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Abstract: Matrix multiplication is a critical time-consuming processing step in many machine learning
applications. Due to the diversity of practical applications, the matrix dimensions are generally not
fixed. However, most matrix calculation methods, based on field programmable gate array (FPGA)
currently use fixed matrix dimensions, which limit the flexibility of machine learning algorithms
in a FPGA. The bottleneck lies in the limited FPGA resources. Therefore, this paper proposes an
accelerator architecture for matrix computing method with changeable dimensions. Multi-matrix
synchronous calculation concept allows matrix data to be processed continuously, which improves the
parallel computing characteristics of FPGA and optimizes the computational efficiency. This paper
tests matrix multiplication using support vector machine (SVM) algorithm to verify the performance
of proposed architecture on the ZYNQ platform. The experimental results show that, compared to
the software processing method, the proposed architecture increases the performance by 21.18 times
with 9947 dimensions. The dimension is changeable with a maximum value of 2,097,151, without
changing hardware design. This method is also applicable to matrix multiplication processing with
other machine learning algorithms.

Keywords: changeable-dimension matrix computing; field programmable gate array (FPGA);
support vector machine (SVM); ZYNQ

1. Introduction

Field programmable gate array (FPGA)-based data processing has advantages, such as high
parallelism, fast processing speed, customizable configuration, and high flexibility [1]; thus, it is widely
used in digital signal processing [2], deep learning [3], data compression [4], signal acquisition [5], and
other fields. The support vector machine (SVM) algorithm is often used in data classification and is
prevalent in such fields as pedestrian detection, facial recognition, etc. [6–10]. Thus, an accelerated SVM
implementation on FPGA has far-reaching significance and has attracted wide attention. One scheme
for SVM acceleration was proposed in [11], in which the computer sends data from the main memory
to the external memory on a VC707 board through the Peripheral Component Interconnect express
(PCIe) interface. Then, the data are cached into the row and column buffer of the SVM acceleration
component. The data enter the acceleration component to perform the calculations of the SVM
algorithm. This design achieves a 23x speed-up at a 200 MHz clock frequency. An architecture, to
combine two different data transmission modes, was proposed in [12]. The architecture stores the
support vectors in the FPGA’s internal RAM, and the test vectors are transmitted by the computer
to the classifier component through the PCI-X controller. The proposed architecture outperforms
other proposed FPGA and graphic processor unit approaches by more than seven times; however, for
embedded applications, the application scope of the above architecture is limited, due to factors such
as power consumption and volume. To accelerate the SVM algorithm for applications in embedded
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systems, Kyrkou C et al. built a cascade support vector machine on the Xilinx Spartan6 platform,
that was intended for real-time target detection [13], where input data are cached in the data register
during processing, and support vectors are stored in the dedicated memory area (memory region).
The proposed architecture achieved a real-time processing rate of 40 frames per s for the benchmark
face detection application. In [14], a parallel hardware architecture was proposed for real-time image
classification. based on the scale-invariant feature transform (SIFT), bag of features (BoFs), and SVM
algorithms. In this implementation, a First In First Out (FIFO) buffer is used to store 20 sets of input
data and support vectors. The proposed architecture exploits different forms of parallelism in these
algorithms in order to accelerate execution and achieve real-time performance. A pedestrian detection
framework, with less computational complexity and higher computational accuracy, was proposed
in [15], using a Nios core built into the system to control the modules. However, the algorithm
implementation also requires a large-capacity linear buffer to save the calculation results. In summary,
the traditional SVM algorithm is usually trained with input samples on the computer to obtain a
corresponding model. Therefore, the dimension of support vectors are fixed in the implementation of
the SVM model on the FPGA. Thus, when the support vectors are obtained by the training changes,
the classification algorithm implemented on FPGA is required to be re-configured, thereby limiting the
flexibility of SVM algorithms on an FPGA.

In other machine learning areas, convolutional neural networks (CNNs) have different
classification and recognition accuracies depending on their size and complexity. Implementing
a CNN algorithms on FPGAs has attracted widespread attention [16–21]. Peemen et al. implemented a
CNN to perform multiple vision tasks on the Virtex 6 FPGA platform, using on-chip BRAM to buffer
and reuse input images, weights, and bias, and achieved an 11x acceleration for the calculations [22].
An accelerator for large-scale CNNs was proposed in [23] that places special emphasis on the impact
of memory on accelerator design, performance, and energy. A CNN includes structures, such as
convolutional layers, pooled layers, and fully connected layers [24–26]. For traditional implementation,
the data is generally stored in off-chip memory, it must be cached into on-chip memory and processed
at the processing element. The convolutional layer and fully connected layer perform computations
that can be regarded as matrix multiplication. However, because the parameters in each layer
differ, the matrix dimension is not fixed during the operation [27]. For example, in AlexNet, the
kernel sizes include 3 × 3, 5 × 5, and 11 × 11. The traditional architecture usually uses a specific
computational structure that cannot fully utilize the on-chip resources of the FPGA and thereby reduces
its performance. As the computational complexity increases, this traditional computing architecture
increases the consumption of on-chip RAM resources, which limits system flexibility.

This paper proposes an accelerated architecture of changeable-dimension matrix computing
method that stores matrix data in an external memory, which solves the matrix size limitation on
the on-chip resources. The micro-controller controls the transfer of the matrix data to the processing
element (PE). A handshake protocol is implemented to achieve synchronous matrix data transmission,
which ensures the correctness of the processing result. The synthesis and implementation of the
proposed architecture are completed on the ZYNQ platform. A processing element for matrix
multiplication with changeable dimensions is designed, and the resource usage and performance of
the system are also evaluated.

This paper makes the following major contributions:

1. An accelerator architecture of the changeable-dimension matrix computing method is proposed.
2. A mathematical model is established for the time consumed by matrix data transmission, and the

acceleration processing element is analyzed and optimized based on this mathematical model.
3. A changeable-dimension matrix-accelerated computing architecture is built on the ZYNQ

platform to evaluate the proposed architecture’s resource usage and compare its performance.

The remainder of this paper is organized as follows: Section 2 describes the system architecture
and explains the various modules of proposed architecture. The principles underlying the SVM
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algorithm are analyzed in the Section 3, and architecture verification based on the SVM algorithm is
designed. Section 4 describes the system implementation on the ZYNQ platform and optimizes the
architecture of the processing element. Section 5 compares the resource usage and time consumption
between original and optimized PE, and the experimental results are analyzed and discussed. Finally,
Section 6 summarizes the content of this paper and future work.

2. System Architecture Design

The architecture for changeable-dimension matrix computing is shown in Figure 1. It includes
the micro-controller, communication bus, memory interface, off-chip memory, data mover unit, PE
and other peripherals. The micro-controller completes functions, such as reading and writing off-chip
memory, configuring the data mover unit, and retrieving the processing status. The micro-controller
in the FPGA can be either, soft core (e.g., Nios II from Altera Corporation or MicroBlaze from Xilinx
Corporation) or hard core (e.g., the ARM Cortex-A9). The communication bus handles communications
between modules and can be an Avalon Bus (Altera), AXI Bus (Xilinx), Wishbone Bus (Silicore), or
others. Off-chip memory (SRAM, SDRAM, DDR2 SDRAM, or DDR3 SDRAM) is used to store the
matrix data to be processed. The data mover forwards data to the PE to complete data processing;
other peripheral interfaces (PIO, UART, etc.) are used to assist the system.
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System workflow is shown as follows: Firstly, micro-controller parses input matrix data from
off-chip memory, and results are stored in off-chip memory through the communication bus. The data
mover is configured in terms of the address and length of matrix data. The matrix data are sent
to the PE synchronously by data mover through a communication bus. During matrix processing,
the micro-controller only configures the data mover at the first stage and does not participate in the
actual processing, which reduces the usage of the micro-controller. Due to the FPGA’s parallel nature,
multiple data movers can be simultaneously started, further improving the computational efficiency.

As shown in Figure 1, multiple data movers transform matrix data through the communication
bus, which may be occupied with data from other movers. In such cases, the data mover stops the
reading process until the matrix data has been retransmitted over the communication bus. But the
communication bus used in FPGAs has a synchronization mechanism. Here, this paper takes Xilinx’s
Float Point Unit (FPU) multiply with the AXI4 Stream bus interface as an example. Assume that the
inputs of the multiply include row matrix a = [a1 a2 · · · am] and column matrix b = [b1 b2 · · · bM]T .
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The outputs are the result of multiplying a ∗ b. The waveform of multiply operation is shown in
Figure 2, where aclk is the system clock. Signals about valid and ready are used as the handshake
mechanism. When s_axis_a_tvalid and s_axis_a_tready are both asserted, the state of s_axis_a_tdata is
valid. Similarly, column matrix b transmits the s_axis_b_tdata under the condition that s_axis_b_tvalid
and s_axis_b_tready both asserted. Synchronous processing state is divided into the following stages:

1. T0~T1: s_axis_a_tready and s_axis_b_tready are both asserted; FPU Multiply is ready to receive
data; and m_axis_result_tready is also asserted, the result of FPU Multiply can be exported;

2. T1~T2: s_axis_a_tvalid is asserted, row matrix a1 enters FPU Multiply;
3. T2~T3: s_axis_b_tvalid is asserted, then column matrix b1 enters FPU Multiply;
4. T3~T4: m_axis_result_tvalid is pulled high, processing result a1 * b1 is exported. Next processing

state is entered.
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In any clock cycle about Figure 2, if the signals of valid and ready cannot meet the timing
requirements (T4~T5), input data and output data are held (T5~T6) until the timing requirement is
satisfied for processing (T13~T14). Therefore, the AXI4 Stream protocol can automatically complete
the handshake synchronization mechanism to ensure the correct result of FPU Multiply.

In the matrix multiple processing, the total running time T required for processing can be
expressed by Equation (1):

T =

[
tdelay +

N
∑

i=1

(
tsync_i + tproc_i + tlatency

)]
× tcycle

M = tproc =
N
∑

i=1
tproc_i

(1)

where M is the dimension of the matrix to process, tdelay is the clock gap of two sets reaching the
FPU Multiply, N is the number of synchronizations of the matrix data during processing, tsync_i is
the number of clocks required for the i-th synchronization, tproc_i is the number of clocks processed
by the i-th data, tproc is the total number of clocks for matrix processing, which is equal to the matrix
dimension M, tlatency is the fixed clock latency of FPU Multiply, and tcycle is equal to clock cycle period.

Under the ideal conditions, the input data could reach FPU Multiply at the same time, there is
no secondary synchronization during the matrix processing (tdelay = 0, N = 1, tsync_i = 0). Therefore,
Equation (1) can be expressed as follows:

T =
(

tproc + tlatency

)
× tcycle (2)

If we use η as the ideal utilization of the FPU Multiply, then the effective utilization ratios η1 and
η2 corresponding to Equations (1) and (2) can be expressed as follows:
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η1 =

tproc

tdelay+
N
∑

i=1
(tsync_i+tproc_i+tlatency)

η2 =
tproc

tproc+tlatency

(3)

If the dimension of matrix M� tlatency, the fixed clock latency tlatency of FPU Multiply could be
negligible (η2 = 100%). In other words, every clock in FPU Multiply is used for matrix processing.
However, due to the time differences at which the input data are transmitted to the FPU Multiply, the
data transmission process could be terminated and a second synchronization is required, which causes
the decrease in effective utilization. At this point, the effective utilization rate is represented by η1.

3. Accelerated Architecture Verification Design

To verify the dimensionally accelerated matrix acceleration computing architecture, this paper
implements an SVM classification algorithm as an example. SVMs constitute a powerful set of machine
learning algorithms that have been widely used in such fields as pedestrian detection, face detection,
and so on. The classification decision function for SVM is given in (4):

CDF(z) : sign

(
Nsv

∑
i=1

αiyiK(z, si) + b

)
(4)

where Nsv is the number of support vectors, αi is the alpha factor, yi is the classification label for each
sample, z is the input vector, si is the i-th support vector obtained from training, K(z,si) is the kernel
function, and b is the bias. During the prediction, the kernel function occupies a large portion of the
computation time [13]. The various kernel functions are as follows:

K(z, s) = (z · s) (5)

K(z, s) = ((z · s) + const)d, d > 0 (6)

K(z, s) = exp

(
−‖z− s‖2

2σ2

)
(7)

The linear kernel function (5) is a dot-product between the input data and support vectors.
However, for the nonlinear functions in (6) and (7), the kernels are more complex functions and cannot
be processed directly. However, the nonlinear functions (6) and (7) also calculate dot products between
the input data and support vectors, which consume considerable computational time. Therefore,
improving the matrix computational efficiency is crucial in reducing the computation time of the SVM
classification algorithm.

Multi-dimensional matrix multiplication can be decomposed into multiplications of multiple row
and column matrices. The multiplication of multi-dimensional matrices can be realized by nested
loops. In this paper, a PE architecture for row matrix and column matrix multiplication is designed.
For simplicity of algorithm verification, the kernel function in the SVM algorithm uses the linear kernel
function. The test sample uses the binary data set provided by SVM Light [28]. The test samples
include 600 sets of test vectors, and the trained results contain 9947 sets of support vectors. To facilitate
the comparison of algorithmic efficiency, this paper adopts two schemes: software processing and
hardware processing. A flowchart of the processing is shown in Figure 3.

Model data and test data are read and parsed from external memory, test vectors and support
vectors are stored in the external RAM. The software processing approach uses the micro-controller to
complete the matrix multiplication, while the hardware processing method uses PEs to complete the
matrix multiplication after the configuring address and dimension of matrix. During the processing of
each test vector, this paper uses a timer counter to record time consumption. Finally, the classification
accuracy and time consumption of the two methods are also compared.
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4. System Implementation and Optimization

The ZYNQ family is based on the Xilinx System on Chip (SoC) architecture. These products
integrate a feature-rich dual-core ARM Cortex-A9 based processing system (PS) and 28 nm Xilinx
programmable logic (PL) in a single device. The ARM Cortex-A9 CPUs are the heart of the PS and
also include on-chip memory, external memory interfaces, and a rich set of peripheral connectivity
interfaces. Rich on-chip resources and powerful development tools make it easy to implement complex
control functions and accelerate architectural design, while providing room for subsequent functional
enhancements. Based on the information provided above, a test platform is built using Xilinx’s ZYNQ
XC7Z020-CLG484. The changeable-dimension matrix computing architecture is shown in Figure 4,
the proposed architecture is divided into two parts: ZYNQ System and off-chip memory. ZYNQ
System is divided into the Processing System and Programmable Logic (PL) parts. PS part is used for
data parsing and Direct Memory Access (DMA) configuration, and the PL part reads matrix data and
performs the processing. Off-chip memory includes SD Card and DDR3 SDRAM, which stores test
data and cache data during processing and reduces the consumption of BRAM resources.

The PS part of the ZYNQ System includes two ARM Cortex-A9 CPUs, they are connected to the
Central Interconnect and DDR3 Controller through L2 Cache and Controller. An SD Card connected
by the SD0 Peripheral in this system is used to store test files. DDR3 Controller allows CPU to access
DDR3 SDRAM in the off-chip memory through Memory Interface. PL part implements PE architecture
with a data interface for row and column matrix multiplication. As illustrated in Figure 4, there are
two ways to exchange data between PS and PL: The General Purpose AXI 32 bit Master Ports (GP)
and the High Performance AXI 64 bit Slave Ports (HP). In Figure 4, the arrow direction indicates the
master-slave relationship during data transfer. The maximum number of PEs is restricted to 4 owing
to the limitation of the bandwidth of DDR3 and the number of HP port. The proposed PE architecture
is shown in Figure 5. The Cortex-A9 configures the DMA controller via the AXI4 Lite (32-bit) bus
with address and dimension of matrix data. Due to PE contains two sets of data inputs (32-bit),
this paper combines two 32-bit sets from the AXI4 Memory Map into a 64-bit AXI4 Memory Map
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through the AXI Interconnect. The DMA controller reads the data stored in DDR3 through the AXI4
Memory Map (32-bit), and transforms the original data flow into AXI4 Stream (32-bit) to connect FPU
Multiply, the multiplication of the matrix data is achieved through this mechanism. DMA controller
and FPU can work simultaneously, and when DMA controller reads the next data, FPU performs
computing of current data, which forms a pipelining technology. The output of the FPU Multiply is
also connected to the FPU Accumulator through AXI4 Stream (32-bit), and the multiplication results is
accumulated. A Custom IP core (WRD_IO32) is used to reset the FPU state and obtain the final result
from FPU Accumulator.Electronics 2019, 19, x FOR PEER REVIEW 7 of 17 
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Figure 5. Processing element (PE) architecture without optimization.

In this paper, Vivado2016.4 is used as the integrated development environment to implement the
hardware logic design of PL part. The System Integrated Logic Analyzer (System ILA) IP core is used
to monitor and collect the status of the internal bus interface. A bitstream file is exported to the Xilinx
Software Development Kit (XSDK) to implement the software design of PS part after the hardware
design is completed. The DMA controller is monitored by System ILA to obtain the state changes of
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data bus. The acquisition results of transmission state diagram are shown in Figure 6. DMA0_Ready and
DMA0_Valid are the handshake signals between the FPU Multiply and AXI_DMA_0, and DMA1_Ready
and DMA1_Valid are the handshake signals between the FPU Multiply and AXI_DMA_1. The logical
expression is as follows:

DMA0_Res = DMA0_Ready&DMA0_Valid;
DMA1_Res = DMA1_Ready&DMA1_Valid;
Result = DMA0_Res&DMA0_Res.
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As shown in Figure 6, the clock interval between the rising edge of DMA0_Ready and DMA1_Ready
corresponds to the parameter tdelay in Equation (1). DMA0_Valid and DMA1_Valid are randomly
changed during processing, due to the data transmission synchronization, which indicates the
discontinuity of matrix data transmission and leads to the output level changes of Result. The number
of changes corresponds to the parameter N in Equation (1). Data processing begins at the initial
rising edge of DMA0_Ready and ends at the final falling edge of DMA1_Ready in Figure 6. A total
of 17,584 clock cycles are required. The first signal-synchronization phase requires 121 clock cycles.
There are 618 synchronizations of the resulting signal, corresponding to the parameter N in Equation (1).
Therefore, the effective utilization ratio η1 is 56.57% according to Equation (3).

Based on the experimental results shown in Figure 6, the discontinuity of data transmission
from DMA controller to the FPU Multiply causes the data transmission to be interrupted multiple
times. A second handshake synchronization is required, which reduces the effective utilization of the
FPU. In this paper, the structure of the PE in Figure 5 is optimized for the problem of discontinuous
data transmission by adopting the following solutions: Adjusting the parameter setting of the AXI
Interconnect IP core in Figure 5, adding FIFOs with a depth of 32 between the DMA and the AXI
Interconnect, and using a FIFO bit width consistent with the AXI4 Memory Map (32-bit). The optimized
PE architecture is shown in Figure 7.
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An optimized architecture is used to replace the original architecture. Then the test files are
reloaded, and System ILA is used to re-acquire the signals of the DMA controller. The optimized result
in Figure 8 shows that the data processing clock cycles are reduced from 17,584 to 10,490, and the first
signal synchronization also requires 121 clock cycles, which is consistent with the acquisition result
before optimization. However, the number of synchronizations of the Result are reduced from 618 to
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The optimized PE architecture in Figure 8 is compared with the original PE architecture in Figure 6.
Although the time interval of the first signal synchronization is a fixed value, as the PS cannot start
multiple DMA controllers at the same time, the number of synchronizations are highly decreased.
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Therefore, the effective utilization ratio η1 is increased from 56.57% to 94.82%, which reduces the
processing time and improves system efficiency.

5. Experimental Evaluation and Results

5.1. Resource Utilization

This paper builds multiple PEs in this system. The maximum number of PEs is restricted to
4 owing to the limitation of the bandwidth of DDR3 and the port number of HP in ZYNQ system.
The bandwidth of DDR3 in this platform is 34,112 Mbps. Assuming that the effective utilization
of bandwidth is 80%, the maximum bandwidth is 27,289.6 Mbps. Therefore, the frequency of PE
selected in this system is 100 MHz considering the output frequency of internal Phase Locked Loop
(PLL). To evaluate the resource utilization of the accelerated computing architecture, place and route
of proposed architecture are shown in Figure 9, which is obtained from Xilinx Implemented Design
(a design tool of Vivado) with timing constraints. It can be seen that every PE is tightly wrapped
around the PS part through AXI Interconnect. The results of place and route make design having
better uniformity within the constraint area. Table 1 shows the resource and power utilization of PL
with different number of PEs in proposed system. With the number of PEs increasing, the resource
utilization of LUT, LUTRAM and FF is increased, and the utilization of the BRAM and DSP are linearly
increased among them, but the power consumption of proposed system increases slightly according to
the Vivado Power Estimation Tool reports. Therefore, more PEs lead to higher energy efficiency ratio.Electronics 2019, 19, x FOR PEER REVIEW 11 of 17 
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Table 1. Resource utilization of PL.

Number of PEs 1 2 3 4

LUT 3389 6186 9214 12,090
LUTRAM 288 514 740 966

FF 4035 7344 10,649 13,951
BRAM 2 4 6 8

DSP 7 14 21 28
Power 0.164 W 0.165 W 0.171 W 0.175 W
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5.2. Timing Comparison of PE

The system’s computing performance is evaluated using the test data sets provided by SVM
Light. The test contents include software (PS) and hardware (PL) test. This paper uses the system
timer provided by the Cortex-A9 core (666.67 MHz) as the reference clock. The frequency of system
timer is half of the frequency of Cortex-A9 core, so the clock period of system timer is 3 ns. The test
result is the time consumed while processing the 600 sets of SVM classifications, which reflects the
time consumption to process 600 sets of matrices. The results are shown in Figure 10.Electronics 2019, 19, x FOR PEER REVIEW 12 of 17 
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(b) partially enlarged view time consumption of processing 600 sets.

As shown in Figure 10, compared with software process, the hardware process has a smaller
slope regarding the time consumption of the matrix computing, and the total time consumption is
considerably smaller. The processing method using multiple PEs in PL part, completing multiple sets
of matrix operations simultaneously in parallel condition, reduces the time consumption and improves
the computational efficiency. Therefore, multiple PEs achieve higher computational performance than
the CPU in terms of matrix computing. Next, this study applies the optimized PE architecture.

The performance of optimized PE architecture is also tested and compared with the original PE
architecture in Figure 11. Due to the optimized PE has a higher effective utilization ratio, the optimized
PE architecture has a smaller time slope than original PE. When multiple PEs are running at same
time, the time consumption is reduced, which further improves the computing performance of the
acceleration architecture.

A comparison of the time consumption to process 600 sets of matrices by different processing
methods is shown in Figure 12. The compilation flag of the CPU is –O0 in XSDK, and the compilation
flag of CPU With Optimization is –O3. The running time of CPU With Optimization is better than the
time without optimization. However, the PE proposed in this paper is not affected by the compilation
flag, which indicates that PE has excellent stability. The result shows that hardware is less than software
about time consumption. As the number of PE increases, the time consumption is also proportionally
reduced. Taking the optimized PE architecture as an example, four PEs work simultaneously under
the same compilation flag, which is 21.18 times higher than the CPU software processing method.
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5.3. Changeable-Dimension Matrix Computing Test

The changeable-dimension matrix computing is tested on the proposed architecture. Multiple
data sets from UCI Machine Learning Repository are used in this paper, which include Adult [29],
Breast-cancer [30] and Gisette [31]. Other data sets mentioned by LibSVM website are also tested,
which include Colon-cancer [32], Rcv1.binary [33] and News20.binary [34]. The dimension of data sets
is shown in Table 2, and time in Table 2 is the time consumption for 100 predictions in the condition
of using 4 PEs with different data sets. The maximum size of dimensions of PE is dependent on
the width of the buffer length register (WBLR) of DMA Controller, WBLR can be set from 8 bits to
23 bits. Therefore, if the data width of DMA Controller is 32 bits, the maximum size of dimensions is
221-1, which is 2,097,151. As is shown in Table 2, the time consumption is increased with increase in
dimensions. But the minimum time is still very large in Breast-cancer, even though the dimension of
Breast-cancer is smallest among the test data sets. By analyzing the architecture, it is found that most
of time is used to configure PE when the dimension is small, and the time for configuration of DMA
Controller can be ignored when the dimension is increased.
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Table 2. Time comparison of changeable-dimension Matrix Computing.

Data Sets Dimension Time (ns)

Breast-cancer [30] 10 406,320
Adult [29] 119 407,268

Colon-cancer [32] 2000 668,772
Gisette [31] 5000 1,510,443

SVM Light [28] 9947 2,830,377
Rcv1.binary [33] 47,236 13,038,249

News20.binary [34] 1,355,191 371,995,314

The proportion of time and dimension (PTD) with different data sets is also evaluated in this
paper. The ideal value of PTD is 250 ns if 4 PEs are synchronized in parallel at 100 MHz. Divide the
time and dimension in Table 2 gets the result of Figure 13. When the dimension is smaller, the PTD
is very large. As the dimension increases, the PTD gradually approaches the ideal value 250 ns, and
the effective utilization ratio is also improved. Therefore, the proposed architecture has an obvious
advantage when performing high-dimensional computing.
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5.4. Comparisons with others

The performance and resource utilization of the proposed architecture are compared with those
of other FPGA-based SVM computing methods presented in the literature. Table 3 shows that the
proposed architecture has a changeable dimension, while the dimension of other papers is generally
fixed. Since the dimensions of the matrix are changeable, this paper uses T/D to evaluate the processing
time. It can be seen that the method proposed in this paper is superior to others when executing
the same dimension. Additionally, compared with other methods in the table, the proposed method
consumes the least amount of LUT and BRAM resources. Therefore, the method of this paper can be
applied to application areas with different dimensions without changing the hardware design.
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Table 3. Comparison about performance and resource utilization with previous works.

Work [14] [35] [36] [13] This Paper

Platform
Xilinx

Virtex5
LX110T

Xilinx
Virtex5
LX110T

Xilinx
Spartan3

Xilinx Spartan6
LX150T

Xilinx
ZYNQ
7Z020

Dimension 500 361/648/4000 1980 400/1062 Changeable (<2,097,151)
LUT 38,179 57,296 28,616/62,208 35,532/92,152 12,090

BRAM 576 83 100 256/268 8
Frequency 50 MHz 100 MHz 63 MHz 70 MHz 100 MHz

T/D 1 25.9 µs 69.25 µs – 62.50 µs 274.50–40,632 ns
1 T/D is an abbreviation for Time per Dimension.

6. Conclusions

This paper proposes a general accelerator architecture for a changeable-dimension matrix
computing method. The matrix data is stored in external memory. The data mover of PL transmits
data to the PE with the control of PS, which solves the limited on-chip resources problem regarding the
size of the matrix dimension. The transmission adopts a data synchronous mechanism to ensure the
continuity of matrix data and the correctness of matrix processing. The synthesis and implementation
of the computing architecture are completed on ZYNQ platform, and the architecture of PE is also
optimized to improve the data transmission performance and effective utilization ratio of FPU. Multiple
PEs are also implemented on the PL, and multiple matrices are processed in parallel to further improve
performance. The experimental results show that when executing an SVM classification algorithm,
600 sets of matrix multiplication operations can be processed in parallel using four PEs at 100 MHz,
which is 21.18 times faster than performing the processing in software on the CPU.

Furthermore, additional effort is still needed to improve the performance of this architecture.
For the PE implemented in our platform, the proposed method depends on the bandwidth of data
stream. The bandwidth of DDR3 and number of HP ports are the bottlenecks in this system, and
they limit the number and frequency of PEs. A higher bandwidth of port is needed to increase the
number and frequency of PEs. This paper only implements a simple multiply-add function in the PE,
and does not fully utilize the performance of DSP resources. Further research should be carried out
to improve the computing power. It needs to introduce more complex matrix computing to further
improve performance.
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Abbreviations

The following abbreviations are used in this manuscript:

FPGA Field Programmable Gate Array
SVM Support Vector Machine
PCIe Peripheral Component Interconnect express
PCI Peripheral Component Interconnect
RAM Random Access Memory
FIFO First In First Out
CNN Convolutional Neural Network
PE Processing Element
ARM Advanced RISC Machines
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SRAM Static Random-Access Memory
SDRAM Synchronous Dynamic Random Access Memory
DDR Double Data Rate
PIO Parallel Input/Output
UART Universal Asynchronous Receiver/Transmitter
FPU Float Point Unit
AXI Advanced eXtensible Interface
DMA Direct Memory Access
SoC System on Chip
PS Processing System
PL Programmable Logic
ILA Integrated Logic Analyzer
XSDK Xilinx Software Development Kit
LUT Look Up Table
FF Flip Flop
BRAM Block RAM
DSP Digital Signal Processing
CPU Central Processing Unit
WLBR Width of Buffer Length Register
PTD Proportion of Time and Dimension
T/D Time per Dimension
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