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Abstract: In this paper, the problem of stochastic finite-time stabilization is investigated for stochastic
delay interval systems. A nonlinear state feedback controller with input-to-state delay is introduced.
By employing the Lyapunov–Krasovskii functional method, some sufficient conditions on stochastic
finite-time stabilization are derived for closed-loop stochastic delay interval systems using the Itô’s
differential formula. Suitable nonlinear state feedback controllers can be designed in terms of linear
matrix inequalities. The obtained results are finally applied to an energy-storing electrical circuit to
illustrate the effectiveness of the proposed method.

Keywords: nonlinear state feedback controller; stochastic delay interval systems; stochastic
finite-time stability; time delay

1. Introduction

As is well known, the feedback of real-world systems to external signals is not instantaneous as it is
usually affected by a certain time delay. The time delay is an important source of oscillation, instability,
and poor performance in practical systems [1–5]. Therefore, in the past decade, many results have been
derived for linear or nonlinear uncertain time-delay systems, and a large number of papers have been
published [6–11]. For example, the cooperative output regulation of discrete-time linear time-delay
multi-agent systems under switching network was investigated in Reference [8]. Universal strategies
to explicit adaptive control of nonlinear time-delay systems with different structures was discussed
in Reference [10]. The stability and stabilization problem for time-delay systems with or without
parameter uncertainties have also been addressed by many researchers [12–14]. An effective approach
to stability and stabilization is proposed in Reference [13] for continuous-time Takagi–Sugeno fuzzy
systems with time delay.

On the other hand, in real applications, parameters in a dynamical system are not always exactly
known as a result of the interference of random factors. For example, in energy-storing electrical
circuits, the values of capacitor C, inductor L, and resistances R1 and R2 are always in a certain
range. Thus, it is of practical significance to study systems where the entries of a system matrix vary
randomly on a certain closed interval. Such a system is called an interval system or a stochastic
interval system. In recent years, stability and stabilization for stochastic delay interval systems have
received increasing attention due to their extensive applications in communication networks, image
processes, mobile robot localization, and so on. More recently, a large number of notable results have
been reported [15–23]. For instance, finite-time dissipative control for stochastic interval systems
with time delay and Markovian switching was studied and some sufficient matrix transformation
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conditions were established in Reference [17]. The robust input-to-state stability of neural networks
with Markovian switching in the presence of random disturbances or time delays was studied in
Reference [18]. The stability analysis of semi-Markov switched stochastic systems was introduced
in Reference [20]. The finite frequency approach to controlling Markov jump linear systems with
incomplete transition probabilities was investigated in Reference [23].

In addition, It is worth noting that most of the existing results on stability are focused on
Lyapunov stability defined on an infinite-time interval [24,25]. Compared with Lyapunov stability,
finite-time stability is such a stability property that the system states approach zero at a finite time
instant rather than infinity [26,27]. It should be pointed out that finite-time stability systems might
have not only faster convergence but also better robustness and disturbance rejection capabilities.
Consequently, in practical applications, more attention is paid to what happens on a finite-time interval
rather than an infinite-time interval. Recently, many research results on finite-time control of time-delay
systems have been derived [28–35].

However, it is not difficult to see that the existing results mainly focus on the finite-time dissipative
control for stochastic interval systems with time delay, or Lyapunov stability of stochastic systems
with time delay. To the best of our knowledge, the problems of finite-time stability for stochastic delay
interval systems have not been fully considered, which motivates this study. Meanwhile, more and
more applications related to energy-storing electrical circuits are appearing everywhere playing an
increasingly important part in our lives and in industrial production. Up to now, a lot of investigations
on energy-storing electrical circuits have been published, e.g., finite-time control [36], stability [37],
and passivity [38,39]. However, in the existing results related to energy-storing electrical circuits, the
stochastic disturbance is not considered, and the values of electronic components are exact. This is
almost impossible in practical energy-storing electrical circuits.

This paper aims to investigate the finite-time stabilization problem of stochastic delay interval
systems. To tackle this problem, a nonlinear delay-feedback controller was used. By employing
the Lyapunov–Krasovskii functional approach and Itô’s differential formula, a couple of finite-time
stabilization criteria were formulated such that the resulting closed-loop system was finite-time
stable. Then, on the basis of the obtained criteria, suitable nonlinear delay-feedback controllers can
be designed if the related linear matrix inequalities are feasible. Finally, the proposed method was
applied to an energy-storing electrical circuit to demonstrate that the designed controller is effective to
stabilize the energy-storing electrical circuit in finite-time. Undoubtedly, not only the error of electronic
components, but also the stochastic disturbance of the energy-storing electrical circuit model proposed
in this paper are considered, which means that the model proposed in this paper is more accurate and
the proposed method is of considerable robustness.

The rest of this paper is organized as follow. In Section 2, we introduce some necessary system
descriptions and preliminaries. The main theoretical results are derived in Section 3. An application of
the proposed method to energy-storing electrical circuits is presented in Section 4, and conclusions are
drawn in Section 5.

2. Systems Description and Preliminaries

Consider the following stochastic delay interval system:{
dx(t) = [Ăx(t) + Ădx(t− τ) + u(t)]dt + [H̆x(t) + H̆dx(t− τ)]dw(t), t ≥ 0
x(t) = ϕ(t), ∀t ∈ [−τ, 0].

(1)

where x(t) ∈ Rn is the state vector; τ > 0 is the time delay; u(t) ∈ Rm is the control input;
ϕ(t) ∈ L2[−τ, 0] is a continuous vector-valued initial function; w(t) ∈ Rl is a scalar Brownian motion
defined on the complete probability space (Ω, F, P) and satisfies

E{dw(t)} = 0, E{dw(t)2} = dt.
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In System (1), Ă is an interval matrix with appropriate dimension, which means

Ă ∈ [A, A] = {(aij) ∈ Rn×n | aij ≤ aij ≤ aij, i, j = 1, 2, · · · , n},

where A = (aij)n×n, A = (aij)n×n are determinate matrices. Using these matrix transformations like in
Reference [17], we have

Ă ∈ [A, A] = A +4A = A + D1FG1 (2)

Ăd ∈ [Ad, Ad] = Ad +4Ad = Ad + D2FG2, (3)

H̆ ∈ [H, H] = H +4H = H + D3FG3, (4)

H̆d ∈ [Hd, Hd] = Hd +4Hd = Hd + D4FG4, (5)

where F ∈ F. Let M1 = (D1, D2, 0, 0),M2 = (0, 0, D3, D4), WT
1 = (GT

1 , 0, GT
3 , 0),WT

2 = (0, GT
2 , 0, GT

4 ).
Then, (2)–(5) can be rewritten as[

4A 4Ad
4H 4Hd

]
=

[
M1

M2

]
F
[
W1 W1

]
.

Therefore, System (1) can be rewritten as
dx(t) = {[A +4A]x(t) + [Ad +4Ad]x(t− τ) + u(t)}dt + {[H +4H]x(t)

+[Hd +4Hd]x(t− τ)}dw(t),
x(t) = ϕ(t), ∀t ∈ [−τ, 0].

(6)

For System (6), the desired nonlinear feedback controller is designed as follows:

u(t) = −Kx(t)− K̄|x(t)|αsgn(x(t))− K̂(
∫ t

t−τ
x(s)Tx(s)ds)

1+α
2 (
|x(t)|
‖x(t)‖2 ), (7)

where 0 < α < 1; K, K̄, K̂ are real matrices; xi(t) ∈ Rn, i = 1, 2, . . . , n, sgn(x(t)) = diag(sgn(x1(t)),
sgn(x2(t)), . . . , sgn(xn(t)))T .

Remark 1. In fact, the control gain matrices K, K̄, K̂ in the controller u(t) play different roles in ensuring the
stochastic finite-time stability of System (6), where K is used to keep the Lyapunov–Krasovskii stability of (6).
Furthermore, the convergence of finite-time stability of (6) to zero is determined by K̄. Finally, the influence of
time-delay term on the systems is eliminated by K̂.

Remark 2. In order to break the Lipschitz condition, the parameter α is defined in 0 < α < 1. On the contrary,
when α ≤ 0 or α ≥ 1, there exists a unique solution for the systems, which contradicts the definition of
finite-time stability. Therefore, the parameter α must be in 0 < α < 1.

In this paper, we mainly consider the finite-time stabilization of System (6). To begin with,
we introduce the following definitions and lemmas:

Definition 1 (Stochastic Settling Time Function (SSTF)). For SDISs (6), define T0(x0, ω) = in f {T ≥
0 : x(t, x0) = 0, ∀t ≥ T}, which is called the stochastic settling time function, especially, T0(x0, ω) = ∞,
if x(t, x0) 6= 0, ∀t > 0.

Definition 2 (Stochastic Finite-Time Stability (SFTS)). The origin x = 0 of System (1) or (6) are said to the
stochastic finite-time stability, if the following two conditions hold:

(i) The origin of System (6) is stochastic stability in probability.
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(ii) The origin of System (6) is stochastic finite-time convergent (SFTC), i.e., for any initial conditions φ(s) ∈ Λ,
the SSTF T0(x0, ω) exists, that is E{T0(x0, ω)} < ∞, for ∀ ∈ Rn\{0}.

Definition 3. System (6) is stochastic finite-time stable if there exists a feedback controller u(t), such that the
controlled System (6) is SFTS.

Lemma 1 ([40]). Assume that System (6) has a unique global solution. If there exists a positive-definite,
two continuous differentiable and radially unbounded Lyapunov function V : Rn → R+ and a continuous
differentiable function γ : R+ → R+ such that

(i) `V(x) ≤ −γ(V(x)),
(ii) for any 0 ≤ ε ≤ +∞,

∫ ε
0

1
γ(v)dv < +∞,

(iii) for v > 0, γ′(v) > 0,

then the origin solution of (6) is SFST, and the SSTF T0(x0, ω) satisfies E[T0(x0, ω)] ≤
∫ V(x0)

0
1

γ(v)dv, which
implies T0(x0, ω) < ∞, a.s.

Lemma 2 ([41]). Assume that System (6) admits a unique solution. If there exists a C2 function V : Rn →
R+, K∞ class function µ1 and µ2, positive real constant c > 0 and 0 < r < 1, such that for all x ∈ Rn and
t ≥ 0,

µ1(|x|) ≤ V(x) ≤ µ2(|x|),

`V(x) ≤ −c(V(x))r,

then the origin solution of (6) is SFTS.

Lemma 3 ([42]). For given matrices Q = QT , H and E with appropriate dimensions,

Q + HF(t)E + ET F(t)T HT < 0,

holds for all F(t)T F(t) ≤ I if and only if there exists ε > 0 such that

Q + ε−1HHT + εETE < 0.

Lemma 4 ([43]). (Itô formula) Let x(t) be an n-dimensional Itô Process on t ≥ 0 with the stochastic differential

dx(t) = f (t)dt + g(t)dB(t).

Let V ∈ C2,1(Rn × R+; R). Then, V(x(t), t) is a real valued Itô process with its stochastic differential
given by

dV(x(t), t) = `V(x(t), t)dt + Vx(x(t), t)g(t)dB(t).

where `V(x(t), t) = Vt(x(t), t) + Vx(x(t), t) f (t) + 1
2 trace

(
gT(t)Vxx(x(t), t)g(t)

)
.

3. Finite-Time Stabilization for Stochastic Delay Interval Systems

Theorem 1. If there exist a real matrix Y, and a symmetric positive-definite matrix X, some positive constants
ε1, ε2, ε3 > 0 such that 

Υ1 AdX HT Υ3

∗ −X HT
d Υ4

∗ ∗ Υ2 0
∗ ∗ ∗ Υ5

 < 0 (8)

where

Υ1 = XAT + AX + ε1D1DT
1 + ε2D2DT

2 −YT −Y + X,
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Υ2 = −X + ε3(D3DT
3 + D4DT

4 ),
Υ3 = (GT

1 , 0, GT
3 , 0),

Υ4 = (0, GT
2 , 0, GT

4 ),
Υ5 = diag(−ε1 I,−ε2 I,−ε3 I,−ε3 I),

then the close-loop control system (6) is finite-time stabilizable. In this case, the parameters of the controller are
given as K = YX−1, K̄TK̄ > 0, K̂TK̂ > 0, and the setting-time function can be estimated by E[T0(x0, ω)] ≤
λmax(P)‖x(0)‖1−α

c(1−α)
with c = 2max{

√
λmax(K̄TK̄),

√
λmax(K̂TK̂)}.

Proof. Construct the following Lyapunov–Krasovskii functional candidate as

V(x(t)) = x(t)T Px(t) +
∫ t

t−τ
x(s)T Px(s)ds. (9)

From Itô formula of Lemma 4, we have

dV(x(t)) = `V(x)dt + 2x(t)T P[H +4H]x(t) + [Hd +4Hd]x(t− τ)]dw(t). (10)

By means of Itô formula, one has

`V(x) = 2{[A +4A]x(t) + [Ad +4Ad]x(t− τ) + u(t)}T Px(t) + {[H +4H]×
x(t) + [Hd +4Hd]x(t− τ)}T P{[H +4H]x(t) + [Hd +4Hd]x(t− τ)}+
x(t)T Px(t)− x(t− τ)T Px(t− τ)

= 2{[A +4A]x(t) + [Ad +4Ad]x(t− τ)− Kx(t)− K̄|x(t)|αsgn(x(t))−

K̂(
∫ t

t−τ
x(s)Tx(s)ds)

1+α
2 (
|x(t)|
‖x(t)‖2 )}

T Px(t) + {[H +4H]x(t)+

[Hd +4Hd]x(t− τ)}T P{[H +4H]x(t) + [Hd +4Hd]×
x(t− τ)}+ x(t)T Px(t)− x(t− τ)T Px(t− τ).

(11)

By using Lemma 3, we can get

(4Ax(t) +4Adx(t− τ))T Px(t) + x(t)T P(4Ax(t) +4Adx(t− τ))

=(x(t)TGT
1 F(t)DT

1 + x(t− τ)TGT
2 F(t)DT

2 )Px(t)+

x(t)T P(D1F(t)G1x(t) + D2F(t)G2x(t− τ))

=x(t)T(PD1F(t)G1 + GT
1 F(t)DT

1 P)x(t)+

x(t)T PD2F(t)G2x(t− τ) + x(t− τ)TGT
2 F(t)DT

2 Px(t)

≤x(t)(ε−1
1 GT

1 G1 + ε1PD1DT
1 P)x(t)T+

ε2x(t)T PD2DT
2 Px(t) + ε−1

2 x(t− τ)TGT
2 G2x(t− τ)).

(12)

Hence, (11) can be written as

`V(x) =

(
xT

t
x(t− τ)T

)T

Σ

(
xt

x(t− τ)

)
− 2K̄|x(t)|αsgn(x(t))Px(t)−

2K̂(
∫ t

t−τ
x(s)Tx(s)ds)

1+α
2 (
|x(t)|
‖x(t)‖2 )Px(t),

(13)

where

Σ =

[
Ψ11 PAd
∗ Ψ22

]
+

(
HT +4HT

HT
d +4HT

d

)
P
(

H +4H Hd +4Hd

)
,



Electronics 2019, 8, 175 6 of 17

Ψ11 =AT P + PA− KT P− PK + P + ε−1
1 GT

1 G1 + ε1PD1DT
1 P + ε2PD2DT

2 P,

Ψ22 =− P + ε−1
2 GT

2 G2.

By the Schur complement, we have

Σ < 0 ⇐⇒

Ψ11 PAd HT +4HT

∗ Ψ22 HT
d +4HT

d
∗ ∗ −P−1

 =

Ψ11 PAd HT

∗ Ψ22 HT
d

∗ ∗ −P−1

+

0 0 4HT

0 0 4HT
d

∗ ∗ 0

 < 0. (14)

Applying Lemma 3, we have that Σ < 0 is equivalent to the following matrix inequality
Υ1 AdX HT Υ3

∗ −X HT
d Υ4

∗ ∗ Υ2 0
∗ ∗ ∗ Υ5

 < 0, (15)

where

Υ1 = XAT + AX + ε1D1DT
1 + ε2D2DT

2 −YT −Y + X,
Υ2 = −X + ε3(D3DT

3 + D4DT
4 ),

Υ3 = (GT
1 , 0, GT

3 , 0),
Υ4 = (0, GT

2 , 0, GT
4 ),

Υ5 = diag(−ε1 I,−ε2 I,−ε3 I,−ε3 I.

Set J = (X, X, I, I, I, I) with P−1 = X and KX = Y. Multiplying by JT and J, respectively, on both
sides of the matrix in (15), by the Schur complement, we readily obtain (8) from (15).

On the other hand, it follows directly from (11) that

`V(x) ≤− 2c1|x(t)|αsgn(x(t))Px(t)− 2c2(
∫ t

t−τ
x(s)Tx(s)ds)

1+α
2 (
|x(t)|
‖x(t)‖2 )Px(t)

≤− 2max{c1, c2}V(x(t))
1+α

2

≤− cV(x(t))
1+α

2 ,

(16)

where c1 =
√

λmax(K̄TK̄), c2 =
√

λmax(K̂TK̂), c = 2max{c1, c2}. Thus, according to Lemma 1,
the system (6) is SFTS via the nonlinear delay-feedback controller (7). Moreover, from Lemma 1,
the SSTF satisfies

E{T0(x0, ω)} ≤
∫ V(x0)

0

1

cV(x(t))
1+α

2
dv

≤V(x0)
1−α

2

c(1− α)

≤λmax(P)‖x(0)‖1−α

c(1− α)
.

(17)

The proof is completed.

Remark 3. In the proof of Theorem 1, the specific Lyapunov–Krasovskii function is determined by the
particularity of the controller. In order to reduce the conservatism of the controller, minor changes are made to
the controller. Therefore, it is as follows:

u(t) =− Kx(t)− K̄|x(t)|αsgn(x(t))− K̂(
∫ t

t−τ
x(s)TQx(s)ds)

1+α
2 (

P−1|x(t)|
‖x(t)‖2 ), (18)
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where 0 < α < 1, K, K̄, K̂, P−1, Q are real matrices, xi(t) ∈ Rn, i = 1, 2, . . . , n, sgn(x(t)) = diag(sgn(x1(t)),
sgn(x2(t)), . . . , sgn(xn(t)))T .

Theorem 2. For the given ε1, ε2, ε3 > 0, if there exist a real matrix Y and a symmetric positive-definite matrix
X such that

Π =


Φ1 AdX HT Φ3

∗ Q̃ HT
d Φ4

∗ ∗ Φ2 0
∗ ∗ ∗ Φ5

 < 0, (19)

where

Φ1 = XAT + AX + ε1D1DT
1 + ε2D2DT

2 −YT −Y + Q̃,
Φ2 = −X + ε3(D3DT

3 + D4DT
4 ),

Φ3 = (GT
1 , 0, GT

3 , 0),
Φ4 = (0, GT

2 , 0, GT
4 ),

Φ5 = diag(−ε1 I,−ε2 I,−ε3 I,−ε3 I).
Q̃ = −XQX.

then the close-loop control system (6) is finite-time stabilizable. In this case, the parameters of the controller are
given as K = YX−1, K̄TK̄ > 0, K̂TK̂ > 0, and the setting-time function can be estimated by E[T0(x0, ω)] ≤
λmax(P)‖x(0)‖1−α

c(1−α)
with c = 2max{

√
λmax(K̄TK̄),

√
λmax(K̂TK̂)}.

Proof. Construct the Lyapunov–Krasovskii functional as follows:

V(x(t)) = x(t)T Px(t) +
∫ t

t−τ
x(s)TQx(s)ds. (20)

It can be derived by Itô formula that

dV(x(t)) =`V(x)dt + 2x(t)T P[H +4H]x(t) + [Hd +4Hd]x(t− τ)]dw(t), (21)

where
`V(x) =2{[A +4A]x(t) + [Ad +4Ad]x(t− τ) + u(t)}T Px(t) + {[H+

4 H]x(t) + [Hd +4Hd]x(t− τ)}T P{[H +4H]x(t)+

[Hd +4Hd]x(t− τ)}+ x(t)TQx(t)− x(t− τ)TQx(t− τ)

=2{[A +4A]x(t) + [Ad +4Ad]x(t− τ)− Kx(t)− K̄|x(t)|αsgn(x(t))−

K̂(
∫ t

t−τ
x(s)TQx(s)ds)

1+α
2 (

P−1|x(t)|
‖x(t)‖2 )}T Px(t) + {[H +4H]x(t)+

[Hd +4Hd]x(t− τ)}T P{[H +4H]x(t) + [Hd +4Hd]x(t− τ)}+
x(t)TQx(t)− x(t− τ)TQx(t− τ)

=

(
xT

t
x(t− τ)T

)T

Π

(
xt

x(t− τ)

)
− 2K̄|x(t)|αsgn(x(t))Px(t)−

2K̂(
∫ t

t−τ
x(s)TQx(s)ds)

1+α
2 (

P−1|x(t)|
‖x(t)‖2 )Px(t).

(22)
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On the basis of Theorem 2, we know that Π < 0. So, we can get

`V(x) ≤− 2c1|x(t)|αsgn(x(t))Px(t)−

2c2(
∫ t

t−τ
x(s)TQx(s)ds)

1+α
2 (

P−1|x(t)|
‖x(t)‖2 )Px(t)

≤− 2max{c1, c2}V(x(t))
1+α

2

≤− cV(x(t))
1+α

2 ,

(23)

here c1 =
√

λmax(K̄TK̄), c2 =
√

λmax(K̂TK̂), c = 2max{c1, c2}, Thus, according to Lemma 1, the
SDISs (6) are SFTS via the nonlinear delay-feedback controller (18). Furthermore, from Lemma 1, the
SSTF satisfies

E{T0(x0, ω)} ≤
∫ V(x0)

0

1

cV(x(t))
1+α

2
dv

≤V(x0)
1−α

2

c(1− α)

≤λmax(P)‖x(0)‖1−α

c(1− α)
.

(24)

The proof is completed.

4. Application to the Energy-Storing Electrical Circuit

In this section, as an application of above results on finite-time stability, we consider an energy
storage circuit.

Figure 1 shows an energy-storing electrical circuit, which includes power source E, capacitors
C, inductor L, and resistance R1, R2. There is only one capacitor connected in the circuit. In this
circuit, when the power supply voltage is E and the switch S is turned off, the capacitive element
begins to store energy, and the inductor also begins to replenish energy, and finally reaches stability.
However, it is impossible to get the exact value of the capacitor C, inductor L, and resistances R1, R2

in practical application, but the approximate value is available. Assuming the capacitor C, inductor
L, and resistances R1, R2 are linear and time invariant, and the exact value of the capacitor, inductor,
and resistances are C, L, R1, R2, respectively. Whilst at the same time, the measured value are C±4C,
L±4L, R1 ±4R1, R2 ±4R2. Then, we can model them as

dUC
dt

=
1

C±4C
iC,

diL
dt

=
1

L±4L
UC,

(25)

where, i and U denote the electric current and the electric tension across an element.

Figure 1. energy-storing electrical circuit.
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Taking x1(t) = UC(t) and x2(t) = iL(t) as the state variables, u(t) = E as the excitation.
According to the basic electrical circuits laws, we have

ẋ1(t) =
1

C±4C
[− x1(t)

R2 ±4R2
+ x2(t)],

ẋ2(t) =
1

L±4L
[−x1(t)− (R1 ±4R1)x2(t) + u(t)].

(26)

When the switch S is closed, System (26) can be written as{
ẋ(t) = Ăx(t) + B̆u(t),
x(t0) = x0,

(27)

where

Ă =

[
− 1

(C±4C)(R2±4R2)
1

C±4C

− 1
L±4L − R1±4R1

L±4L

]
, B̆ =

[
0
1

L±4L

]
.

It is well known that a time delay is inescapable in modeling systems, which is very common
in manual control, nuclear, reactor, and communication networks. It may lead to instability and
oscillation. Undoubtedly, in the energy-storing electrical circuit illustrated in Figure 1, a time delay is
inevitable. Meanwhile, if we pay attention to the structural uncertainty, stochastic disturbance must be
considered. Therefore, the above systems can be written as{

dx(t) = [Ăx(t) + Ădx(t− τ) + B̆u(t)]dt + [H̆x(t) + H̆dx(t− τ)]dw(t)
x(t0) = x0,

(28)

where x(t) ∈ Rn is the state vector; τ > 0 is the time delay; u(t) ∈ Rm is the control input; w(t) ∈ Rl is
a scalar Brownian motion defined on the complete probability space (Ω, F, P) and satisfies

E{dw(t)} = 0, E{dw(t)2} = dt.

Similar to the matrix transformation of System (1), System (28) can be rewritten as
dx(t) = {[A +4A]x(t) + [Ad +4Ad]x(t− τ) + [B +4B]u(t)}dt + {[H+

4H]x(t) + [Hd +4Hd]x(t− τ)}dw(t)
x(t0) = x0.

(29)

Thus, the nonlinear delay-feedback controller is as follows:

u(t) =− Kx(t)− K̄|x(t)|αsgn(x(t))− K̂(
∫ t

t−τ
x(s)TQx(s)ds)

1+α
2 (

P−1|x(t)|
‖x(t)‖2 ), (30)

where 0< α <1,K, K̄, K̂, P−1, Q are real matrices, x(t) = (x1(t), x2(t), . . . , xn(t))T∈Rn, sgn(x(t)) =

diag(sgn(x1)(t), sgn(x2(t)), . . . , sgn(xn(t)))T .

4.1. A Criterion on Finite-Time Stabilization

Theorem 3. For the given ε1, ε2, ε3, ε4 > 0, if there exist a real matrix Y, and a symmetric positive-definite
matrix X such that

Ξ =


Ξ1 AdX HT Ξ3

∗ −Q̃ HT
d Ξ4

∗ ∗ Ξ2 0
∗ ∗ ∗ Ξ5

 < 0, (31)

where
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Ξ1 = XAT + AX + ε1D1DT
1 + ε2D2DT

2 − ε4D5DT
5 −YT BT − BY + Q̃,

Ξ2 = −X + ε3(D3DT
3 + D4DT

4 ),
Ξ3 = (GT

1 , 0, GT
3 , 0,−YTGT

5 ),
Ξ4 = (0, GT

2 , 0, GT
4 , 0),

Ξ5 = diag(−ε1 I,−ε2 I,−ε3 I,−ε3 I,−ε4 I).
Q̃ = XQX,

then the close-loop control system (29) is finite-time stabilizable. In this case, the parameters of the controller are
given as K = YX−1, KT

1 K1 > 0, KT
2 K2 > 0, and the setting-time function can be estimated by E[T0(x0, ω)] ≤

λmax(P)‖x(0)‖1−α

c(1−α)
with c = 2max{

√
λmax(KT

1 K1),
√

λmax(KT
2 K2)}.

Proof. Construct the following Lyapunov–Krasovskii functional as follows:

V(x(t)) = x(t)T Px(t) +
∫ t

t−τ
x(s)TQx(s)ds. (32)

Similar to the proof of Theorem 2, we can get

`V(x) ≤− 2[B +4B]K̄|x(t)|αsgn(x(t))Px(t)− 2[B +4B]K̂(
∫ t

t−τ
x(s)TQx(s)ds)

1+α
2 (

P−1|x(t)|
‖x(t)‖2 )Px(t)

≤− 2c3|x(t)|αsgn(x(t))Px(t)− 2c4(
∫ t

t−τ
x(s)TQx(s)ds)

1+α
2 (

P−1|x(t)|
‖x(t)‖2 )Px(t)

≤− 2max{c3, c4}V(x(t))
1+α

2

≤− cV(x(t))
1+α

2 ,

(33)

where K1 = K̄T BT + BK̄ + ε4D5DT
5 + ε−1

4 G5K̄K̄TGT
5 , K2 = K̂T BT + BK̂ + ε4D5DT

5 + ε−1
4 G5K̂K̂TGT

5 ,

c3 =
√

λmax(KT
1 K1), c4 =

√
λmax(KT

2 K2), c = 2max{c3, c4}. Thus, according to Lemma 1, System (29)
is SFTS. Furthermore, from Lemma 1, the SSTF satisfies

E{T0(x0, ω)} ≤
∫ V(x0)

0

1

cV(x(t))
1+α

2
dv

≤V(x0)
1−α

2

c(1− α)

≤λmax(P)‖x(0)‖1−α

c(1− α)
.

(34)

The proof is completed.

Remark 4. To design an appropriate controller (30) for stochastic energy-storing electrical circuit (29), that is
to determine K, K̄, K̂, an algorithm is given as follows:

1. For the given parameters in stochastic energy-storing electrical circuit (29), calculate Di, Gi, i = 1, 2, 3, 4.
2. Solve LMI (31), get the positive matrices X, Y, and calculate K = YX−1.
3. Choose appropriate matrices K̄ and K̂, such that KT

1 K1 > 0 and KT
2 K2 > 0.

4. Calculate V(0), and determine the upper bounded of stochastic settling time function E{T0(x0, ω)} ≤
λmax(P)‖x(0)‖1−α

c(1−α)
.

4.2. Simulations

For the energy storage circuit in Figure 1, suppose that C = 6× 103 µF, ∆C = 0.2× 103 µF, L =

0.2 H, ∆L = 0.01 H, R1 = 1 Ω, ∆R1 = 0.01 Ω, R2 = 800 Ω, ∆R2 = 10 Ω. According to (27) and (28),
we can get
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Ă =

[
[−0.2182,−0.1991] [161.2903, 172.4138]
[−5.2632,−4.7619] [−52.6842,−47.57143]

]
, B̆ =

[
0.1 0
0 [4.7619, 5.2632]

]
.

Then, we set τ = 0.5, T = 5 x(0) = [−1 2]T and

Ăd =

[
[−0.32,−0.10] [11.30, 12.11]

1 [−50.34,−40.57]

]
, H̆ =

[
[0.1, 0.2] [1, 1.2]
[−1, 0.5] [1, 1.5]

]
, H̆d =

[
[1, 1.5] [0, 1]
[−1, 0] [0.2, 0.5]

]
.

The simulations show that the state trajectories for the open-loop systems without the controller
are divergent from Figures 2 and 3, no matter how the initial conditions are taken. That means the
energy-storing electrical circuit with time delay and stochastic disturbance is not SFTS according to the
terms of Definition 2, which is also illustrated by the phase planes in Figures 4 and 5.

Figure 2. The state trajectories of open-loop systems with initial conditions (−2, 2).

Figure 3. The state trajectories of open-loop systems with 100 different initial conditions
(x1 ∈ [−200, 200], x2 ∈ [−200, 200]).



Electronics 2019, 8, 175 12 of 17

Figure 4. Phase plane of open-loop systems with initial conditions (−2, 2).

Figure 5. Phase plane of open-loop systems with 100 different initial conditions (x1 ∈ [−200, 200],
x2 ∈ [−200, 200]).

To finite-time stochastic stabilize the stochastic energy-storing circuit with time delay,
the controller in the form of (30) has to be presented. Therefore, from the algorithm in Remark 4,
the feasible solutions for LMI (31) are obtained as follows:

Q̃ =

(
42.2812 1.1008
1.1008 138.2664

)
,

X =

(
45.6888 0.9860
0.9860 2.5598

)
,

Y =

(
3.3174 −0.0047
0.0248 0.0341

)
,

K =

(
73.2569 −30.0688
0.2573 13.2114

)
,

ε1 = 41.8741, ε2 = 43.9821, ε3 = 1.9414, ε4 = 0.
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Correspondingly, choose the appropriate matrices K̄ = K̂ = diag(1, 0.5). Obviously, KT
1 K1 > 0

and KT
2 K2 > 0 are satisfied. Then, the upper boundary of stochastic settling time function can be

estimated in terms of (34)
E{T0(x0, ω)} ≤ 6.4836. (35)

Taking different initial conditions, the state trajectories of the closed-loop systems always converge
to zero when t ≥ E {T0(x0, ω)} = 6.4836, which can be figured out in Figures 6 and 7. That is to
say, the stochastic energy-storing circuit with time delay is stochastic finite-time stable in terms of
Definition 3, which also can be proved using the phase planes of Figures 8 and 9.

If the time-delay term of the controller (30) is removed, that is u(t) = −Kx(t)− K̄|x(t)|αsgn(x(t)),
the state trajectories of the stochastic energy-storing circuit with time delay are impossible to converge
to zero when t ≥ E {T0(x0, ω)} = 6.4836, which is shown in Figure 10. Hence, our given results are
correct and the proposed controller is effective.

Figure 6. The state trajectories of closed-loop systems with initial conditions (−2, 2).

Figure 7. The state trajectories of closed-loop systems with 100 different initial conditions
(x1 ∈ [−200, 200], x2 ∈ [−200, 200]).
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Figure 8. Phase plane of closed-loop systems with initial conditions (−2, 2).

Figure 9. Phase plane of closed-loop systems with 100 different initial conditions (x1 ∈ [−200, 200],
x2 ∈ [−200, 200]).

Figure 10. The state trajectories of closed-loop systems without the time-delay term of the controller.
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5. Conclusions

In this paper, the finite-time stabilization problems for stochastic interval systems with time delay
were investigated. The Lyapunov–Krasovskii functional and the Itô’s formula were employed to
derive some sufficient conditions such that the closed-loop system associated with a nonlinear state
feedback controller was finite-time stochastic stable, which is different from the existing finite-time
stochastic boundedness. The proposed control method was also applied to an energy-storing electrical
circuit, in which not only the error of electronic components, but also the stochastic disturbance were
considered. Various simulations have shown that the obtained results are correct and the proposed
controllers are effective. In future work, we will focus on extending the proposed method to offshore
platforms [44] and repetitive control systems [45,46].
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