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Abstract: With the proliferation of the Internet-of-Things (IoT), the users’ trajectory data containing
privacy information in the IoT systems are easily exposed to the adversaries in continuous
location-based services (LBSs) and trajectory publication. Existing trajectory protection schemes
generate dummy trajectories without considering the user mobility pattern accurately. This would
cause that the adversaries can easily exclude the dummy trajectories according to the obtained
geographic feature information. In this paper, the continuous location entropy and the trajectory
entropy are defined based on the gravity mobility model to measure the level of trajectory protection.
Then, two trajectory protection schemes are proposed based on the defined entropy metrics to protect
the trajectory data in continuous LBSs and trajectory publication, respectively. Experimental results
demonstrate that the proposed schemes have a higher level than the enhanced dummy-location
selection (enhance-DLS) scheme and the random scheme.
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1. Introduction

Internet-of-Things (IoT) has great potential to be employed in various fields, including industrial
controlling, automatic driving, environmental monitoring, and medical protection, which play a key
role in supporting future smart cities [1,2]. This rapid proliferation of IoT has attracted numerous
adversaries who attempt to capture the users’ privacy information through exploiting IoT devices and
eavesdropping the channel [3–8]. Hence, IoT attacks may incur serious sensitive privacy leakage and
security issues; this is a potentially fatal threat to the long-term development of the IoT.

In IoT systems, a large number of sensors have been deployed for perception and information
collection, which generate a huge amount of data. Such data consist of a lot of information on user
trajectory. Once the adversaries acquire the users’ trajectory data, they can analyze the users’ trajectories
to extract the users’ sensitive information including home address, company address, health conditions,
personal interests, and hobbies through data mining [9]. As a result, the adversaries can judge the uses’
regular lifestyle and may make some harassment or behavior for the purpose of profit [10]. Therefore, the
trajectory protection for IoT is especially a critical issue that urgently needs to be solved.
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The user trajectory data in the IoT systems are exposed to the adversaries in two main ways.
One is the continuous location-based services (LBSs), and the other one is the trajectory publication.
The continuous LBSs can provide facilitated services to the mobile users and has been an essential
component in their daily lives (e.g., navigation, location-based mobile advertising and requesting the
nearest points of interests (PoIs) while traveling [11]). For the continuous LBSs, the users periodically
send their real-time location obtained through a global positioning system (GPS) to the location service
provider (LSP) to acquire the continuous service and thus, the users implicitly reveal their real-time
location to the LSP which may be monitored by adversaries. In this case, users’ historical trajectories
may be collected by an untrustworthy LSP. On the other hand, for the trajectory publication, the LSP
can further publish the collected historical trajectories to the third parties for data analysis. For example,
the governors analyze the historical trajectories to predict the traffic congestion and further optimize
the transport facilities [12]. Similarly, research institutes can analyze the historical trajectories to study
human behavior patterns [13]. As a result, user trajectories are revealed to the third parties which may
be monitored by adversaries in the trajectory publication. For simplification, adversary refers to both
the untrustworthy LSPs and third parties in this paper.

In the past few years, many protection schemes have been proposed to protect the trajectories for
continuous LBS or the trajectory publication [14–27]. The data of a trajectory is composed of a location
dataset which includes a series of locations in chronological order, thus, the trajectory protection means
protecting the chronological location data. The trajectory protection process of the continuous LBS is
online since users’ real-time locations need to be protected, while the trajectory protection process is
performed offline for the trajectory publication. Most of the trajectory protection schemes are based on
the k-anonymity method. The online k-anonymity-based trajectory protection scheme first generates
k− 1 dummy locations for a real-time location and then publishes the k locations that are composed of
both k− 1 dummy locations and a real-time location to confuse the adversaries, and thus, the real-time
location of a trajectory can be protected. On the other hand, the offline k-anonymity-based trajectory
protection scheme first generates dummy locations for each chronological location, then combines the
dummy locations to generate k− 1 dummy trajectories, and finally publishes k trajectories including
the k− 1 dummy trajectories and a real trajectory to protect the real trajectory.

In the real world, the adversaries can easily obtain the map information from the Internet, thus,
they can easily exclude the dummy locations according to the geographic feature of the area that
the dummy locations belong to. For example, if the adversaries have captured a location of a user
and know the area around the user is a lake, thus, they can derive that the captured location is
a dummy location. Therefore, some related works divide the region into different areas according to
the geographic feature to generate the dummy location with high privacy level [14,28]. In [28], Niu et al.
proposed an online k-anonymity-based trajectory protection scheme, i.e., enhanced dummy-location
selection (enhance-DLS). In this scheme, the region is divided into different areas according to the
geographic feature. They used entropy metric to measure the privacy level between different areas.
The entropy is calculated according to the query probability and the transition probability. The query
probability is the probability that a user launches a query in an area and the transition probability
is the probability that a user moves from an area to another. However, the DLS scheme assigned
the transition probability randomly without considering the realistic user mobility pattern. The user
mobility pattern reflects the commuting flow for a user from one area to another. If the user mobility
pattern is not considered to generate dummy trajectories, the adversaries can easily exclude the dummy
trajectories according to the obtained geographic feature information. For example, a user utilizes a
2-anonymity scheme to protect the real-time location as shown in Figure 1. We denote rut as the real
user’s location at moment t, and dut is the dummy location of the user at moment t. For t = 1 and t = 2,
the scheme generates 1 dummy location respectively. If the adversaries has learned that there is a lake
between ru1 and du2, du1 and ru2, du1 and du2, thus, they can easily exclude the dummy trajectories
ru1 → du2, du1 → ru2 and du1 → du2. As a result, the adversaries can successfully derive the real
trajectory ru1 → ru2 by inference. Therefore, the user mobility pattern is an important factor which
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should be considered to calculate the user commuting flow and further obtain accurate transition
probability between two areas, thus, creating dummy locations with a high privacy level.

Some user mobility models have been established for trajectory privacy protection. Bindschaedler et al.
employed the Markov model to characterize human mobility pattern, but this model is not suitable for
long-term processing of data and has high computational complexity [15]. Lei et al. proposed dummy
generation schemes based on random pattern and intersection pattern, while their mobility model can
only be used for users with consistent movement patterns [16]. Another popular user mobility model
is the gravity model. The gravity model derived from Newton’s law of universal gravitation, which are
widely used in transportation theory [29,30]. It shows that the commute flow between the two regions
is proportional to theirs flow scale, and inversely proportional to their distance. The gravity model can
describe the interactions between different geographical areas of the city, such as pedestrian commute
flow, traffic flow and the flow of calls or messages [31]. In [32], Jung et al. studied the case of the road
network and concluded that the interaction strength also follows the gravity model. Different from other
user mobility models, the gravity model has been proven to be a suitable method to depict human mobility
patterns, and has been widely employed in mobility analysis for transportation, population migration
and geographic information prediction [33–35]. To the best of our knowledge, no works have considered
the gravity model to obtain the transition probability in the existing trajectory protection schemes. This
motivated us to conduct this work.

t = 1 t = 2

ru1

ru2

du2

du1

The user's dummy location The user's real location

Figure 1. An illustration of dummies generation based on 2-anonymity.

In this paper, we propose two k-anonymity-based trajectory protection schemes considering the
user mobility pattern to protect the trajectory data in continuous LBSs and trajectory publication,
respectively. In the schemes, dummy trajectories are created according to the continuous location
entropy and the trajectory entropy that are defined to measure the privacy level of trajectories.
Our contributions are summarized as follows:

• We propose two k-anonymity-based trajectory protection schemes considering the mobility
pattern to protect the trajectory data in continuous LBSs and trajectory publication, respectively.

• We define the continuous location entropy and trajectory entropy to measure the privacy level
of the dummy trajectory. The gravity model is adopted to evaluate user commuting flow and
further obtain accurate transition probability of the defined entropies.

• We conduct comprehensive experiments to demonstrate that our proposed schemes can achieve
better performance as compared to other methods.

The rest of the paper is organized as follows. Section 2 introduces related work. The system model
is described in Section 3. We propose trajectory protection schemes in continuous LBS and trajectory
publication in Section 4. In Section 5, the detailed experiment is shown. Section 6 concludes the paper.
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2. Related Work

In this section, we mainly review the existing trajectory protection schemes in continuous LBS
and trajectory publication. In addition, we introduce some related works on user mobility pattern in
the past few years.

We first review the related trajectory protection schemes in continuous LBS. To protect the
trajectory data in the continuous LBS, Kido et al. [14] proposed two dummy trajectory generation
algorithms that generate dummies without relying on the third party. The next dummy location is
determined according to the users’ neighborhood location. The algorithms employ a random walk
model to generate dummy locations without considering the user movement pattern. Xu et al. [17]
proposed a k-anonymity-based trajectory protection scheme that employs other users’ historical
trajectories to generate dummy trajectories. It ensures the authenticity and validity of the other
k− 1 dummy trajectories, which makes it harder for adversaries to infer the real users’ trajectories
when the mobile user launches continuous LBSs during his movement. However, due to the query
probability and the transition probability not being fully considered, the adversary can infer the user’s
real trajectory with a large probability.

Xu and Cai [18] defined a spatial region as 2E, where E is the location entropy. The location
entropy is used to measure the popularity of the region based on footprints collected from the visitors
of the region. The cloaking algorithms depend on an anonymizer server. Wu et al. [19] proposed
a k-anonymity dummy trajectory generation method based on client-side. It constructs the set of
dummy trajectories by adjusting the angle between the dummy trajectories and the real trajectory,
thus, avoiding the coincidence of the dummy trajectories and the real trajectory. Lei et al. [16] obtained
the dummy trajectories by rotating the real trajectory generated by the user, so that the adversary
could not identify the real trajectory with the knowledge of the geometric shape and direction of the
trajectory. Moreover, they only consider a user’s profile after a long-term observation but not protect
the trajectory data in real time. In order to resist inference attacks, Niu et al. [20] proposed an efficient
trajectory protection scheme called DUMMY-T, which aims to protect the user’s trajectory against
adversaries with the obtained information in the continuous LBS. They generate the dummy locations
with minimum cloaking region while ignore the user’s real movement pattern. Bindschaedler et al. [15]
designed a privacy-preserving generative model to synthesize the trajectories of some individuals
with consistent lifestyles. They concentrated on the mobility similarity metric and ensured the
tradeoff between location privacy and utility. Kini et al. [21] considered a k-anonymity-based location
generation algorithm that takes into account the data characteristics in real world and implemented the
algorithm in realistic mobility scenarios, but the authors studied the complexity and communication
overhead of the algorithm without discussing the effect of privacy protection. Peng et al. [22] proposed
an enhanced location privacy preserving (ELPP) scheme that doesn’t require fully trusted entity.
Instead, an entity named function generator is introduced. The function generator exploits the Hilbert
curve to convert a real location into a dummy location to achieve the trajectory protection. However,
this method is not able to accurately depict the similarity between the real and the dummy trajectories.
As mentioned above, the related trajectory protection schemes in continuous LBS have not considered
the user movement pattern.

Next, we review the related works about the existing trajectory protection schemes in trajectory
publication. Terrovitis and Mamoulis [23] studied the problem of privacy preservation in the trajectory
publication. They hold the view that if trajectories are published exactly, the risk of privacy exposure
will be increased. Therefore, they proposed a data suppression technique that suppresses the exposure
of trajectory database. However, if more trajectory dataset are suppressed, the trajectory data would
be lost and become worthless. Chen et al. [24] protected the published trajectory data based on a
differential privacy model. They proposed an efficient data-dependent privacy sanitization algorithm,
the algorithm remains high utility and is available to protect large trajectory datasets. Abul et al. [25]
presented the concept of (k, δ)-anonymity for protecting trajectory data publication, here δ represents
the possible of the location imprecision. The authors modified the trajectories through space translation
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technique, then k different trajectories can exist in a cylinder with radius δ. Pensa et al. [26] proposed a
new k-anonymity-based approach to preserve the sequential data in the field of knowledge discovery
and mobility data mining. They converted the sequential data to another one by means of insertions,
deletions or substitutions. Nergiz et al. [27] proposed a randomization-based reconstruction algorithm
for protecting the disclosed trajectory data by extending the notion of k-anonymity. From the related
works mentioned above, we can see that there are no relevant trajectory protection schemes that
consider the user mobility pattern in trajectory data publication.

After that, we review some works which used the gravity model to describe the human movement
pattern between different regions. Krings et al. [33] investigated the communications flows for inter-city
and described the communication intensity by a gravity model. In [34], Tomita et al. used the gravity
model to present a quantitative analysis about migration, which shows precise predictions about
movement of population. To the best of our knowledge, no works have considered the gravity model to
obtain the transition probability and further generated the dummy trajectories in the k-anonymity-based
trajectory protection schemes. This motivated us to conduct this work. Wang et al. [36] proposed a
hybrid predictive model that applies the gravity model to depict both the regularity and conformity
of human mobility as well as their mutual reinforcement. However, there are no works on trajectory
protection schemes that use the gravity model to depict the user mobility patterns.

Conclusively, the existing trajectory protection schemes in both continuous LBS and trajectory
publication have not considered the user mobility pattern to generate dummies. The gravity model
can depict the user mobility patterns. In our schemes, we will employ the gravity model to calculate
the transition probability and further generate dummies with high privacy level.

3. System Model

In this section, we introduce the system model of this paper. We consider protecting the users’
trajectory data of the continuous LBS and the trajectory publications in a region. A trajectory data is a
location dataset with a series of chronological location data. Thus, protecting the trajectory data means
protecting the chronological location data. As in [28], we divide the region into l × l girds with equal
sizes according to the geographic feature of the region and label these grids in order.

The users, LSPs, third parties and the base station are distributed in the region as shown in
Figure 2. The LSPs usually refer to the servers of the large companies, e.g., Google and Baidu. The LSPs
can provision location based services to users through communication network [37–40]. The LSPs
store the users’ historical trajectory data in a storage module while provisioning the continuous LBSs
to the users. The users move in the region according to the human daily activities. Each user is
equipped with a mobile device. The mobile device is usually storable and computable, which receives
the location-based service (such as smartphones, tablet personal computers and wearable devices).
The mobile device can obtain the historical trajectory data of the users in the region from the LSP
and store the trajectory data in a storage module. The trajectory data stored in the storage module is
updated in each time period. Each mobile device and the LSP have a gravity model module, which can
construct the corresponding gravity model based on the stored historical trajectory data. Moreover,
each mobile device and the LSP also have a dummy-fuse module to generate dummy location data.
The dummy-fuse module calculates the query probabilities of the grids in the region according to the
historical trajectory data in the storage module, and uses the gravity model constructed in the gravity
model module to calculate the transition probabilities between different grids in the region. Then, the
calculated query probabilities and the transition probabilities are stored in the dummy-fuse module.

Next, we introduce the continuous LBS process and the trajectory publication process in the
system model. The continuous LBS process is first described. In the continuous LBSs, we assume that
the LSP is an active adversary which obtains the privacy information of users, e.g., history visiting
records. Each user in the region launches a query to the LSP to obtain a service periodically. For each
query, the mobile device of the user first obtains their real-time location data from the GPS before
launching a query and stores the real-time location data. Then, the dummy-fuse module in the mobile
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device generates k− 1 dummy locations with high privacy metric and fuses them with the real-time
location data. This process is the trajectory protection process of the continuous LBS. Afterwards,
with the fused k location data, the user sends them to the LSP through the communication networks
to protect the real-time location data. Finally, the LSP records the k location data and returns the
corresponding service to the user. After the continuous LBS process is completed, the LSP records
the user’s trajectory data. Therefore, the LSP usually record large amounts of the users’ trajectory
data which can be published to the third party for analysis. Next, the trajectory publication process is
introduced. In the trajectory publication, we assume the third party is the adversary. To protect the
trajectory data, the dummy module in the LSP generates k− 1 dummy trajectories with high privacy
metric and fuses them with the real trajectory data. This process is the trajectory protection process of
the trajectory publication. The continuous LBS and the trajectory publication process in the system
model is shown in Figure 3. As mentioned above, the trajectory protection process of the continuous
LBS and trajectory publication are both conducted to protect the trajectory data. The former process
is conducted to protect the on-line location data in the continuous LBS while the latter process is
conducted to protect the off-line trajectory data in the trajectory publication.

Company

Base Station 

User

LSP

Home

Hospital

The Third Party

Figure 2. The region considering in the system model.

GPS

The Third Party

Mobile Device Base Station

User

The trajectory protection 

process in continuous LBS

Continuous Location-based Services Trajectory Publication

Location Service Provider

The trajectory 

protection process in 

trajectory publication

Figure 3. The continuous LBSs process and the trajectory publication process in the system model.

Then, we will introduce the trajectory protection process of the continuous LBS and trajectory
publication. The two trajectory protection processes are conducted in eight steps. The steps are shown
as follows,

(1) The historical data are obtained from the storage module.
(2) The query probability is calculated through historical data.
(3) The gravity model is fitted based on historical data.
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(4) The transition probability between the two locations can be predicted according to the gravity model.
(5) The candidates of dummy locations are selected. This step is different for the continuous LBS

and trajectory publication process. In continuous LBS, the user’s maximum movement limit is
determined according to the user’s maximum velocity and the interval between two continuous
queries. Afterwards, the number of dummy location candidates within the maximum movement
limit are determined. However, in trajectory publication, the trajectory is first decomposed into a
number of locations, then the candidates are determined based on the maximum movement limit
of each location in the trajectory.

(6) The entropy metric is calculated according to the query probability and the transition probability.
The continuous location entropy is calculated according to the probabilities between two locations
for continuous LBS while the trajectory entropy is calculated according to the probabilities among
the locations in a trajectory for trajectory publication.

(7) The dummies are obtained based on the corresponding entropy metric. In continuous LBS,
the k − 1 locations corresponding to the optimal continuous location entropy is selected. On
the other hand, the k− 1 location combinations corresponding to the optimal trajectory entropy
is obtained.

(8) The k trajectory data are generated through fusing the k− 1 dummy data with the real data. Then
the fused k trajectory data are obtained. The user sends them to the LSP in continuous LBS, or the
LSP sends to the third party in trajectory publication.

The flowchart of these two trajectory protection processes in continuous LBS and trajectory
publication is shown in Figure 4.

Calculate the query probability 

through historical data

Fitting the gravity model 

through the historical data

Predict the transition probability

Calculate the continuous location 

entropy based on query probability 

and transition probability 

Obtain k – 1 locations according to the 

optimal continuous location entropy

Obtain the historical data 

from the storage module

Select the candidates according to 

the maximum movement limit of 

the current location

Select the candidates according to 

the maximum movement limit of 

each location in the trajectory

Calculate the trajectory entropy 

based on query probability and 

transition probability 

Fuse the dummy data and real data 

in dummy-fuze module and send to 

LSP or the third party

Obtain k – 1 combinations according to 

the optimal trajectory entropy

Candidates selection

Entropy calculation

Obtaining dummies

Figure 4. The flowchart of trajectory protection process in continuous LBS and trajectory publication.
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4. Trajectory Privacy Protection Schemes

In this section, we introduce our proposed k-anonymity-based schemes to generate dummy
trajectories in the continuous LBS and the trajectory publication, respectively. We define the continuous
location entropy for the continuous LBS and the trajectory entropy to measure the privacy level of the
dummy trajectories. In order to reflect the real user mobility pattern, the transition probability in the
continuous location entropy and the trajectory entropy is calculated according to the gravity model.
The proposed schemes generate dummy trajectories by selecting the trajectories with high privacy
level. In this section, we first introduce the continuous location entropy and the trajectory entropy.
Afterwards, we will further describe the proposed schemes in detail.

4.1. Continuous Location Entropy and Trajectory Entropy

In this section, we firstly introduce the concept and meaning of entropy. Entropy derived from the
Shannon’s theory of information. According to the Jaynes’ maximum entropy principle, we learned that
Shannon entropy can be used to measure the privacy of confidential data according to the probability
distribution [41]. In [42], the authors mentioned that entropy can be used to measure the anonymity
of the user’s behaviors. Inspired by this principle, we define the continuous location entropy and
the trajectory entropy as the performance metric to quantize the privacy level of the trajectory in the
continuous LBSs and the trajectory publication, respectively. The continuous location entropy and the
trajectory entropy are novel concepts derived from location entropy [27,36].

Let Xj(j = 1, 2, · · · , k) be the jth trajectory of the generated k trajectories. Assuming the length of
a trajectory is m, the trajectory Xj with the location data generated at moments t1, t2, · · · , ti, · · · , tm,
(i = 1, 2, · · · , m) can be denoted as Xj = {x1

j → x2
j → · · · → xi

j → · · · → xm
j }, where xi

j is the grid
where the user is located at moment ti on the jth trajectory.

For the trajectory from xi
j to xi′

j , let P(xi
j → xi′

j ) be the probability that the user moves from xi
j to

xi′
j and he launches query at each location from xi

j to xi′
j , q(xh′

j ) be the query probability that the user

initiates a query at xh′
j (i ≤ h′ ≤ i′), pt(xh−1

j → xh
j ) be the transition probability that the user moves

from xh−1
j to xh

j (i + 1 ≤ h ≤ i′), thus, P(xi
j → xi′

j ) can be calculated as

P(xi
j → xi′

j ) =
i′

∏
h′=i

q(xh′
j )

i′

∏
h=i+1

pt(xh−1
j → xh

j ), (1)

According to the definition of the entropy [43], the entropy (i.e., the privacy level) of the k
trajectories generated from moment ti to moment t′i is calculated as

HCk(xi, xi′) = −
k

∑
j=1

P(xi
j → xi′

j )log2(P(xi
j → xi′

j )) (2)

In the continuous LBSs, regarding one real-time location, we assume that the k − 1 dummy
locations are generated accordingly at moment ti. Hence, regarding the real-time trajectory,
k− 1 dummy trajectories are generated from moment ti−1 to ti, (i = 2, 3, · · · , m). According to
the Equations (1) and (2), the entropy of the k trajectories generated from ti−1 to ti is calculated as

HCk(xi−1, xi) = −
k

∑
j=1

P(xi−1
j → xi

j)log2(P(xi−1
j → xi

j)) (3)

P(xi−1
j → xi

j) = q(xi−1
j )pt(xi−1

j → xi
j)q(xi

j), (4)

In this paper, we define the entropy HCk(xi−1, xi) in Equation (3) as the continuous location
entropy to measure the privacy level of the trajectories generated in the continuous LBSs.
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In the trajectory publication, k − 1 dummy trajectories are generated from moment t1 to tm.
Therefore, according to the Equations (1) and (2), the entropy of the k trajectories from t1 to tm is
calculated as

HRk(x1, xm) = −
k

∑
j=1

P(x1
j → xm

j )log2(P(x1
j → xm

j )) (5)

P(x1
j → xm

j ) =
m

∏
i′=1

q(xi′
j )

m

∏
i=2

pt(xi−1
j → xi

j), (6)

Similarly, we define the entropy HRk(x1, xm) in Equation (5) as the trajectory entropy to measure
the privacy level of the trajectories generated in the trajectory publication.

To obtain the the continuous location entropy in Equation (3) and the trajectory entropy in
Equation (5), we will further determine the query probability q(xi

j) and the transition probability

pt(xi−1
j → xi

j). Next, we will introduce how to derive the query probability q(xi
j) and the transition

probability pt(xi−1
j → xi

j).

4.1.1. Query Probability

In this section, we introduce how to obtain the query probability. Let a be a grid in the region.
We use N to represent the number of grids. As described in Section 3, the mobile devices of users can
store the historical trajectories in the region. Hence, they can obtain the number of user queries in each
grid by analyzing the users’ historical trajectories. Thus, the query probability q(a) can be calculated
as follows,

q(a) =
Q(a)

∑N
g=1 Q(g)

, (g = 1, 2, · · · , N), (7)

where Q(a) and Q(g) indicates the number of user queries in grid a and g.
The query probability of each grid is stored in mobile devices after being calculated.

4.1.2. Transition Probability

In this section, we introduce how to obtain the transition probability. Let a and b be two grids in
the region. The transition probability pt(a→ b) can be calculated by

pt(a→ b) =
F(a, b)

∑g∈N F(a, g)
, (g = 1, 2, · · · , N), (8)

where F(a, b) is the commuting flow from grid a to grid b and F(a, g) is the commuting flow from grid
a to grid g.

In order to reflect the real user mobility pattern, we employ the gravity model to predict the
commuting flow from a grid to another grid. Since the gravity model integrates the regularity
and conformity of human mobility as well as their mutual reinforcement, it is realized as a precise
estimation of commuting flow which is widely applied in mobility analysis for a large population such
as traffic, migration and trade flows [36]. According to the gravity model in [36], the communing flow
ym,n from grid m to grid n is calculated according Equation (9),

ym,n = α · (um)µ · (vn)θ

exp(γ · wm,n)
. (9)

In Equation (9), we denote um as the flow of the user leaving grid m, vn as the flow of the user
arriving at grid n, and wm,n as the distance between grid m and grid n. µ, θ, γ are the coefficients of
the leaving flow, the arriving flow and the distance, respectively; α is the coefficient of the commuting
flow. The coefficients µ, θ, γ and α are different for different people flows in different regions.
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Taking a logarithm at the both sides of Equation (9), the commuting flow ym,n is a function of the
coefficients µ, θ, γ and α as

ln ym,n = ln α + µ · ln um + θ · ln vn − γ · wm,n, (10)

In our paper, we use Equation (9) to predict the commuting flow from a grid to another grid. The
historical trajectory data stored in mobile devices can approximately reflect the people flow in the
grids of the region. For the grids of the region, let La be the flow of the user leaving gird a, Ab be the
flow of the user arriving at grid b and dista,b be the average distance between grid a and location b.
F(a, b), La, Ab and dista,b can be obtained through observing the historical trajectory data stored in the
mobile devices. Our objective is to obtain the coefficients µ, θ, γ and α which can enable the gravity
model function, i.e., Equation (10), to fit the observed data in the grids of the region (i.e., including
F(a, b), La, Ab and dista,b). thus, the commuting flow of the area from a grid to another grid can be
predicted through gravity model function with the obtained coefficients µ, θ, γ and α. Since the gravity
model function can be transferred to be Equation (10), our objective can be equivalent to obtain the
coefficients µ, θ, γ and ln α to make Equation (10) fit the observed data in the grids of the region
including ln F(a, b), ln La, ln Ab and dista,b. The difference between ln F(a, b) and the predicted value
of Equation (10) is denoted as εa,b, thus, we have

ln F(a, b) = ln α + µ · ln La + θ · ln Ab − γ · dista,b + εa,b. (11)

In Equation (11), F(a, b), La, Ab and dista,b can be obtained through observing the historical
trajectory data. For a trajectory, it consists of multiple locations. The leaving flow La can be obtained
through counting the number of trajectories in which the current location is in grid a and the next
location is out of grid a. The arrival flow Ab can be obtained through counting the number of trajectories
in which the current location is out of grid b and the next location is in grid b. The average distance
dista,b between grid a and grid b can be obtained by calculating the distance between the center point
of grid a and the center point of grid b. Meanwhile, the commuting flows F(a, b) can be obtained
through counting the number of trajectories from a location in grid a to the another location in grid b.

To facilitate the estimation of coefficients of Equation (11), Equation (11) is converted into the
matrix form of standard multivariate linear regression equation shown as follows,

Y = Xβ + ε. (12)

In Equation (12), we have Y = (Y1, Y2, · · · , Y(a−1)N+b, · · · , YN2)T , where Y(a−1)N+b = F(a, b). X
is the matrix shown as follows,

X =



1 X1,1 X1,2 X1,3

1 X2,1 X2,2 X2,3
...

...
...

...
1 X(a−1)N+b,1 X(a−1)N+b,2 X(a−1)N+b,3
...

...
...

...
1 XN2,1 XN2,2 XN2,3


, (13)

where X(a−1)N+b,2 = ln La, X(a−1)N+b,3 = ln Ab, X(a−1)N+b,4 = dista,b. The coefficient vector can be
expressed as β = (ln α, µ, θ,−γ)T .

Considering that the random error ε satisfies the normal distribution and is independently
and identically distributed, we can use the least square method to estimate the coefficient vector β.
According to [44], the residual sum of squares is used to express the error between the observed value
and the predicted value, i.e.,
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SSE = ‖Xβ− Y‖2. (14)

According to the least square method [44], the coefficient vector β̂ which minimumises the residual
sum of squares is calculated as

β̂ = (XT X)
−1XTY . (15)

Based on the above deduction, we can achieve the coefficients β̂ in the gravity model. When
β = β̂, the the residual sum of squares is minimum, i.e., the error between the observed value and the
predicted value is minimum. Thus, β̂ are the optimal coefficients which enable the gravity model to
fit the observed value. Therefore, the gravity model that depicts the user mobility pattern are obtain
according to the stored trajectory data.

The commuting flows between different grids are calculated according to the obtained gravity
model and the transition probabilities between different grids are calculated according to Equation (8).
Then the transition probabilities are stored in mobile devices.

4.2. Trajectory Protection Schemes

In Section 4.1, we have introduced the continuous location entropy and the trajectory entropy to
measure the privacy level of the dummy trajectory generated in the continuous LBS and trajectory
publication, respectively. In this section, we will introduce the trajectory protection schemes
that generate dummy trajectories according to the continuous location entropy and the trajectory
entropy, respectively.

4.2.1. Trajectory Protection Schemes for the Continuous LBSs

In this section, we introduce the on-line trajectory protection scheme to protect the trajectory
in the continuous LBSs. The on-line trajectory protection scheme protects the trajectory from t1 to
tm by generating k − 1 dummy locations in real time. At each moment, the trajectory protection
scheme is conducted to generate k − 1 dummy locations to protect the real-time location. Let
{TD1, TD2, · · · , TDm} be the grid sets where dummy locations are generated at moments t1, t2, · · · , tm.
At t1, the enhanced-DLS scheme is adopted to determine the location dataset, i.e., the k locations
consisting of 1 real location and the k − 1 dummy locations with undistinguishable geographic
information [28], and thus, we get TD1 = {x1

1, x1
2, · · · , x1

j , · · · , x1
k}, where x1

j means the grid where
the jth dummy location is located at t1. For moment t2, the trajectory protection schemes for the
continuous LBSs are described as follows. Let vmax be the user’s maximum speed, ∆t be the time
interval between two continuous queries. Since the user’s moving distance should not be larger than
the maximum moving distance, i.e., vmax ∗ ∆t, the jth dummy location at t2 should be generated
within the circle around jth dummy location at t1 with the radius vmax ∗ ∆t. To generate the dummy
location, the grids within the circle are determined and the grid numbers {s1, s2, · · · , smax} are stored.
Then the query probabilities of the grids {s1, s2, · · · , smax} and the transition probabilities from x1

j to
the grids {s1, s2, · · · , smax} are extracted from the mobile device to calculate the continuous location
entropy from x1

j to each of the grids by Equations (3) and (4). The grid corresponding to the maximum

continuous location entropy is selected as x2
j and the jth dummy location at moment t2 is randomly

selected from the grid x2
j . Similarly, we will repeat the above procedure for each dummy location

generated at moment t1, thus, the k− 1 dummy locations generated at moment t2 are determined.
Repeating dummy locations generation process for each moment, thus, the real-time location can
be protected through generating k− 1 dummy locations at each moment. The process of the on-line
scheme is shown in Figure 5 and the detailed dummy location generation process in continuous LBSs
is shown in Algorithm 1.
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t1 t2 t3

?

?

Dummy location

Transition probability

Real location

Query probability

t4

Figure 5. Dummy locations selection in continuous LBS.

Algorithm 1: Dummies Generation Algorithm in Continuous LBSs

1 for (i = 2; i <= m; i ++)
2 {
3 for (j = 1; j <= k− 1; j ++)
4 {
5 Determining all the grids filled in the circle at time ti−1 and obtaining the grid numbers
{s1, s2, · · · , sr, · · · , smax}

6 for (sr = s1; sr <= smax; r ++)
7 {
8 Compute the continuous location entropy using
9 P(xi−1

j → sr) = q(xi−1
j )pt(xi−1

j → sr)q(sr)

10 H = −P(xi−1
j → sr)log2(P(xi−1

j → sr))

11 }
12 Selecting the grid sr corresponding to maximum continuous location entropy
13 Adding the grid to the dummy location dataset
14 }
15 Outputing k− 1 dummy locations
16 Fusing 1 real-time location data with k− 1 dummy locations
17 }

4.2.2. Trajectory Protection Scheme in Trajectory Publication

In this section, we introduce the off-line trajectory protection scheme to protect the trajectory data
in trajectory publication. The off-line trajectory protection scheme protects the trajectory by generating
k− 1 dummy trajectories.

The scheme is conducted before a user publishes his trajectory data X = {x1 → x2 → · · · →
xi → · · · → xm}. The process of the off-line scheme is described as follows. Firstly, according to the
maximum moving distance vmax ∗ ∆t, the grid numbers within the circle of each xi are determined
as Algorithm 1. The number of grids in circle i is denoted as ni. Then, for each time, a unique grid
is chosen from each circle and combining these grids to be a grid combination. As a result, ∏m

i=1 ni
different grid combinations can be obtained. Then, the trajectory entropies of all the combinations
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are calculated according to Equations (5) and (6). Finally, the combinations with the k− 1 maximum
entropies are selected and k− 1 dummy trajectories are generated by randomly selecting a location
within each of the selected grids. The process of the off-line scheme is shown in Figure 6 and the
detailed dummy trajectory generation process in trajectory publication is shown in Algorithm 2.

Algorithm 2: Dummy Trajectories Generation Algorithm in Trajectory Publication

1 Determining all the grids filled in the m circles, obtaining the number of grids in each circle
{n1, · · · , nm}

2 For each time, choosing a unique grid from the grids within each circle and connect them to
obtain ∏m

i=1 ni different grid combinations
3 Computing the trajectory entropies for all the combinations using Equations (5) and (6)
4 Selecting k− 1 grid combinations with the maximum trajectory entropies and selecting

randomly a location within each of the selected grids to generate dummy k− 1 trajectories
5 Output k− 1 dummy trajectories
6 Fusing 1 real trajectory with k− 1 optimal dummy trajectories

t1 t2 t3 tm

Dummy location

Real location

Query probability

Transition probability

Figure 6. Dummy trajectories selection in trajectory publication.

4.3. Security Analysis

In this section, we analyze the security of our schemes. In the trajectory protection, the most
vulnerable attacks are colluding attacks and inference attacks launched by the adversaries. We analyze
the resistance of the schemes to the colluding attacks and the inference attacks as follows.

Resistance to Colluding Attacks. The colluding attack occurs when a group of users are connected
to each other and share information. In other words, the adversary colludes with some other parties to
deceive the rest parties to obtain the privacy information. Since both of the proposed schemes only
runs on a separate module without including cooperation with other parties, so the proposed schemes
can resist to colluding attacks.

Resistance to Inference Attacks. Inference attacks are launched by adversaries based on some
pre-knowledge such as map information, query probability etc. Both of the proposed schemes generate
dummies based on the gravity model. Since the gravity model is obtained by fitting the users’ real
historical data, it can accurately describe a user’s real movement pattern. Therefore, the dummy
trajectories generated are almost reasonable and meaningful trajectories, thus, it is difficult for the
adversary to eliminate dummies by inference based on the information they have. As a result,
the schemes can resist inference attack.

Conclusively, since our schemes use the gravity model and run on the separate module, they can
resist to colluding attacks and inference attacks.
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5. Experiments

In this section, we conduct simulation experiments to obtain the optimal coefficients of the gravity
model and evaluate the privacy metric of the proposed trajectory protection schemes in continuous
LBSs and trajectory publication by comparing them with the enhanced-DLS scheme, the optimal
scheme and the random scheme. The optimal scheme does not consider the speed limit in generating
the k− 1 dummies with the maximum privacy metric. The random scheme considers the speed limit
but randomly selects k− 1 dummies. To evaluate their performances, we apply classical GPS-based
Geolife datasets [45]. The trajectory dataset are composed of 17,621 trajectories of the pedestrians
engaged in the Geolife test in Beijing within 50,176 hours. The total distance of the trajectories is
1,292,951 kilometers. These trajectories were recorded by different GPS loggers and GPS-phones. In our
experiments, the sampling interval of the trajectory data is 1 minute. The maximum speed of users
is 1.2 km/min. The simulation environment is Matlab R2014b. Specifically, simulation experiments
include two parts:

• Obtaining the optimal coefficients of the gravity model to make the model fit the real users’
datasets including commuting flows between two grids, the leaving flow for a grid, the arriving
flow for a grid and the average distance between two grids.

• Evaluating the privacy metric of the proposed trajectory protection schemes in continuous LBSs
and trajectory publication by comparing the proposed schemes with the enhanced-DLS scheme,
the optimal scheme and the random scheme.

5.1. Optimal Coefficients

Figure 7a shows the trajectory of a user in a region. From Figure 7a, specifically, we can observe
the moving direction, the location at every sampling moment and the grid that each location belongs
to. In other wards, by analyzing Figure 7a, we can obtain the real-time data of users (i.e., such as the
commuting flows, the leaving flow, the arriving flow and the average distance between two grids).
Similarly, Figure 7b shows the trajectories of all the users within the region, and thus, the real data
for all the users in the region including the commuting flows, the leaving flow, the arriving flow
and the average distance between two grids can also be obtained through analyze Figure 7b. As a
result, the optimal coefficients of the gravity model that meets all the real users’ data can be calculated
according Equation (15). The optimal coefficients are shown in Table 1.
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Figure 7. An illustration of user’s trace and sample data of users’ trace. (a) trajectory of a user;
(b) trajectories of all users.
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Table 1. The coefficients of gravity model.

Parameters lnα µ θ γ

Value 2.1813 1.303 1.0089 2.1

5.2. Evaluation of Privacy Performance

Figures 8–10 show the evaluations of privacy performance in terms of the running time and
the entropy metrics including the continuous location entropy and trajectory entropy. The entropy
metrics defined in Section 4.1 are used to quantify the uncertainty of the dummies generated by our
schemes. When entropy metrics of a scheme is the high, the dummies generated by the scheme is
uncertain. It means the adversaries are difficult to identify the users’ real trajectory from the dummies,
i.e., the privacy level of the scheme is high.

Figure 8 compares the continuous location entropy of the proposed trajectory protection scheme
with the enhanced-DLS scheme, the optimal scheme and the random scheme. We can see that the
continuous location entropies of the four schemes increase with the privacy factor k increasing. This is
because the number of dummy trajectories increases with the increase of the privacy factor k. Therefore,
it is more difficult to capture users’ real-time locations. From Figure 8, it can be seen that the optimal
scheme has the highest entropy for the same privacy factor k. This is because the optimal scheme
selects dummy locations with the k− 1 maximum entropies from the whole region to generate the
k− 1 dummy locations, while the other schemes select the dummy locations with k− 1 maximum
entropies within a reasonable limited region. Moreover, it can be seen that, for the same privacy
factor k, the entropy of the proposed scheme is larger than those of the enhanced-DLS scheme and the
random scheme. Compared with the enhanced-DLS scheme, the continuous location entropy of our
scheme is improved by by 179.77%, 159.75%, 144.96%, 134.35%, 119.04% and 106.2%, when the privacy
factors are 2, 3, 4, 5, 6 and 7, respectively. This means that the proposed scheme generates trajectories
with better uncertainty, so it is very difficult for the adversaries to identity the real trajectory from the
dummy trajectories, i.e., the privacy level of our scheme is high. This is because the enhanced-DLS
scheme and the random scheme generate dummy locations without considering the user movement
pattern, thus, resulting in great differences between the consecutive dummy locations which can be
easily identified as dummy locations by adversaries.
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Figure 8. The continuous location entropy of different schemes.

Figure 9 compares the running time of the proposed scheme with the enhanced-DLS, the optimal
scheme and the random scheme. It is seen that the running time of the four schemes increase with the
increase of the privacy factor k. This is because the number of dummies increases with the increase
of the privacy factor k, and thus, the schemes would spend more time to generate more dummies.
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Moreover, It is seen that, for the same privacy factor k, the running time of the proposed scheme is
larger than that of the random scheme and smaller than that of the optimal scheme. This is because the
optimal scheme needs to traverse all the grids and calculate the k− 1 maximum entropies of all grids
to determine the dummies, while our scheme only needs to select the grids in a limited reasonable
area and calculate the k− 1 maximum entropies of the selected grids to determine the dummies. The
random scheme directly selects k dummies randomly without comparing the entropy, hence, it spends
less time than our scheme. In addition, we can see that when k is small, the enhanced-DLS scheme
spends less time because the process of randomly allocating the transition probability requires less
computing time.On the other hand, our scheme spends less time than the enhanced-DLS scheme when
the k is large. This is because our scheme stores the transition probability, and enhanced-DLS schemes
need to generate the transition probability randomly for each time.

Figure 10 compares the trajectory entropy of the proposed trajectory protection scheme with
the optimal scheme and the random scheme. Similar to Figure 8, it can be seen that the trajectory
entropies of the three schemes increase with the privacy factor k increasing. The trajectory entropy of
the proposed scheme is larger than that of the random scheme and smaller than that of the optimal
scheme. Moreover, the trajectory entropy performance of our scheme is 5.18 times higher than that of
the random scheme on average. This means that the trajectories generated by our scheme have better
uncertainty and are not easily cracked by the adversaries, i.e., the privacy level of our scheme is higher
than that of other schemes.
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Figure 9. Running time of different schemes.

Privacy factor k
2 3 4 5 6 7

T
he

 tr
aj

ec
to

ry
 e

nt
ro

py

×10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

optimal scheme
scheme based on gravity model
random scheme

Figure 10. The trajectory entropy of different schemes.



Electronics 2019, 8, 148 17 of 19

6. Conclusions

In this paper, we proposed two trajectory protection schemes considering the movement pattern
to protect the trajectory data in continuous LBSs and trajectory publication, respectively. Motivated by
Jaynes’ maximum entropy principle, in our paper, the continuous location entropy and the trajectory
entropy based on the gravity are defined to measure the privacy level of the dummy trajectory. The
schemes generate dummy trajectories according to entropy metrics. Simulations demonstrated that our
schemes have better performances than the enhanced-DLS scheme and random scheme. Compared
with the enhanced-DLS scheme, the continuous location entropy of our scheme is improved by
179.77%, 159.75%, 144.96%, 134.35%, 119.04% and 106.2%, when the privacy factors are 2, 3, 4, 5, 6
and 7, respectively. Moreover, the trajectory entropy of our scheme is 5.18 times higher than that of
the random scheme. Since the entropy metric of our schemes is high, the dummies generated by the
schemes are uncertain. It means the adversaries face difficulty in identifying the users’ real trajectory
from the dummies generated by our schemes, i.e., the privacy level of our schemes is high. In future
work, we plan to study the trajectory protection in office buildings and residential communities based
on the mobility models that describe user mobility pattern accurately in these areas.
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