.
The remaining un-shifted peak time load was completely supplied through the already charged SB.
The algorithm achieved a 97.15% reduction in the CEnet for the designated TP.
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Figure 27. Load profile for minimal TBD using 3S-ToUP (Non-shifted) for PDDR-RED-based HEMS.
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Figure 28. Load profile for maximal reduction in CE using 3S-ToUP (DS) for PDDR-RED-based HEMS.

The energy profiles are shown in Figure 30 for RTP (non-shifted) solved with weights of (0, 1).
Under this scenario, the SB was charged with the PV energy during slot numbers 45–63. The stored
energy of the SB was used to supply the load when the price of energy was above its average value
(more than 2.5 cents per kWh) during slots numbered 102–120. However, due to the limited discharge
rate and the capacity of the SB, the load during the slots numbered 121–132 was to be supplied
through the grid at peak times pricing of 4.5 Cents/kWh. The RED-based operation resulted in 96.64%
reduction in the CEnet based on the optimal dispatch strategy implemented for the PV, SB and the
grid for a fixed load.

Referring to TP for DA-RTP (DS) solved with weights of (1, 0) for a maximal reduction in CEnet,
the resulting energy profiles are shown in Figure 31. The SB was charged through the extra PV
energy available during off-peak slot numbers 42–66. Based on DS, the peak time load was shifted
forward towards lower pricing slots numbered 138–144. The un-shifted load that remained within
the peak-hours was supplied through the SB. However, due to the limited capacity of the SB, loads of
values 0.18 and 0.37 kWh were supplied through the grid during peak time slots numbered 126–132
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and 133–138, respectively. The algorithm, while combining the effect of DS with the optimal dispatch
of the power sources, achieved a reduction of 92.54% in CEnet.
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Figure 29. Load profile for maximal reduction in CE using 3S-ToUP (MS) for PDDR-RED-based HEMS.
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Figure 30. Load profile for minimal TBD using DA-RTP (Non-shifted) for PDDR-RED-based HEMS.

The TP for DA-RTP (MS) solved with weights of (1, 0) for a maximal reduction in CEnet are
shown in Figure 32. The SB was charged during slots numbered 43–64. Based on MS, some of the peak
time load was shifted forward towards the slots numbered 138–144 with below averaged electricity
prices, whereas most of the load was shifted in the advanced direction towards the lower pricing
slots numbered 1–96. The load shifted in the advanced direction was supplied through the PV system
directly. The NP-type load that could not be shifted out of the peak time was completely supplied by
the SB during slots numbered 99–118. The algorithm achieved a maximal value of 112.40% for the
reduction in CEnet. The algorithm showed the best performance for DA-RTP (MS)-based HEMS for a
maximal reduction in the CEnet.
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Figure 31. Load profile for maximal reduction in CE using DA-RTP (DS) for PDDR-RED-based HEMS.
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Figure 32. Load profile for maximal reduction in CE using DA-RTP (MS) for PDDR-RED-based HEMS.

5.6. A DPA of DWS-PSO Algorithm for PDDR-RED-Based HEMS

Two metrics were established for DPA of DWS-PSO for PDDR-RED-based HEMS. Metric 1 is
composed of the maximum reduction in the CEnet achieved by the algorithm, whereas metric 2
comprised the gradient of the TO line for the percentage reduction in CEnet and TBD. The later one
signifies the responsiveness of the model for the reduction in CE while increasing the value of TBD.

The maximal reduction in the CEnet was achieved using the values of the weights as (1, 0)
for CEnet and TBD, respectively, while solving the TP. These maximal reductions in the CEnet,
representing metric 1, achieved for the diversified of TPs are presented in Table 7. Furthermore,
the minimal reduction in CEnet was also achieved using the values of weights as (0, 1). These
weights assign maximum priority to the minimization of the TBD. Under this scenario, the algorithm
minimized the TBD to zero and the corresponding (minimal) reduction in CEnet was achieved.
This reduction of CEnet, as furnished in Table 8, is based on the RES, the ESS and the grid optimal
dispatch (RED) while supplying a non-shifted (fixed) load. The maximum and minimum values of the
CEnet and the related values of TBD achieved for the diversified set of TPs are furnished in Tables
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7 and 8 and drawn for averaged TO lines as shown in Figure 33. The gradient of the TO line for the
percentage reduction in CEnet and the corresponding TBD represents metric 2. This metric has special
significance in respect to the responsiveness of the model for PDDR.
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Figure 33. Tradeoffs between CEnet and TBD for PDDR-RED-based HEMS.

The information gathered from Figure 33 are summarized in Table 9.

Table 9. Performance metrics of DWS-PSO for PDDR-RED-based HEMS.

Tariff
Scheme

HEMS
Approach

Reduction in
CEnet with

RED only (%)

Performance Metrics for PDDR-RED- Based HEMS

Reduction
in CEnet (%)

Range
of TBD (%)

Average Reduction in
CEnet per Unit of TBD
(Performance Metric 2)

Relative Value
of Performance

Metric 2

2S-ToU
DS 78.42 78.42∼84.78 0∼58.37 0.109 1.00

MS 78.42 78.42∼91.69 0∼62.04 0.214 1.96

3S-ToU
DS 80.75 80.75∼92.54 0∼60.25 0.196 1.80

MS 80.75 80.75∼97.15 0∼58.17 0.282 2.59

RTP
DS 96.64 96.64∼110.13 0∼73.10 0.185 1.70

MS 96.64 96.64∼112.40 0∼61.39 0.257 2.36

CPP
DS 70.32 70.32∼86.38 0∼59.10 0.272 2.50

MS 70.32 70.32∼94.44 0∼63.70 0.379 3.48

Table 9 was used for DPA of the DWS-PSO algorithm for PDDR-RED-based HEMS. The results
furnished in the table are analyzed as follows:

(i) RED-based HEMS operation using (0, 1) weights: In this approach, the consumer can avail a
substantial reduction in CEnet even without shifting his load as per the results furnished in
Table 8. The reduction in CEnet is achieved by simply implementing the optimal strategy for
the dispatch of the photovoltaic system, the storage unit, and the power grid for a fixed load.
For RED-based HEMS operation, the algorithm showed the best result for DA-RTP based TP
while achieving a value of 96.64% for the reduction in the CEnet. This higher value indicates that
a larger amount of the unscheduled load lying within the peak/relatively higher pricing slots
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was supplied by the PV/SB system. Referring to Figure 32, the y-intercept in the graph indicates
the initial contribution for the reduction in CEnet from the RED that can be achieved without
facing any TBD.

(ii) PDDR-RED-based HEMS operation using (1, 0) weights: Referring to Table 9, column 4,
the algorithm successfully reduced the CEnet for all of the TPs.

(iii) The algorithm showed better performance for MS-based as compared to the DS-based HEMSs for
minimizing the CEnet (metric 1). Furthermore, referring to column 7, MS-based outperformed
their counterparts for DS- based HEMSs for the increase in the reduction of CEnet per unit of the
TBD (metric 2).

(iv) Performance of the algorithm for a diversified set of TPs: The algorithm exhibited the best
performance for the HEMS problem based on DA-RTP while achieving maximum reductions
in the CEnet of value 110.13% for DS- and 112.40% for MS-based models. Although the second
metric for the reductions in CEnet per unit of TBD is a bit lower in this approach, a very high
value of the initial contribution in the reduction of CEnet (96.64%) from the RED makes this
scheme the best for its application for HEMS. The algorithm while solving HEMS problems for
RTP simultaneously reduced the values of Peak as well by 35.58 and 43.80% for DS and MS-based
models, respectively.

(v) The DWS-PSO-based algorithm was ranked 1–8 for its performance for metric 1 for the proposed
TPs as: DA-RTP (MS), DA-RTP (DS), 3S-ToUP (MS), CPP (MS), 3S-ToUP (DS), 2S-ToUP (MS),
CPP (DS), and 2S-ToUP (DS). The proposed indexing is based on metric 1, whereas the respective
values of metric 2 for the individual TPs signifies the responsiveness of the model for PDDR.

(vi) The algorithm achieved a much higher value of metric 1 for CPP-based HEMS as compared
to its fundamental model for 2S-ToUP. A reduction in CEnet of value 94.44% was achieved for
CPP (MS)-based as compared to the respective value of 91.69% for the 2S-ToUP (MS)-based
HEMS. Furthermore, CPP-based HEMS, with the maximum relative value of 3.48 for metric
2, validated their maximal responsiveness for a reduction in CEnet with the increase in TBD.
This demonstrates the ability of the CPP (MS)-based models for motivating the consumers to
participate in PDDR for reducing the event based critical peaks.

5.7. Summary of Results

The summary of the results of DPA for DWS-PSO-based algorithm when tested for a designated
set of TPs for PDDR-based HEMS is as follows:

(i) The respective performance metrics for the algorithm in percentages when tested for the HEMS
problems for 2S-ToU (DS); 2S-ToU (MS); 3S-ToU (DS); 3S-ToU (MS); DA-RTP (DS); DA-RTP
(MS);CPP (DS); and CPP (MS) are 9.7; 15.8; 15.9; 19.3; 20.3; 20.5; 21.8; and 32.7 for metric 1 and
0.2087; 0.2536; 0.2741; 0.3067; 0.3419; 0.32; 0.3578; and 0.5026 for metric 2. The relative values of
metric 2, taking 2S-ToU (DS) based HEMS as bench-mark problem with value equal to one, are:
1; 1.22; 1.31; 1.47; 1.64; 1.53; 1.71; and 2.41.

(ii) When tested for diversified problems for HEMS based on modeling of SHAs, the algorithm for
MS-based outperformed DS-based HEMS when evaluated for metrics 1 and 2.

(iii) The algorithm for CPP (MS)-based HEMS outperformed all the models for other DPSs when
evaluated for metrics 1 and 2. Especially, the highest value of metric 2 for this model, indicating
the fastest reduction in CE while increasing the value of TBD, shows the capability of this model
to motivate the consumers for an active participation for reducing event- based critical peaks.
However, the CPP-based scheme is not meant for application on a daily basis.

(iv) When tested for the diversified problems for HEMS for DPSs used on a daily basis, DA-RTP-based
HEMS outperformed the models for other DPSs with respective values of 20.5% and 0.32 for
metrics 1 and 2.

The operation of the algorithm for PDDR-RED-based HEMS using weights of (1, 0) resulted in a
maximal reduction in CEnet; that reflected the value of the metric 1. While using weights of values
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(0, 1) for the minimal value of TBD, the algorithm achieved a substantial reduction in CEnet for the
RED-based operations for the optimal dispatch of the photovoltaic system, the storage unit, and the
power grid without shifting of the loads. The algorithm operations using weights of (1, 0) and (0,
1) for CEnet and TBD enabled the computations of the proposed metrics 1 and 2 for the algorithm.
The summary of the results of DPA for the proposed algorithm when tested for a designated set of TPs
for PDDR-RED-based HEMS is as follows:

(i) The respective performance metrics in percent for the TP of 2S-ToU (DS); 2S-ToU (MS); 3S-ToU
(DS); 3S-ToU (MS); DA-RTP (DS); DA-RTP (MS);CPP (DS); and CPP (MS) are 84.78; 91.69; 92.54;
97.15; 110.13; 112.40; 86.38; and 94.44 for metric 1 and 0.109; 0.214; 0.196; 0.282; 0.185; 0.257;
0.272; and 0.379 for metric 2. The relative values of metric 2, taking 2S-ToU (DS) based HEMS as
bench-mark problem with value equal to one, are: 1.00; 1.96; 1.80; 2.59; 1.70; 2.36; 2.50; and 3.48.

(ii) When tested for diversified problems for HEMS based on modeling of SHAs, the algorithm for
the MS-based outperformed DS- based HEMS for metrics 1 and 2.

(iii) The algorithm was ranked 1–8 for the designated TPs for DA-RTP (MS), DA-RTP (DS), 3S-ToUP
(MS), CPP (MS), 3S-ToUP (DS), 2S-ToUP (MS), CPP (DS), and 2S-ToUP (DS) based on metric 1.

(iv) When tested for the diversified problems for HEMS for DPSs used on a daily basis, the algorithm
exhibited the best performance for DA-RTP (MS)-based HEMS while achieving a maximum value
of 112.40% for metric 1 for such HEMSs. Interestingly, a very high value of the reduction in CEnet
for the RED-based operation for such HEMSs (96.64%) indicates large benefits to the consumer
due to the high responsiveness of the scheme for optimal dispatch of the local sources. However,
a smaller value of metric 2 indicates lesser responsiveness of such HEMSs for reductions in CEnet
while increasing TBD.

(v) The algorithm performed the best for the DA-RTP (MS)- and 3S-ToUP (MS)-based HEMSs for
the TO for metrics 1 and 2. These schemes achieved respective values of 112.40% and 97.15% for
metrics 1 and 2.36 and 2.59 for metric 2.

(vi) The performance of the algorithm for CPP-based schemes was acknowledged through the highest
value of 3.48 for metric 2 for CPP (MS)-based HEMSs. This highest value of metric 2 reflecting
the maximum reduction in CEnet with increasing value of the TBD shows the potential of
CPP-based models for motivating the consumers participating in this event-based PDDR to
reduce the critical peaks.

(vii) The algorithm can also be used for RED-based optimal HEMS operations without shifting of the
load. Under this scenario, DA-RTP-based HEMS showed the best results while achieving a value
of 96.64% for the reduction in CEnet. That highest reduction in CEnet for RED-based HEMSs
was due to the supplying of the peak/relatively higher priced load through the PV/SB system.

(viii) An outstanding performance for a set of diversified TPs demonstrates the robustness of the
proposed DWS-PSO algorithm for HEMS applications.

6. Conclusions and Future Work

DWS-PSO based algorithms are presented for PDDR-and PDDR-RED-based HEMSs.
The performance of the algorithms was analyzed for the TO solutions using respective weights of (1, 0)
and (0, 1) for CEnet and TBD. The first set of weights allocated the maximal priority to the reductions
in CE while the second set of weights was used for minimizing the value of TBD. The proposed
algorithms were tested for a diversified set of TPs based on DPSs comprising 2S-ToUP, 3S-ToUP,
DA-RTP, DA-RTP and IBR combined with HEMS models for DS and MS. Performance metrics were
proposed to evaluate the performance of the algorithms. Metric 1 dealt with the capability to maximize
the reduction in the value of CE and metric 2 with the maximization in the average reduction in CE
per unit of TBD. Metric 2 was based on the gradient of the TO line for the percentage reduction in
the CE and TBD and that represented the responsiveness of the model for reduction in CEnet with an
increasing value of TBD. The detailed numerical results are summarized as in Section 5.7.

Future work includes comparative studies for PO based GA with the decomposition weighted
sum PSO for posteriori applications.
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