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Abstract: In this paper, two different converter topologies for a basic new switched capacitor diode
converter with a reduced number of power electronics components, suitable for grid connected
photovoltaic applications were proposed. The two different structures of switched diode multilevel
converter proposed were: (i) cascaded switched diode and (ii) cascaded switched diode with
doubling circuit. The switched-diode multilevel converter was compared with other recent converters.
In addition, a new dc offset nearest level modulation technique was proposed. This proposed dc
offset technique offers low voltage total harmonic distortion (THD) and high RMS output voltage.
The proposed modulation technique was compared with conventional nearest level modulation
(NLM) and modified NLM control techniques. The performance of the proposed dc offset modulation
technique was implemented using a FPGA Spartan 3E controller and tested with a novel switched
capacitor-diode multilevel converter. However, to prove the authenticity of the switched-diode
multilevel converter and modulation technique, a laboratory-based prototype model for 7-level and
13-level converters was developed.

Keywords: multilevel inverter; cascaded topology; voltage doubling; switched capacitor; nearest
level modulation (NLM); total harmonic distortion (THD)

1. Introduction

The multilevel converter is a promising power electronic converter for DC–AC high-power
applications because it offers low electromagnetic interference (EMI), low dv/dt stress, and high
efficiency. The conventional multilevel converters are (i) the neutral point clamped diode, (ii) flying
capacitor, and (iii) cascaded H-bridge. The conventional multilevel converters have their own
merits and demerits which are listed in References [1,2]. However, these conventional multilevel
converters require a large number of power switches (IGBTs) for a higher number of levels, which
is a major drawback. Many researchers are working towards the design of a novel multilevel
converter with reduced power switches [3]. Several multilevel converters were recently proposed
for are reduced number of dc sources and switches [4–8]. Another switched diode topology is
presented in Reference [4], which requires single DC source and series connected DC-link capacitors
to generate the maximum number of output voltage levels. These topologies have high blocking
voltage stresses across the full bridge converter switches. To double the output voltage, a series of
connected half-bridge circuits are presented in References [5,6]. These topologies produce a higher
number of voltage levels with a greater number of switches and DC sources. The switched diode
multilevel inverters for symmetric and asymmetric topologies with reduced DC sources and switches
are presented in References [7,8]. Another recent topology is proposed with a lesser number of DC
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sources in Reference [9]. This topology generates a 11-level output. In order to increase the output
voltage level, the cascaded connection is recommended. This topology produces a higher number of
voltage levels with reduced switches, but it requires more isolated DC sources. The combined T-type
and cross-connected topologies presented in Reference [10] with a self-capacitor voltage balancing.
The proposed topology uses unidirectional switches and bidirectional switches without an anti-parallel
diode. The presented topology requires a single DC source and multiple capacitors, therefore the
switching complexity will increase as thenumber of levels increases. However, these topologies suffer
from a greater number of power components like IGBTs, diodes, DC-link capacitors and complex pulse
generation circuits. The full bridge inverter unit is used to change the polarity of the output voltage
and current. As the number of levels increases, the voltage stress across the full bridge inverter with
packed H-bridge inverter will also increase. This leads to many practical issues and hence increases
the cost of the inverter [11].

The reduction of output voltage harmonics is still a challenge in power electronics DC/AC
converters. In order to minimize the harmonics, different modulation techniques are developed by the
researchers. The modulation techniques are classified into two categories: (i) low switching frequency
and (ii) high switching frequency. The conventional modulation techniques are: multicarrier-based
pulse width modulation (PD, POD, and APOD), hybrid modulation and hysteresis modulation.
The multicarrier modulation technique will produce low THD by increasing the switching frequency,
but it leads to high switching losses and a need for a complex cooling system which in turn degrades
the reliability of the power switches. These modulation techniques are more suitable for medium power
applications. For high power applications, low switching frequency modulation schemes are preferred.
The low switching frequency modulation techniques are Nearest Space Vector Modulation (NSVM),
Nearest Level Modulation (NLM) and space vector PWM (SVPWM) [12–19]. These modulation
techniques produce low THD compared to conventional low switching frequency schemes, but the
generation of gating pulses is more complicated as the number of level increases, except in the NLM
technique. In addition, different offline PWM control strategies are employed for low switching
frequency, which is used to find the optimum angles to minimize the harmonics in the output
voltage [20,21]. However, these types of modulation techniques are used in open loop applications like
uninterrupted power supplies (UPS), whereas it is not suitable for closed loop real-time applications
like PV systems, since it takes more computational time.

The nearest level modulation technique [22] is another fundamental frequency method, which is
operated at 50 Hz, but it is suitable for higher number of voltage levels. For a lower number of voltage
levels, it produces high THD. The modified NLM technique has been presented [23], which has a DC
offset value of 0.25 instead of 0.5 in the conventional NLM. The modified NLM increases the level
and reduces the DC offset losses but is suitable for a modular multilevel converter. In this paper, a
new multilevel converter with optimum nearest level modulation technique is presented. The DC
offset value is chosen so that it minimizes the THD for a lower number of levels and increases the
RMS voltage up to 17th level. This paper is organized as follows: In Section 2, the new multilevel
converter basic unit is proposed with the various modes of operation. In order to increase the number
of output voltage level, a cascaded connection of basic unit with and without half-bridge converter
are presented and a comparison of the proposed multilevel converter with other recent topologies is
made. In Section 3 Analysis of the proposed NLM technique with suitable illustrations is presented
and the comparison of proposed modulation technique with other modulation methods is discussed.
In Section 4 Experimental results are presented to confirm the objective of this paper. In Section 5 a
suitable application and the advantages of the proposed methods are highlighted, in the Conclusions.
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2. Proposed Multilevel Converter

2.1. Proposed Basic Unit

Figure 1 shows the proposed basic unit of the multilevel converter which consists of a single DC
source with three DC-link capacitors (C1, C2, and C3) connected parallel to the source. The upper and
lower capacitor voltages were tapped through switches S1 and S2. Floating capacitor C2 provides the
current through diodes D1 and D2. The full bridge circuit (F11–F14) was used to alter the polarity of
both the voltage and current paths through the load. Since the topology is symmetric, and it generates
a maximum of seven levels of output voltage. The switch pairs (F11, F13) and (F12, F14) were not turned
on simultaneously to avoid short circuit. The switching sequence for the basic unit is given in Table 1
and various modes of operation are illustrated in Figure 2.

Mode 0: The switch pairs, either (F11, F12) or (F13, F14), were turned on to produce the zero state.
Mode 1: Diodes D1 and D2 were made to conduct to produce the level one output voltage level from
the floating capacitor C2. Mode 2: The floating capacitor C2 was added with either a upper or lower
capacitor by switching the S1 or S2 to generate the second level. Mode 3: Both S1 and S2 switches
were turned on simultaneously to produce the level-3 voltage by connecting all the capacitors together.
The full bridge converter switches (F11, F14) were turned on for the positive half cycle as shown in
Figure 2a–c, and (F12, F13) were turned on for the negative half cycle in Figure 2d–f. Furthermore,
the DC-link capacitor voltage balancing is another serious problem in series connected capacitors.
This balancing was done either by switching techniques or by providing external circuits. In this paper,
an external circuit, proposed in References [22,23], was used for balancing the capacitors.
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Table 1. Switching sequence for the basic unit.

State On State Switches Full Bridge Switches Output Voltage Level

0 − F11,F12 0 VF13,F14

1 D1, D2
F11,F14 +Vdc/3
F12,F13 −Vdc/3

2
(S1, D2) or

(S2, D1)
F11,F14 +2Vdc/3
F12,F13 −2Vdc/3

3 S1, S2
F11,F14 +Vdc
F12,F13 −Vdc

2.2. Proposed Cascaded Topologies

The basic unit given was able to generate a maximum of 7-level output voltage with six switches
and two diodes. To generate a higher number of voltagelevels, two different cascaded topologies were
proposed and these topologies were named as switched capacitor-diode (SCDCAS) cascaded multilevel
converter, where CAS referred to cascaded topology.
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The first topology given in Figure 3a consists of a series connection of “n” number of basic
units and each unit requires a separate DC source with three dc-link capacitors. In unit-1, capacitor
voltages were named as V11, V12,V13. In unit-2 as V21,V22, V23 and in nth unit as Vn1, Vn2, Vn3.
The maximum blocking voltage on the switches was the sum of all these dc source values. Another
topology as a switched-diode half-bridge (SCDHBCAS) multilevel converter and is shown in Figure 3b.
The half-bridge inverter was cascaded with a series connection of basic units to double the output
voltage level.

The expression to find the number of levels, number of switches, isolated dc sources, capacitors,
maximum blocking voltage and total blocking voltage are given in Table 2. These topologies can
also be configured in the asymmetric mode, but in this paper only symmetric configuration was
considered. The output voltage of SCDHBCAS topology was double that of the SCDCAS topology with
minimum switches. The SCDHBCAS topology requires additional dc sources and reduce output voltage
magnitude because the half-bridge circuit output voltage was always half that of the input voltage.

Table 2. Comparison of power components in the proposed topologies.

S.No Various Parameters (SCDCAS) Topology (SCDHBCAS) Topology

1. NLevel 6n + 1 12n + 1
2. NSwitches 6n 6n + 2
3. Ndiode 2n 2n
4. Ncapacitors 3n 3n + 1
5. Nsource n N + 1
6. Maxblock Vdc Vdc
7. Tblock n6 Vdc (6n + 2) Vdc
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The topologies presented in References [5–8] were considered for the comparison and are shown
in Figure 4. Total blocking voltage was one of the important parameters that decides the cost of
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the converter. If the blocking voltage was less, the cost of the switch would be lower. As shown
in Figure 4a, the proposed topology SCDHBCAS has a lower total blocking voltage than the other
topologies. In other words, the number of level was higher with reduced blocking voltage. The DC
source is another parameter to be considered while designing a multilevel converter. From Figure 4b
it is evident that the topologies referred in [7,8] requires more number of sources than the proposed
converters. In Figure 4c, the number of switches is plotted against the number of levels. The proposed
topology SCDHBCAS requires a minimum number of switches when compared to other topologies.
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3. Modified DC-Offset Value in the NLM Method

The conventional NLM technique was more suitable for a higher number of levels because it
produced a higher THD for a lower number of levels [2]. To get better THD and RMS output voltage,
the optimum nearest modulation technique was proposed. In the NLM technique, the DC offset value
was 0.5 (also called a half integer type), but in the case of optimal nearest level modulation (ONLM),
the DC offset value was changed from 0.5 to 0.4.

Vout = ma × (NLevel − 1)/2 × Vdc × cos (ωt) (1)

where NLevel was the number of output levels and ‘ma’ was the modulation index. The output voltage
for various modulation indices was calculated using Equation (1), where x1, x2 and x3 were the
variables and this was compared with the voltage reference signal, to generate the pulses as shown in
Figure 4. The intersection of reference signal and variables x1, x2 and x3 gavedifferent pulse widths
with a duty cycle of D1, D2 and D3. The voltage RMS of the converter depends on the duty cycle of
the switches.

Here, the D3 has maximum duty cycle when compared with D2 and D1. Each intersection point
gave a different switching angle θ1, θ2 and θ3 as shown in Figure 5. The variables x1, x2 and x3 directly
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affected the switching angle and duty cycle. The mathematical expression to find the RMS value was
given in Equation (2).
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Vrms =

√√√√√ 1
T

T∫
0

V(t).dt (2)

T was the time period of the pulse from zero and V(t) was the magnitude of voltage. For simplicity
V(t) was replaced by ‘a’ and Equation (3) is rewritten as:

Vrms
2 =

1
T

t1∫
t1
′

a2dt (3)

Equation (3) was the voltage RMS of the pulses. RMS voltage for multilevel output was
calculated by choosing the duty cycle of each level and multiplied with corresponding magnitude as
discussed below:

Vrms = a1
√

D1 + a2
√

D2 + . . . . . . an
√

Dn (4)

The magnitude between each level was symmetric and hence a1 = a2 = a3 = . . . an = Vdc.
The switching angle calculation for the proposed modulation technique was given below:

θ = sin−1
(

i− 0.6
x

) wherei = 1, 2, . . .
(

m−1
2

)
x =

(
m− 1

2

) (5)

‘m’ is the number of levels. The different switching angle against the number of levels is shown in
Figure 6. In this, if the number of level is increased, the switching angle (θ) value is reduced gradually.
The key variables x1, x2 and x3 decides the switching angles and duty cycles. Instead of x1, x2 and x3

variables, constant DC offset was used in the modulation techniques. The DC offset value of 0.5 was
used in the conventional NLM technique which is more suitable for a higher number of output voltage
levels, but for lower voltage levels it produces high THD.



Electronics 2019, 8, 161 8 of 15Electronics 2019, 8, x FOR PEER REVIEW  8 of 15 

 

 
Figure 6. Number of levels vs switching angle. 

The functional block diagram of the proposed system is shown in Figure 7a To minimize the 
THD in lower numbers of levels, a new DC offset value of 0.4was proposed. The reason for choosing 
0.4 as the DC offset was illustrated in Figure 7b with a reference waveform. The magnitude of 
individual harmonics orders is presented on the left side of the Y axis and on the right side, 
variations of voltage RMS were presented in per unit value. The X-axis was the variation of DC 
offset which is varied from 0.1 to 0.9. Up to the 15th odd harmonics orders were considered for 
selection of DC offset value. 

 
(a) 

 

(b) 

Figure 6. Number of levels vs switching angle.

The functional block diagram of the proposed system is shown in Figure 7a To minimize the THD
in lower numbers of levels, a new DC offset value of 0.4 was proposed. The reason for choosing 0.4 as
the DC offset was illustrated in Figure 7b with a reference waveform. The magnitude of individual
harmonics orders is presented on the left side of the Y axis and on the right side, variations of voltage
RMS were presented in per unit value. The X-axis was the variation of DC offset which is varied from
0.1 to 0.9. Up to the 15th odd harmonics orders were considered for selection of DC offset value.
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The lower order harmonics like 3rd, 5th and 7th were lower in the region of DC offset from 0.4
to 0.5. The 3rd order harmonic voltage was low, whereas the RMS voltage was high for a DC offset
of 0.4. Therefore, a DC offset of 0.4 was considered optimum in this paper. This DC offset value was
valid for a lower number of output voltage levels, up to the 17th-level. In the half integer type method
(conventional NLM), the error (DC losses) between the two levels was always maintained at 0.5Vdc.
In the proposed method, the error was minimized to 0.4Vdc, as shown in Figure 7c. The RMS value of
the output voltage and current was higher than the conventional methods.

4. Simulation and Experimental Results

In this, the FPGA Spartan 3E was used to generate the pulse for the proposed converter. In terms
of hardware, the RC delay circuit was used to provide the dead time of 2 µs between the pulses to
avoid short circuit. The subsystem of the PV Simulink module is shown in Figure 8. This PV model
was designed based on a single diode model as used in Reference [19]. In this model, the temperature
is kept at 298 K and due to the variations in irradiance; the output voltage and current were varied.
To extract the maximum power from the PV panel, the basic perturb and observe MPPT method was
implemented and the regulated output voltage was obtained. However, this is not in the scope of this
paper. The PV model consists of one diode for cell polarization and series/shunt resistance for the
losses. The Ipv (Vpv) of this model was calculated as follows:

Ipv = Iph − Id − IRsh (6)

Ipv = Iph− Io

[
e
(

q(Vpv+Rs .Ipv
NsKTj

)
− 1

]
− Vpv + Rs .Ipv

Rsh
(7)

Rs and Rsh were series and shunt resistance, Iph was the photocurrent, Io was the reverse saturation
current of the diode, q was the electron charge, K was constant, Tj was the junction temperature of the
panel, Id was the intrinsic diode current, and Vpv and Ipv was the voltage and current in the panel.
The DC/DC converter boosts the voltage from 40 V to 82 V. As per the single-phase grid, standard
voltage is Vdc >

√
2 ∗Vgrid.

The multilevel inverter output peak voltage was given below:
Vpp = 3 × 110 = 330 V, Vrms = Vpp/sqrt (2)
Vrms = 330/sqrt (2) = 232.2 V
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To prove the dynamic performance of the proposed topology, the modulation scheme was
implemented using MATLAB/Simulink and experimentally verified with the hardware developed.
The details of the PV panel and other hardware ratings were listed in Table 3.
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Description Specifications

PV System

PV Model 12100 04 Nos
Open Circuit Voltage 26.8 V
Short Circuit Current 6.2 A
Maximum Voltage (Vm) 21.8 V
Maximum Current (Im) 5.62 A
Maximum system DC Voltage 1000 V
Power Tolerance ±5%

Load

Resistance (R) 150 Ω & 80 Ω
Inductor (L) 70 mH & 80 mH

Multilevel Converter

IRF 460 500 V/21 A 06 & 08 Nos
Gate Driver-HCPL316j 06 & 08 Nos
Capacitors 150 µF
FPGA Spartan3E 1
Snubber Circuits RCD

Results

Output Voltage 90 V & 120 V
Output Current 0.5 A & 1.51 A
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4.1. Seven Level Inverter

The proposed 7-level inverter with voltage balancing circuit is shown in Figure 9a along with
its balance output voltage in Figure 9b. To determine the performance of the multilevel inverter and
modulation technique, the dynamic (without DC/DC converter) and steady-state output voltage
(with DC/DC converter) were shown in Figure 10a–i for different irradiance values. In the basic
unit, the DC/DC boost converter was used to regulate the output voltage to 90 V and each capacitor
was balanced to 30 V; when the full irradiance was present with a minimum duty ratio of 0.12.
The corresponding output voltage and current waveforms are shown in Figure 10a. The current
THD depended on the load inductance value, because this acted as a low pass filter to produce a
sinusoidal waveform, but here the resistance value is higher than the inductance value. Here it is
worth mentioning that the voltage THD of the proposed modulation technique was 11.81% as shown
in Figure 10c, which was higher than in Reference [21]. It was confirmed that the proposed modulation
technique was suitable for a lower number of voltage levels with increased output RMS voltage.
To regulate the PV output voltage, the non-isolated DC/DC converter was used. The experimental
output voltage and current waveforms were shown in Figure 11 with the THD spectrum. The load
resistance was 150 Ω and inductance was 70 mH which gives the maximum output power of 20.938 W
with a power factor of 0.89 as shown in Figure 11b. The voltage RMS of the 7-level inverter was 65.11 V
and current RMS was 0.36 A, which was higher than the theoretical value of 63.63 for given input.
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4.2. Thirteen-Level Inverter

In this configuration the SCDHBCAS topology was used to generate the 13th-level. Each DC link
capacitors voltage were regulated to 40 V and the half-bridge inverter voltage was 20 V.

For the 13-level inverter the maximum voltage RMS value was 126.28 V and current RMS was
1.05 A with a power factor of 0.94. The maximum output power was 86.35 W with the boost converter



Electronics 2019, 8, 161 13 of 15

duty ratio of 0.35 to maintain the output voltage at 120 V with each DC-link capacitor voltage of
40 V, as shown in Figure 12a.The corresponding inverter output voltage and current waveforms were
shown in Figure 12b. Voltage THD was 6.701% and current THD was 6.388%, the power factor was
0.94 which is close to unity, as illustrated in Figure 12c,d. In Figure 13, different loading conditions
were used and the corresponding outputs were captured using DSO. In this way, the load values
were changed ranging from purely resistive to inductive and a combination of both as illustrated in
Figure 13a. A zoomed view of the load changes considered is shown in Figure 13b.

Figure 12. Experimental results of thirteen-level converter (a) capacitor voltages after balancing (b)
output voltage and current waveform and (c) voltage harmonics.
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The proposed NLM technique produced high voltage RMS of 97.28 V, whereas 98.85 V was the
theoretical value. From the proposed modulation it was confirmed that it generates low THD and high
voltage RMS for a lower number of levels. The laboratory-based prototype model of the proposed
multilevel converter for the 13th-level is shown in Figure 14 with PV as the input source.
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5. Conclusions

The generalized cascaded multilevel converter was proposed with the optimum nearest level
modulation technique in this paper. Basic units and the cascaded connection of basic units were
discussed with half-bridge and without half-bridge circuits. With the half-bridge converter, it produced
the maximum output voltage for higher voltage levels than it did without the half-bridge circuit.
The proposed modified nearest level modulation technique was presented which generated the low
THD and high voltage RMS. The experimental validation of the proposed converter and modified
NLM technique was compared with the simulation results. The modified NLM technique was
proved to be more suitable for a lower number of output voltage levels and was found suitable
for photovoltaic applications.
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