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Abstract: The increasing Internet-of-Things (IoT) applications will take a significant share of
the services of the fifth generation mobile network (5G). However, IoT devices are vulnerable
to security threats due to the limitation of their simple hardware and communication protocol.
Massive multiple-input multiple-output (massive MIMO) is recognized as a promising technique to
support massive connections of IoT devices, but it faces potential physical layer breaches. An active
eavesdropper can compromises the communication security of massive MIMO systems by purposely
contaminating the uplink pilots. According to the random matrix theory (RMT), the eigenvalue
distribution of a large dimensional matrix composed of data samples converges to the limit spectrum
distribution that can be characterized by matrix dimensions. With the assistance of RMT, we propose
an active eavesdropping detection method in this paper. The theoretical limit spectrum distribution is
exploited to determine the distribution range of the eigenvalues of a legitimate user signal. In addition
the noise components are removed using the Marčenko–Pastur law of RMT. Hypothesis testing is
then carried out to determine whether the spread range of eigenvalues is “normal” or not. Simulation
results show that, compared with the classical Minimum Description Length (MDL)-based detection
algorithm, the proposed method significantly improves active eavesdropping detection performance.

Keywords: Internet-of-Things; massive MIMO; active eavesdropper detection; random matrix theory

1. Introduction

With the prosperity of wireless networks and smart devices, more and more Internet-of-Things
(IoT) applications have penetrated into various domains of industries, business, and daily lives of
people. The fifth generation mobile network (5G) has taken the support of IoT applications as one of
its major features [1]. However, IoT devices are vulnerable to the security threats from both network
and physical layers due to the simplicity of the signal processing algorithm and encryption protocol
running on them [2–4]. It is therefore, important to investigate the effective measures to counteract the
increasing security threats.

Massive multiple-input multiple-output (massive MIMO) is seen as the key physical layer
technique of 5G, and will bring unprecedented spectrum and energy efficiencies [1]. Recent
works [5–10] have shown that the enormous degrees of freedom that massive MIMO brings can
significantly increase the number of wireless connections, which makes massive MIMO a promising
enabler for accommodating massive IoT devices. However, due to the openness of the wireless
communication channel, massive MIMO technology also has security risks such as user signal
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eavesdropping and information leakage. Existing systems usually use encryption algorithms in
high-level protocols to ensure user information security. With the continuous development of
computing capacity, the communication security solely relying on the high-level encryption is facing
more and more challenges [11,12].

Physical layer security technology incorporates advanced signal processing methods such as
beamforming and artificial noise at the physical layer and can reduce the possibility of legitimate
users’ information acquired by malicious users [13–15]. The strong spatial beamforming capability of
massive MIMO leads to good resistance to passive eavesdropping. However, massive MIMO systems
rely on deterministic pilot symbol sequences in the uplink training for channel information acquisition.
Once the deterministic sequence is acquired by a malicious user, it can actively transmit this sequence
at the same time as the legitimate user. This procedure will mislead the channel estimation process of
the base station, and redirect the downlink signal beam to the malicious user’s position. This type of
attack is often referred to as active eavesdropping [16].

Zhou et al. pointed out the security risks caused by active eavesdropping to wireless
communication systems with time division duplex (TDD) transmission [11]. Some studies were
conducted to deal with these problems [12,16–24], including the random sequence based detection
algorithms [16,20,25], channel statistics based detection algorithms [21,22], signal power based
detection algorithm [18,23] and signal subspace-based detection algorithm [24]. Among them,
the signal subspace-based detection method is an effective way to detect active eavesdropping.
The general idea is to determine whether the number of detected system signal sources is equal
to the number of legitimate users. If yes, no active eavesdropping is undertaking in the system.
However, if the number of detected signal sources is greater than the number of legitimate users, there
is high possibility that the system is under the attack of active eavesdropping.

The existing eavesdropping detection algorithms leveraging signal subspace are based on
information theory criteria for eavesdropping detection, such as minimum description length
(MDL) [26,27] and Akaike information criterion (AIC) [28]. The algorithm introduced by Wax and
Kailath [29] is used for adaptive detection of eavesdropping users in a parameter changing environment.
However, the penalty terms in detection criteria affect the accuracy of the detection. For example,
the MDL algorithm has underestimation problems, while the AIC algorithm has over estimation
problems, caused by their penalty terms [24].

More recently some methods were proposed to employ random sequences for the active
eavesdropping purpose [16,25]. The rationale behind these methods is that the random sequences are
not deterministic and cannot be acquired through historical observation, nor predicted through time
series techniques by malicious users. Hence, if the statistic property of the random sequence is properly
characterized, the active eavesdropping can be perceived by detecting the anomaly in the statistics of
received random sequence. These methods are particularly suitable for the IoT applications because
their simplicity can meet the strict complexity and energy constraint of IoT devices [2,3]. However,
they were all designed for the classical single user antenna assumption. With the development of
massive MIMO technology, the transition from single user antenna to multiple user antennas is an
inevitable trend. Therefore, we need to study the active eavesdropping detection mechanism for
multi-antenna scenarios.

With the general assumption that mobile users employ multiple antennas, this paper proposes
to combine the signal subspace based and random sequence base active eavesdropping detection
ideas. Random sequences are transmitted to create the random user features that cannot be forged by
eavesdropper. Consequently the limit distribution of the eigenvalues derived from large-dimensional
random matrix theory (RMT) [30,31] is used to calculate the boundaries of the sample distribution so
that the region of the “normal” samples falling into can be properly characterized. Then the decision
statistics is designed accordingly.
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The rest of the paper is organized as follows. The active eavesdropping problem is described in
Section 2. Section 3 proposes an active eavesdropping detection algorithm based on RMT. Simulation
results are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Active Eavesdropping in Massive MIMO Systems

This paper considers a scenario where base station Alice has a large amount of (M) antennas and
each legitimate user Bob equips multiple (K) antennas. The active eavesdropping is shown in Figure 1.
The legitimate user attempts to setup the wireless link with the base station. To this end Bob sends a
series of orthogonal training sequences through its antennas to Alice so that Alice is able to estimate the
channel coefficients based on these known sequences. The eavesdropper Eve tries to affect the channel
estimation process of Alice via sending the same training sequences as Bob. Without loss of generality
we assume that Eve has the same number of antennas as Alice. When the number of antennas of
the eavesdropping user is greater than or equal to the number of antennas of the legitimate user, the
information of the legitimate user can be effectively demodulated. However, the more the number
of the eavesdropper’s antennas, the easier it is to be detected. Therefore, from the perspective of
eavesdropper detection, we consider the most difficult situation, that is, the eavesdropper’s antennas
is equal to the legitimate user’s antennas.

Base Station

Legitimate user

Active eavesdropper

Active eavesdropping

Information disclosure
Data symbol

Pilot symbol

Figure 1. An illustration of active eavesdropping in massive MIMO-based systems.

Following the random sequence based active eavesdropping detection method, a series of random
sequences are transmitted after the training sequences. The random sequences received by Alice with
and without the contamination from Eve are expressed as:

ybj
=
√

pt
b
√

α
K

∑
i=1

hbji
xbi

+ nbj
, (1)

yej =
√

pt
b
√

α
K

∑
i=1

hbji
xbi

+
√

pt
e
√

β
K

∑
i=1

heji xei + nej , (2)

where xbi
and xei represent the random sequence transmitted from Bob and Eve, respectively, by the ith

transmit antenna; ybj
and yej represent the random sequence received by the jth receive antenna with

and without impact from Eve, respectively; hbji
and heji are the channel fading coefficient betweens the

ith transmit antenna of Bob or Eve and the jth receive antenna at base station, respectively. Real values
α and β represent the associated path-loss attenuation factors. pt

b and pt
e are the uplink transmission

power of Bob and Eve, respectively.
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Rewrite the above Equations (1) and (2) in matrix form:

Yb =
√

pt
b
√

αH̃bXb + Nb =
√

pb H̃bXb + Nb, (3)

Ye =
√

pt
b
√

αH̃bXb +
√

pt
e
√

βH̃eXe + Ne =
√

pbH̃bXb +
√

peH̃eXe + Ne, (4)

where Xb ∈ CK×T and Xe ∈ CK×T are the random sequences transmitted from Bob and Eve, with the
sequence length of T; Yb ∈ CM×T and Ye ∈ CM×T are the sequences received by Alice when there
exists and does not exist contamination from Eve, respectively; H̃b ∼ CN (0, IM) and H̃e ∼ CN (0, IM)

represent small-scale fading. pb = αpt
b and pe = βpt

e are the received signal power of legitimate user
and eavesdropper, respectively. Nb ∈ CM×T and Ne ∈ CM×T represent the Gaussian noise in the two
cases. Their elements are independent and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and variance of σ2. We assume that the base station can accurately estimate
the noise level through long-term observation [32,33]. Since Xb and Xe are randomly generated in an
independent manner, they will expand the K-dimensional subspaces, respectively.

Denote Hb =
√

αH̃b ∈ CM×K, He =
√

βH̃e ∈ CM×K, X′b(t) =
√

pt
bXb(t) and X′e(t) =

√
pt

eXe(t).
The active eavesdropping detection problem can be characterized by the following hypothesis test:

H0 : Y(t) = Hb(t)X′b(t) + Nb(t), (5)

H1 : Y(t) = Hb(t)X′b(t) + He(t)X′e(t) + Ne(t). (6)

Wherein, it is assumed that the channel is quasi-static, i.e., channel fading coefficients being constant
for a period of at least T consecutive samples.

3. Active Eavesdropping Detection Based on Large-Dimensional Random Matrix Theory

3.1. Rational Behind the Proposal

According to the idea of signal subspace, if there exist several independent components in the
received signal, the spectral distribution of the eigenvalues is near the position characterized by its
power, when the number of antennas at the base station and user is large. The empirical spectral
distribution of each component converges to its limit distribution. The expression of the eigenvalue
distribution can be derived from the large-dimensional RMT. This provides an idea of using the limit
distribution as a theoretical guideline to check whether the empirical eigenvalue distribution in practice
is reasonable.

Examples of the empirical eigenvalue distribution of BN are presented in Figure 2. We can observe
that the eigenvalues fall into a larger support when there is one eavesdropper compared with the case
when there is not, even though the signal powers of user and eavesdropper are the same. Moreover,
the eigenvalues fall into multiple disjoint supports when the powers of user and eavesdropper are
significantly different. This provides an intuitive evidence that the distribution of the eigenvalues can
be leveraged to determine the existence of active eavesdropping.

The large-dimensional RMT suggests that, with the increase of the number of base stations
and user antennas, the empirical spectral distribution of the received signal of the base station will
gradually converge to its limit spectral distribution. That is, the distribution of empirical spectrum
can be accurately estimated when the matrix dimension is large, i.e., M, K, T → ∞. Note that in
reality, the quantities of M, K and T just need to be “sufficiently” large, say on the level of several tens
to hundreds, to validate RMT. This assumption can be approaches in the massive MIMO scenarios.
Therefore, the theoretical distribution of the limit spectrum can be used to judge whether the observed
empirical spectral distribution is “normal”. This constitutes the basis of using the large-dimensional
RMT to detect active eavesdropping in massive MIMO systems.

In the following sections, we first characterize the eigenvalue distribution properties of received
massive MIMO data sequence before proposing the detection mechanism.
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Figure 2. (a) Empirical distribution of eigenvalues of massive MIMO when there is no eavesdropper
pb = 1, T

M = 10, M
K = 10, σ2 = 0.1. (b) There is one active eavesdropper with equal received power,

i.e., pb = pe = 1, and T
M = 10, M

K = 10, σ2 = 0.1. (c) There is one active eavesdropper with different
received power, i.e., pb = 1, and pe = 5, T

M = 10, M
K = 10, σ2 = 0.1 .

3.2. Eigenvalue Distribution of ( 1
T YYH)

Recall the random sequences received by base station Y ∈ CM×T . We provide an analysis of the
eigenvalue distribution of the sample covariance matrix BN = 1

T YYH from the large-dimensional RMT
in the sequel.

Let F(t) be the population spectral distribution function. The empirical spectral distribution
(e.s.d.) of BN , noted by F(BN), converges to the deterministic, limit spectral distribution (l.s.d.) F of BN .
We have following expression [30]:

z(m) = − 1
m

+
1
c

∫ t
1 + tm

dF(t), (7)

where m is the Stieltjes transform of F with t ∈ R, z ∈ C+. When M, K and T grow at the same rate,
i.e., M, K, T → ∞ with constant c = T

M . The Stieltjes transform has one-to-one correspondence to
the distribution of the eigenvalues of the matrix. Mathematically it is easier to use and can build the
relationship to the linear spectral statistics and other related properties.

The sample covariance matrix BN has an overall covariance matrix of uncertainty, but its empirical
spectral distribution has an almost certain limit. Accordingly, the problem is transformed into a limit
distribution that solves the empirical spectral distribution.

For the sake of conciseness, we first derive the signal expression when there is one legitimate user.
Following the system model considered in previous section, the received signal is:

Y = HP1/2X + σW, (8)

where σW is the noise components. H ∈ CM×K, P ∈ CK×K, X ∈ CK×T . Rewrite the above expression:

Y = (HP1/2 σIN)

(
X
W

)
. (9)

Add Y to zero vector 0 to get a larger matrix Y ∈ C(M+K)×T :

Y =

(
HP

1
2 σIN

0 0

)(
X
W

)
, (10)
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where K refers to the sum of the number of legitimate user’s antennas. We can find that 1
T (YYH) is a

sample covariance matrix, for which the population covariance matrix is:(
HPHH + σ2 IN 0

0 0

)
. (11)

It is nondeterministic and the random matrix (X
W) has independent (unnecessarily identically

distributed) entries with zero mean and variance of one. When K, M → ∞, H is a term with
independent finite fourth-order moments. P is a diagonal matrix whose entries are the source powers
with multiplicities the number of transmit antennas of each user.

Let QHPHH denote the distribution function of the eigenvalues of HPHH . It is shown that m∞(z)
is the Stieltjes transform of a distribution function Q∞ which is the limit of QHPHH :

m∞(z) =
∫ 1

λ− z
dQ∞(λ), (12)

where z is the inverse of the Stieltjes transform, and is calculated as:

z = − 1
m∞

+
1
c

∫ t
1 + tm∞

dF∞(t). (13)

As introduced in (7), F(t) is the population spectral distribution function, and it converges in
distribution to a distribution F∞(t). For finite T and M, m satisfies:

z(m) = − 1
m

+
1
c

∫ t
1 + tm

dF(t) + ζ, (14)

where m is the Stieltjes transform of QHPHH and m → m∞. The “error term” ζ → 0 as M → ∞.
Hence (14) becomes (13). In Section 3.3 we will derive an estimate of ζ, and show that by setting ζ = 0
in (14) and solving m, we will obtain a finer asymptotics of the eigenvalues of HPHH .

The almost sure convergence of the e.s.d. of HPHH ensures the almost sure convergence of the
e.s.d. of the matrix in (11). The distribution range of eigenvalues of HPHH can be obtained by z
in (14). Then, we consider a special case, when P = σ2 IN , we can get the boundary range of the
noise eigenvalues. Thus, the distribution of the eigenvalues of HPHH + σ2 IN can be obtained by
integrating the ranges of HPHH and noise terms. In the following sections the detailed derivation of
the eigenvalues’ distribution range will be presented.

3.3. Eigenvalues’ Boundary of (HPHH)

We have an empirical spectral distribution of HPHH that weakly and almost surely converges to
the limit distribution G. Therefore, we can first obtain the limit distribution of HPHH .

With some trivial manipulation we can generalized expression (7) to the case of L users. Denote
the Stieltjes transform of G as mG. Its inverse transform is xG(mG) ∈ C+ [17]:

xG(mG) = −
1

mG
+

L

∑
r=1

pr

cr(1 + prmG)
, (15)

where n1, n2, · · · , nL are the number of antennas of the first, the second, · · · , and the Lth legitimate
user, cr =

M
nr

> 0, K = n1 + n2 + · · ·+ nL.
In Equation (15), we give the inverse of the Stieltjes transform when there are multiple legitimate

users. Assuming that there is only one legitimate user in the system, (15) is turned to:

xG(mG) = −
1

mG
+

pb
c1(1 + pbmG)

. (16)
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The discretized minimal and maximal values of the eigenvalues according to the limit
distribution are:

xG
− = − 1

mG
− +

pb
c1(1 + pbmG

−)
, (17)

xG
+ = − 1

mG
+
+

pb
c1(1 + pbmG

+)
, (18)

where mG
− and mG

+ are the two real-valued solutions of the equation:

(pbmG)
2

c1(1 + pbmG)
2 = 1, (19)

and satisfies mG
− < mG

+.
Now we briefly reveal the derivation of Equation (19). The boundary of the eigenvalues is at the

extreme point of the integral curve xG(mG) [17], from which we have:

x′G(mG) =
1

mG
2

[
1−

L

∑
r=1

pr
2

cr

1
(pr +

1
mG

)2

]
. (20)

Therefore, let x′G(mG) = 0, we can get:

L

∑
r=1

pr
2

cr

1
(pr +

1
mG

)2
= 1. (21)

Rearranging the above equation, we can get the Equation (19).
From these expressions we can reach an important observation: if we want to increase the

estimator’s detection sensitivity, that is, to be able to separate two signal sources with similar received
power, we need to increase the number of base station antennas (yielding a larger c1).

However, the left and right boundaries of the eigenvalues obtained in (17) and (18) have some
deviations. As shown in Figure 3, eigenvalues fall in the areas outside the boundary [xG

−, xG
+]

(i.e., outside the areas bounded by blue circles).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Eigenvalue

0

2

4

6

8

10
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16

18

20

c=
T

/M

Figure 3. Empirical eigenvalue distribution without the effect of noise, when pb = 1 and M
K = 10.

The blue circles represent the boundaries of the eigenvalues obtained from (17) and (18). The red
triangle represent the boundaries from (25) and (26) that incorporate the correction item ε.
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As shown in Figure 2, when the matrix dimension is large and the powers of the two signal
sources satisfy some requirements, the supports of the eigenvalues associated to the two sources
are separable. According to the separability of eigenvalues’ supports derived in [31] in which some
corrections were proposed to improve the boundaries where there is no eigenvalue. We have the
following Lemma.

Lemma 1. Denote the interval between two supports of eigenvalues as [a, b], where there is no eigenvalue.

P(λiM > b + ε′, λiM+1 < a− ε′) = 1, (22)

where λiM is the eigenvalue of the iMth eigenvalue cluster, and λiM+1 is the eigenvalue of the iM+1th eigenvalue
cluster, and the eigenvalues are arranged in a descending order, i.e., λiM > λiM+1 . ε′ is calculated as:

ε′ =
1

â|ma|
, (23)

and

â = a + c
∣∣∣∣∫ t

1 + tma
dF(t)

∣∣∣∣ . (24)

According to the above Lemma, we propose to modify (17) and (18) with a similar correction
term ε:

x1 = − 1
mG
− − ε

+
pb

c1(1 + pb(mG
− − ε))

− ε, (25)

x2 = − 1
mG

+ + ε
+

pb
c1(1 + pb(mG

+ + ε))
+ ε. (26)

The correction term ε is an infinitesimal, and ε > 0. In this case, ε in fact represents the ζ in
Equation (14). It can be calculated as:

ε =
1

x̂G
+|mG

+|
, (27)

where

x̂G
+ = xG

+ + c
∣∣∣∣ pb
1 + pbmG

+

∣∣∣∣ . (28)

With these new expressions in (25) and (26), we obtain new support of eigenvalues:(
xG
−(mG

− − ε)− ε, xG
+(mG

+ + ε) + ε
)
. (29)

Observing Figure 3, we find that the corrected eigenvalue boundaries are more accurate compared
to the expression given in (17) and (18).

3.4. Eigenvalues’ Boundary of (HPHH + σ2 IM)

The left and right boundaries x1 and x2 obtained from (25) and (26) are only based on the empirical
spectral distribution of HPHH . They characterize the range of the received signal eigenvalues in the
absence of noise. With the effect of additive noise, the range of eigenvalues has a significant shift to
the right, and the boundaries x1 and x2 no longer conform to the eigenvalue distribution, as shown in
Figure 4. With this observation, we continue to improve the expression of the eigenvalues’ boundaries
by incorporating the noise effect to (25) and (26).
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Figure 4. Empirical eigenvalue distribution with the effect of noise at different SNR levels when pb = 1,
T
M = 10, M

K = 10. The blue circles represent the boundaries of the eigenvalues obtained from (25)
and (26). The red triangle represent the boundaries from (30) and (31) that integrate the effect of
noise term.

In the massive MIMO scenarios considered in this work, the length of the support of HPHH is
approximately equal to the length of the support of HPHH + σ2 IM. The main difference between them
is that the latter has a significant offset from the former due to the influence of noise. Unfortunately it is
difficult to analytically characterize the influence of the noise. We propose the following modifications
to the eigenvalues’ boundary expressions:

xl = −
1

mG
− − ε

+
pb

c1(1 + pb(mG
− − ε))

− ε + xnG, (30)

xr = −
1

mG
+ + ε

+
pb

c1(1 + pb(mG
+ + ε))

+ ε + xnG, (31)

where the noise effect is counted in the term:

xnG
− = − 1

mnG
− +

σ2

c1(1 + σ2mnG
−)

, (32)

xnG
+ = − 1

mnG
+
+

σ2

c1(1 + σ2mnG
+)

, (33)

xnG = xnG
+ − xnG

− (34)

in which mnG is obtained by:
(σ2mnG)

2

c1(1 + σ2mnG)
2 = 1. (35)

We plot the new boundaries in Figure 4. It is clear that the boundaries proposed in (30) and (31)
fit better the real distribution of the eigenvalues compared to the expressions in (25) and (26).

Upon this basis, we propose a test criterion for detecting active eavesdropping:

γ = xr − xl . (36)

This value in fact characterizes the maximal range that the eigenvalues distribute when there is
only legitimate user. If the actual spread of the eigenvalues is greater than this range, it suggests that
there exists some anomaly in the received signal, indicating the active eavesdropping phenomenon.
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3.5. Noise Elimination Based on Marčenko–Pastur Law

In this section, we propose to use the limit distribution of the noise covariance matrix to
approximate its empirical distribution. More precisely we use the Marčenko–Pastur distribution from
large-dimensional RMT (commonly referred to as M-P law) to help eliminating the noise components.

The noise component N in the received signal of the base station satisfies complex Gaussian
distribution, i.e., Nij ∼ CN (0, σ2). Then, according to M-P law, the left and right boundaries of its limit
spectral distribution can be written as:

nl =σ2(1−
√

M
T
)2, (37)

nr =σ2(1 +

√
M
T
)2. (38)

With this knowledge, we can eliminate the eigenvalues of the received signal that fall into the
range [nl , nr].

The use of the M-P law to eliminate noise components will bring the following advantages.
As long as the noise power and legitimate user’s power are relative different, the empirical spectral
distribution of noise and legitimate user’s signal are clearly separated. This method does not affect the
eigenvalues brought by the active eavesdropping signal components, and thereby does not affect the
consequent active eavesdropping detection. In contrast, other traditional noise elimination method
that removes a certain number of smallest eigenvalues may cause potential risk of miss detection of
active eavesdropping [29]. This is because the eigenvalues associated with the active eavesdropper
may be removed in this process, which will jeopardize the following eavesdropping detection process.

3.6. Proposed Active Eavesdropping Detection Algorithm

Based on the previous analysis and discussion, we propose the following algorithm to detect
active eavesdropping.

Step 1: Preliminary. The base station calculates a theoretical decision threshold of the test statistic
γ = xr − xl based on the system parameters e.g., base station’s antenna number M, user’s antenna
number K, signal sample number T, as well as the historical observation of noise level σ2 and user
signal power pb.

Step 2: Eigenvalue computation. The base station samples the received random sequence and
obtains a sample matrix Y. Then it calculates the sample covariance matrix BN = YYH/T and performs
the eigenvalue decomposition of BN . This yields M eigenvalues λ1 > λ2 > . . . > λM > 0.

Step 3: Noise elimination. The base station uses the M-P law to compute the noise range [nl , nr].
All the eigenvalues falling into this range are eliminated.

Step 4: Test statistic calculation. The difference between the maximal and minimal values of the
remaining eigenvalues is calculated, i.e., γ̄ = λ1 − λK′ where λK′ is the smallest remaining eigenvalue.

Step 5: Hypothesis test. The test statistic γ̄ obtained in Step 4 is compared to the theoretical range
of the eigenvalue spread γ. If γ̄ < γ, the null hypothesisH0 is accepted. This means there is no active
eavesdropping components in the received signal. In the contrary, if γ̄ > γ, the alternative hypothesis
H1 is accepted. It suggests that it is highly probable that the system is under active eavesdropping.

By periodically performing the previous steps, the system can detect the existence of active
eavesdropping. We can get the Algorithm 1 shows the process of active eavesdropping detection.
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Algorithm 1 Active Eavesdropping Detection Algorithm
Input: Base station received signal Y as shown in (3) and (4).

Output: Active eavesdropping detection result.

1: Calculate test statistic γ = xr − xl as shown in (30) and (31).
2: Solve the eigenvalue of BN λ1 > λ2 > . . . > λM > 0.
3: Eliminate the eigenvalues caused by noise in [nl , nr] as shown in (33).
4: Calculate the actual value of the test statistic.
5: Perform a hypothesis test based on the test statistic.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm with various parameters
M, pb and T based on the analytical expressions derived in Sections III and via Monte Carlo simulations.
The detection probability indicates the probability that the eavesdropping user is detected, and the
false alarm probability indicates that the probability of the eavesdropper is erroneously detected when
there is no eavesdropper. All relevant system parameters are provided in the captions of figures.
Rayleigh flat-fading channel is adopted in the simulations.

In Figure 5, we show the detection probability with respect to signal-to-noise ratio (SNR) levels for
different base station antennas M. The detection probability increases to one and the alarm probability
tends to zero when SNR increases. When noise power is equal to the power of legitimate user signal,
the overlap of the empirical spectral distribution of the signal and noise components is more serious.
As SNR increases, the empirical spectral distribution of user signal and noise components is gradually
separated, and the detection performance is significantly improved. Moreover, the proposed algorithm
obviously outperforms the classical MDL-based detection method [24].
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Figure 5. Effect of the number of base station antennas on detection performance when pb = 1, pe = 1,
T
M = 10 and K = 16.

Figure 6 shows the detection probability with respect to SNR with different numbers of data
samples. The experimental results show that the detection algorithm is improved when employing
more data samples. Moreover, traditional detection methods [24] require a particularly large number
of samples to approximate the sample covariance matrix. However, the proposed scheme only needs to
observe the spectrum of the large-scale sample covariance matrix. Even when the number of samples is
not very large, we can still obtain a relatively good approximate of the spectrum of sample covariance
matrix. From the figure, it is clearly that when the value of c is relatively low (e.g., 0.8), the new left
and right boundaries can still characterize the actual eigenvalue distribution. In particular, when the



Electronics 2019, 8, 146 12 of 16

number of samples and the number of signal sources are in the same order of magnitude, the proposed
scheme can effectively detect the active eavesdropping.
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Figure 6. Effect of number of samples on algorithm performance when pb = 1, pe = 1, M = 256 and
K = 16.

Figure 7 illustrates the detection probability with respect to the relative power ratio of the active
eavesdropper versus legitimate user (pe/pb). As expected, with the increase of pe, detection probability
is significantly improved. We should note here that the portion of base station signal redirected
to eavesdropper linearly related to eavesdropper’s transmit power. Therefore, there is no interest
for eavesdropper to unlimitedly reduce its transmit power to purposely avoid from being detected.
So, the fact that the proposed scheme can work in very low SNR regime (e.g., −10 dB) and low pe/pb
ratio suggests that the eavesdropper must have highly superiority over legitimate user (such as having
much higher sensitivity or being much closer to the base station) to make the eavesdropping possible.
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Figure 7. Effect of eavesdropper’s signal andlegitimate user’s signal power on detection performance
when pb = 1, T

M = 10, M = 256 and K = 16.

In Figure 8, we conduct the simulation to illustrate the performance of the proposed algorithm
as a function of eavesdropper’s power pe. We set the legitimate user’s power pb = 1 and pb = 3,
respectively, and the probability of false alarm as Pf a = 0.1. From Figure 8, we can conclude that
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higher eavesdropper power leads to higher probability of correct attack detection. More importantly,
even with weak eavesdropper signal, for example pe = 0.04, the performance of our proposed scheme
is still high accuracy. This suggests that the proposed scheme can detect the eavesdropping even
when the power of eavesdropper is much lower that the legitimate user. We also compare the energy
ratio (ER) based algorithm [23] and MDL based algorithm [24]. Obviously, the proposed algorithm
significantly outperforms ER and MDL based ones.
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Figure 8. Effect of eavesdropper’s signal power pe on detection performance when T
M = 10, M = 256,

K = 16 and SNR = −2 dB.

In Figure 9, the impact of legitimate user’s and eavesdropper’s antenna numbers on the
detection performance is evaluated. From the figure, as the number of eavesdropper’s antennas
increases, the performance of the proposed algorithm is improved. Recall that only when the
number of eavesdropper’s antennas is greater than or equal to the number of legitimate user’s
antennas, the eavesdropper can effectively eavesdrop information. Therefore, the results suggest
that the proposed scheme can effectively detect active eavesdropping with the reasonable antenna
number settings.

-15 -10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Proposed, detection, K'=16, K''=16
Proposed, false alarm, K'=16, K''=16
Proposed, detection, K'=16, K''=24
Proposed, false alarm, K'=16, K''=24
Proposed, detection, K'=16, K''=32
Proposed, false alarm, K'=16, K''=32

Figure 9. Effect of eavesdropper’s signal and legitimate user’s antenna number on detection
performance when pb = 1, T

M = 10, M = 128 and K = 16.The parameter K′ represents the
number of antennas of the legitimate user, and the parameter K′′ represents the number of antennas of
the eavesdropper.
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5. Conclusions

In this paper, we proposed an active eavesdropping detection algorithm based on
large-dimensional RMT for massive MIMO enabled systems. The algorithm uses the limit spectral
distribution of eigenvalues as a theoretical criterion to determine whether the distribution of the
eigenvalues of the received signal is normal, that is, whether it contains an active eavesdropping signal
component. Compared with existing detection algorithms, the proposed scheme is able to achieve
more reliable and accurate detection performance in low SNR scenarios and the number of samples
needed can be smaller than the number of antennas.
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Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike Information Criterion
e.s.d. Empirical Spectral Distribution
IoT Internet of Things
l.s.d. Limit Spectral Distribution
MDL Minimum Description Length
MIMO Multiple-Input Multiple-Output
M-P Law Marčenko–Pastur Law
RMT Random Matrix Theory
SNR Signal-to-Noise Ratio
TDD Time Division Duplex

References

1. Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; Silva, P.D.; Tufvesson, F.; Benjebbour, A.;
Wunder, G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment and Practice. IEEE J. Sel.
Areas Commun. 2017, 35, 1201–1221. [CrossRef]

2. Mukherjee, A. Physical-Layer Security in the Internet of Things: Sensing and Communication Confidentiality
Under Resource Constraints. Proc. IEEE 2015, 103, 1747–1761. [CrossRef]

3. Burg, A.; Chattopadhyay, A.; Lam, K. Wireless Communication and Security Issues for Cyber–Physical
Systems and the Internet-of-Things. Proc. IEEE 2018, 106, 38–60. [CrossRef]

4. Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and Applications of Physical Layer Security
Techniques for Confidentiality: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2018. [CrossRef]

5. Deng, R.; Zhou, S.; Niu, Z. Scalable Non-Orthogonal Pilot Design for Massive MIMO Systems with Massive
Connectivity. In Proceedings of the IEEE Global Communications Conference (Globecom) Workshops,
Washington, DC, USA, 4–8 December 2017; pp. 1–6.

6. Lee, B.M.; Yang, H. Massive MIMO for Industrial Internet of Things in Cyber-Physical Systems. IEEE Trans.
Ind. Inform. 2018, 14, 2641–2652. [CrossRef]

7. Deng, R.; Jiang, Z.; Zhou, S.; Niu, Z. How Often Should CSI Be Updated for Massive MIMO Systems
with Massive Connectivity? In Proceedings of the IEEE Global Communications Conference (Globecom),
Singapore, 4–8 December 2017; pp. 1–6.

8. Liu, L.; Yu, W. Massive Connectivity with Massive MIMO—Part I: Device Activity Detection and Channel
Estimation. IEEE Trans. Signal Process. 2018, 66, 2933–2946. [CrossRef]

9. Liu, L.; Yu, W. Massive Connectivity with Massive MIMO—Part II: Achievable Rate Characterization.
IEEE Trans. Signal Process. 2018, 66, 2947–2959. [CrossRef]

http://dx.doi.org/10.1109/JSAC.2017.2692307
http://dx.doi.org/10.1109/JPROC.2015.2466548
http://dx.doi.org/10.1109/JPROC.2017.2780172
http://dx.doi.org/10.1109/COMST.2018.2878035
http://dx.doi.org/10.1109/TII.2017.2787988
http://dx.doi.org/10.1109/TSP.2018.2818082
http://dx.doi.org/10.1109/TSP.2018.2818070


Electronics 2019, 8, 146 15 of 16

10. Wang, Q.; Liu, M.; Liu, N.; Zhong, Z. On Augmenting UL Connections in Massive MIMO System using
Composite Channel Estimation. In Proceedings of the IEEE Global Communications Conference (Globecom),
Abu Dhabi, UAE, 9–13 December 2018.

11. Zhou, X.; Maham, B.; Hjorungnes, A. Pilot Contamination for Active Eavesdropping. IEEE Trans.
Wirel. Commun. 2012, 11, 903–907. [CrossRef]

12. Kapetanovic, D.; Zheng, G.; Rusek, F. Physical layer security for massive MIMO: An overview on passive
eavesdropping and active attacks. IEEE Commun. Mag. 2015, 53, 21–27. [CrossRef]

13. Lu, Y.; Xiong, K.; Fan, P.; Zhong, Z.; Letaief, K.B. Coordinated Beamforming With Artificial Noise for Secure
SWIPT Under Non-Linear EH Model: Centralized and Distributed Designs. IEEE J. Sel. Areas Commun. 2018,
36, 1544–1563. [CrossRef]

14. Lu, Y.; Xiong, K.; Fan, P.; Zhong, Z.; Letaief, K.B. Robust Transmit Beamforming With Artificial Redundant
Signals for Secure SWIPT System Under Non-Linear EH Model. IEEE Trans. Wirel. Commun. 2018,
17, 2218–2232. [CrossRef]

15. Lu, Y.; Xiong, K.; Fan, P.; Ding, Z.; Zhong, Z.; Letaief, K.B. Global Energy Efficiency in Secure MISO
SWIPT Systems With Non-Linear Power-Splitting EH Model. IEEE J. Sel. Areas Commun. 2019, 37, 216–232.
[CrossRef]

16. Kapetanovic, D.; Zheng, G.; Wong, K.K.; Ottersten, B. Detection of pilot contamination attack using random
training and massive MIMO. In Proceedings of the IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013; pp. 13–18.

17. Couillet, R.; Silverstein, J.W.; Bai, Z.; Debbah, M. Eigen-Inference for Energy Estimation of Multiple Sources.
IEEE Trans. Inf. Theory 2011, 57, 2420–2439. [CrossRef]

18. Kapetanovic, D.; Al-Nahari, A.; Stojanovic, A.; Rusek, F. Detection of active eavesdroppers in massive MIMO.
In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 585–589.

19. Nadler, B. Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and
an Improved Estimator. IEEE Trans. Signal Process. 2010, 58, 2746–2756. [CrossRef]

20. Kang, J.; In, C.; Kim, H. Detection of Pilot Contamination Attack for Multi-Antenna Based Secrecy
Systems. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC2015-Spring), Glasgow, UK,
11–14 May 2015; pp. 1–5.

21. Yin, H.; Gesbert, D.; Filippou, M.; Liu, Y. A Coordinated Approach to Channel Estimation in Large-Scale
Multiple-Antenna Systems. IEEE J. Sel. Areas Commun. 2013, 31, 264–273. [CrossRef]

22. Flordelis, J.; Gao, X.; Dahman, G.; Rusek, F.; Edfors, O.; Tufvesson, F. Spatial separation of closely-spaced
users in measured massive multi-user MIMO channels. In Proceedings of the 2015 IEEE International
Conference on Communication (ICC), London, UK, 8–12 June 2015; pp. 1441–1446.

23. Xiong, Q.; Liang, Y.C.; Li, K.H.; Gong, Y. An Energy-Ratio Based Approach for Detecting Pilot Spoofing
Attack in Multiple-Antenna Systems. IEEE Trans. Inf. Forensics Secur. 2015, 10, 932–940. [CrossRef]

24. Tugnait, J.K. Self-Contamination for Detection of Pilot Contamination Attack in Multiple Antenna Systems.
IEEE Wirel. Commun. Lett. 2015, 4, 525–528. [CrossRef]

25. Wang, X.; Liu, M.; Wang, D.; Zhong, C. Pilot Contamination Attack Detection Using Random Symbols for
Massive MIMO Systems. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC2017-Spring),
Sydney, Australia, 4–7 June 2017; pp. 1–7.

26. Rissanen, J. Modeling by the shortest data description. Automatica 1978, 14, 465–471. [CrossRef]
27. Rissanen, J. Information and Complexity in Statistical Modeling; Publications of the American Statistical

Association; Springer: New York, NY, USA, 2007; pp. 1321–1322.
28. Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723.

[CrossRef]
29. Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech

Signal Process. 1985, 33, 387–392. [CrossRef]
30. Tulino, A.M.; Verdú, S. Random Matrix Theory and Wireless Communications; Now Publishers, Inc.: Hanover,

USA, 2004; pp. 1–182.
31. Couillet, R.; Debbah, M. Random Matrix Methods for Wireless Communications; Cambridge University Press:

Cambridge, UK, 2012.

http://dx.doi.org/10.1109/TWC.2012.020712.111298
http://dx.doi.org/10.1109/MCOM.2015.7120012
http://dx.doi.org/10.1109/JSAC.2018.2824759
http://dx.doi.org/10.1109/TWC.2018.2790384
http://dx.doi.org/10.1109/JSAC.2018.2872369
http://dx.doi.org/10.1109/TIT.2011.2109990
http://dx.doi.org/10.1109/TSP.2010.2042481
http://dx.doi.org/10.1109/JSAC.2013.130214
http://dx.doi.org/10.1109/TIFS.2015.2392564
http://dx.doi.org/10.1109/LWC.2015.2451638
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TASSP.1985.1164557


Electronics 2019, 8, 146 16 of 16

32. Coon, J.; Sandell, M.; Beach, M.; McGeehan, J. Channel and Noise Variance Estimation and Tracking
Algorithms for Unique-word Based Single-carrier Systems. IEEE Trans. Wirel. Commun. 2006, 5, 1488–1496.
[CrossRef]

33. Das, A.; Rao, B.D. SNR and Noise Variance Estimation for MIMO Systems. IEEE Trans. Signal Process. 2012,
60, 3929–3941. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TWC.2006.1638669
http://dx.doi.org/10.1109/TSP.2012.2194707
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Active Eavesdropping in Massive MIMO Systems
	Active Eavesdropping Detection Based on Large-Dimensional Random Matrix Theory
	Rational Behind the Proposal
	Eigenvalue Distribution of (1T YYH)
	Eigenvalues' Boundary of (HPHH)
	Eigenvalues' Boundary of (HPHH+ 2 IM )
	Noise Elimination Based on Marčenko–Pastur Law
	Proposed Active Eavesdropping Detection Algorithm

	Performance Evaluation
	Conclusions
	References

