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Abstract: To overcome the limitation of performance degradation of existing methods based on
fractional Fourier transform in impulsive noise, and fractional lower-order statistics based method
dependence on a priori knowledge of the noise, a novel Sigmoid fractional Fourier transform
(Sigmoid-FRFT) is presented in this paper. This novel approach is then used to estimate the
Doppler stretch and time delay. Furthermore, the properties of the Sigmoid transform, robustness
and boundedness of the Sigmoid-FRFT to the SαS noise, and the computation complexity of the
Sigmoid-FRFT method are presented to evaluate the performance of the proposed method. Simulation
results and theoretical analysis are presented to demonstrate the applicability of the forgoing method.
It is shown that the proposed method not only can effectively suppress impulsive noise interference
but also does not need a priori knowledge of the noise, with higher estimation accuracy and lower
computational complexity in impulsive noise environments.

Keywords: impulsive noise; Sigmoid transform; fractional Fourier transform; linear frequency
modulation (LFM) pulse radar; parameter estimation

1. Introduction

In a radar or a sonar system, the received signal, in comparison with the transmitted waveform,
often contains both time delay (TD) and Doppler stretch (DS). At present, this topic has attracted many
researchers’ attention [1,2]. Various algorithms have been proposed to estimate these parameters.
For instance, Zhang et al. proposed an expectation-maximization based estimator to estimate delay
and Doppler of a moving target in a passive radar [3]. Qu et al. proposed a method based on the
wideband ambiguity function to estimate time delay and Doppler stretch for a wideband signal [4].
Niu et al. presented a wavelet-based wideband cross ambiguity function (WB-WBCAF) method to
estimate the time delay and Doppler stretch between two received signals that are contaminated
by noise [5]. Friedlander proposed an algorithm based on a computationally efficient search-free
frequency estimation technique for the sum of complex exponentials for Doppler-Delay Estimation [6].
These methods may solve such parameter estimation problems in the Gaussian noise environment.
However, the performance of these methods degenerates severely in the impulsive noise environment.

To suppress the impulsive noise interference, many parameter estimation algorithms based on the
fractional lower-order statistics (FLOS) have been proposed [7–13]. Li et al. proposed a new method
based on sparse representation of the fractional lower order statistics to estimate Direction of arrival
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(DOA) in impulsive noise [7]. Ma et al. proposed the fractional lower order covariance method and
least mean p norm criterion for time delay estimation (TDE), and the fractional lower order ambiguity
function for joint time delay of arrival (TDOA) and frequency delay of arrival (FDOA) estimation [8].
Long et al. presented the applications of fractional lower order time frequency representation to
machine bearing fault diagnosis [9].

Time-frequency distribution is a useful tool to extract helpful information of the received
signal. Various time frequency distribution methods based on fractional lower order statistics have
been proposed, such as short time Fourier transform based on fractional lower order statistics [10],
Wigner–Ville distributions based on fractional lower order statistics [11], fractional power spectrum
density based on fractional lower order statistics [12], and fractional correlation based on fractional
lower-order statistic [13]. Li et al. proposed a novel method that combines the fractional lower order
statistics and fractional power spectrum density (FLOS-FPSD) for suppressing the impulsive noise
and estimating parameters for a bistatic multiple input and multiple output (MIMO) radar system
in the impulse noise environment [12]. The fractional correlation based on fractional lower-order
statistic (FLOS-FC) method has been proposed in an impulsive noise environment [13], where the
Doppler stretch and time delay are jointly estimated by peak searching of the FLOS-FC. Therefore, in
relevant prior publications, the FLOS theory has been always employed to suppress the impulsive
noise interference.

However, the performance of these algorithms based on fractional lower order statistics may
degrade seriously for an inappropriate fractional lower order moment p [14–16]. According to the
fractional lower order statistics theory, the relationship between the fractional lower order moment p
and characteristic exponent α must satisfy 1 ≤ p < α or 0 < p < α/2. Therefore, the methods based
on fractional lower order statistics depend on a priori knowledge of the noise.

To overcome these limitations, a novel time-frequency transform, combining fractional Fourier
transform and Sigmoid transform and known as Sigmoid fractional Fourier transform, is proposed
to estimate the Doppler stretch (DS) and time delay (TD) of wideband echoes for linear frequency
modulation (LFM) pulse radar under impulsive noise environment. This technique does not need a
priori knowledge of impulsive noise.

This paper is organized as follows. Section 2 presents a signal model of wideband echoes
in impulsive noise environment. In Section 3, a novel Sigmoid fractional Fourier transform
(Sigmoid-FRFT) is defined. In Section 4, a novel Doppler stretch and time delay estimation
method based on Sigmoid-FRFT for impulsive noise is proposed, and performance analysis of the
Sigmoid-FRFT method is presented. In Section 5, the performance of the parameter estimation
algorithm is studied through extensive numerical simulations. Finally, conclusions are drawn in
Section 6.

2. Signal Model and Noise Model

2.1. Wideband Signal Model

The wideband signal model for constant amplitude LFM signals by L targets arriving can be
described as [17]

y(t) =
L

∑
l=1

ηl x(σl(t− τl)) + n(t), (1)

where ηl denotes the attenuation factor of the lth multipath, σl is the Doppler stretch, τl is the time
delay, x(t) denotes the transmitted LFM signal,

x(t) = A exp
(

j2π

(
f0t +

1
2

µ0t2
))

, (2)

which f0 is the initial frequency, µ0 is the modulation rate, A denotes the signal amplitude. The noise
n(t) is a sequence of i.i.d isotropic complex symmetric α-stable (SαS) random variable.
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2.2. SαS Distribution Noise Model

The characteristic function of the SαS distribution is given by [8,14],

ψ(ω) = exp
(
−γ|ω|α

)
, (3)

where α (0 < α ≤ 2) is the characteristic exponent. The characteristic exponent controls the heaviness
of the tails of the density function. The tails are heavier, and thus the noise more impulsive. When
α = 2, the SαS distribution reduces to the Gaussian distribution. The parameter γ, usually called the
dispersion, is a positive constant related to the scale of the distribution.

The signal-to-noise condition of SαS using the generalized signal-noise-ratio (GSNR), which is
described as

GSNR = 10 lg
(

σ2
x /γ

)
, (4)

where σ2
x is the variance of the underlying signal.

3. Sigmoid Fractional Fourier Transform

3.1. Fractional Fourier Transform

The continuous FRFT [18,19] of a signal x(t) with a rotation angle β is defined as

X(β, m) = Fβ[x(t)](m) =
∫ +∞

−∞
x(t)Kb(t, m)dt, (5)

where Fb denotes the FRFT operator, b(0 < b ≤ 2) denotes the fractional order, β ≡ bπ/2, and Kb(t, m)

is the kernel function of the fractional Fourier transform. Kb(t, m) can be expressed as

Kb(t, m) =


Aβ exp

(
jπ
(
t2 cot β− 2mt csc β + m2 cot β

))
, β 6= nπ

δ(t−m), β = 2nπ

δ(t + m), β = (2n + 1)π
, (6)

where Aβ =
√

1− j cot β and m is the frequency in FRFT domain. When β= 2nπ + π
2 , Kb(t, m)

coincides with the kernel of the Fourier transform, and the FRFT reduces to the conventional Fourier
transform. The kernel has the following properties: Kb(t, m) = Kb(m, t) and K−b(t, m) = K∗b (t, m).

3.2. FRFT of LFM Signal

From Equations (5) and (6), the FRFT of the LFM signal x(t) can be expressed as

X(β, m) = Aβ A exp
(

jπm2 cot β
)∫ T/2

−T/2
exp(j2πt( f0 −m csc β)) exp

(
jπt2(cot β + µ0)

)
dt. (7)

When µ0 = − cot β, X(β, m) has the best energy-concentrated property and an optimal rotation
angle β0 exists to maximize the peak amplitude of X(β, m). Accordingly, b0 = 2β0/π is called the
optimal fractional order. The X(β0, m) forms a pulse in the FRFT domain and its peak value appears at
(β0, m0) as

(β0 = −arc cot µ0, m0 = f0 sin β0) = argmax
β,m

|X(β, m)|. (8)

According to Equation (8), we can find that the rotation angle β only depends on the frequency
modulation rate µ0.
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Similarly, the FRFT of the echo signal y(t) can be written as

Y(β, m) =
L
∑

l=1

∫ T/2
−T/2 Aβηl exp

(
j2π
((

σl f0 − µ0σ2
l τ
)

t + 1
2 µ0σ2

l t2
))

× exp
(

jπ
(
t2 cot β− 2mt csc β + m2 cot β

))
dt + N(β, m)

=
L
∑

l=1
Aβηl exp

(
j2π
(

1
2 µ0σ2

l τ2
l − σl f0τl +

1
2 m2 cot β

))
×
∫ T/2
−T/2 exp

(
j2πt

(
σl f0 − µ0σ2

l τ −m csc β
))

exp
(

jπt2(µ0σ2
l + cot β

))
dt + N(β, m)

(9)

where N(β, m) denotes the FRFT of the noise n(t). If and only if{
σl f0 − µ0σ2

l τ = ml csc βl
cot βl = −µ0σ2

l
. (10)

Y(β, m) forms L pulses in the FRFT domain and these peaks appear at (βl , ml). Thus, the estimation of
the Doppler stretch and time delay becomes a problem of locating the peak point of Y(β, m). Then, it
follows directly from Equation (10) that the Doppler stretch and time delay are estimated by

σ̂l =
√
− cot βl

µ0

τ̂l =
σ̂l f0−ml csc βl

µ0σ̂2
l

. (11)

3.3. Sigmoid Transform

Sigmoid is a commonly used nonlinear transformation [20–22]. Its definition can be shown as

Sigmoid[x(t)] =
2

1 + exp[−x(t)]
− 1. (12)

For a SαS process with a = 0, the Sigmoid transform has the following properties.
Property 1: If x(t) is a SαS process with β = 0 and a = 0, then Sigmoid[x(t)] is a symmetric

distribution with zero mean in its probability density function, and has the finite second order moment
with zero mean (referred as a second order moment process).

Property 2: Sigmoid[x(t)] has the same frequency shift as x(t).
Property 3: Sigmoid[x(t)] has the same time delay as x(t).
Since Properties 1 and Properties 2,3 have been proved in [4] and [15], respectively, the relevant

proof will be skipped.

3.4. Definition of the Sigmoid-FRFT

To overcome the limitations that the performance degradation of the existing methods based
on fractional Fourier transform in the impulsive noise and the fractional lower-order statistics-based
methods dependencies on the priori knowledge of the noise, this paper proposes a novel Sigmoid
fractional Fourier transform (Sigmoid-FRFT), combining the fractional Fourier transform and the
Sigmoid transform. The definition of the Sigmoid-FRFT XSigmoid(β, m) is expressed as

XSigmoid(β, m) = Fb
Sigmoid[x(t)](m) =

∫ +∞

−∞
Sigmoid[x(t)]Kβ(t, m)dt. (13)

Since the FRFT spectrum X(β, m) of the LFM signal x(t) has the energy-concentrated property, the
Sigmoid-FRFT spectrum XSigmoid(β, m) of Sigmoid[x(t)] demonstrates the same property according to
properties of the Sigmoid transform. Furthermore, X(β, m) and XSigmoid(β, m) form the pulse at the
same location in the FRFT domain.



Electronics 2019, 8, 121 5 of 13

Equation (13) is the definition of the Sigmoid-FRFT that is used throughout this paper. Searching
for the peaks of the Sigmoid-FRFT XSigmoid(β, m), the XSigmoid(β, m) forms a pulse in the FRFT domain
and its peak value appears at (β0, m0) as

(β0 = −arc cot µ0, m0 = f0 sin β0) = argmax
β,m

∣∣∣XSigmoid(β, m)
∣∣∣. (14)

Figure 1 shows the performance of suppressing the impulsive noise FRFT and the Sigmoid-FRFT
under an impulsive noise with GSNR = 5 dB with α = 1.2. Figure 1a,c represents the time-frequency
distribution of the FRFT and the Sigmoid-FRFT of the impulsive noise. Figure 1b,d represents the
time-frequency distribution of the FRFT and the Sigmoid-FRFT of the LFM signal with impulsive noise.
From Figure 1, it is clearly seen that identifying the correct peak location is not trivial as the FRFT
peak cannot be distinguished from the impulsive noise. Accordingly, the estimation performance of
the FRFT method degrades severely in the impulsive noise environment. After the application of the
Sigmoid transformation, the impulsive noise is suppressed effectively and the Sigmoid-FRFT spectrum
forms an obvious pulse in the FRFT domain. Thus, the method based on the Sigmoid-FRFT yields
better estimation performance.
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Figure 1. Time-frequency distribution of the fractional Fourier transform (FRFT) and Sigmoid-FRFT
in an impulsive noise environment. (a) FRFT of the impulsive noise; (b) FRFT of the linear
frequency modulation (LFM) signal with impulsive noise; (c) Sigmoid-FRFT of the impulsive noise;
(d) Sigmoid-FRFT of the LFM signal with impulsive noise.
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4. Parameter Estimation Based on Sigmoid Fractional Fourier Transform (Sigmoid-FRFT)

4.1. Estimation of Doppler Stretch and Time Delay based on Sigmoid-FRFT

According to Equation (13), we can obtain the Sigmoid-FRFT YSigmoid(β, m) of y(t) as

YSigmoid(β, m) = Fb
Sigmoid[y(t)](m)

= Fb
Sigmoid

[
L
∑

l=1
ηl x(σl(t− τl))

]
(m) + Fb

Sigmoid[n(t)](m)

=
∫ +∞
−∞ Sigmoid

[
L
∑

l=1
ηl x(σl(t− τl))

]
Kβ(t, m)dt + NSigmoid(β, m)

(15)

where NSigmoid(β, m) denotes the Sigmoid-FRFT of the noise n(t).
Similarly, in searching for the peaks of YSigmoid(β, m), the Doppler stretch and time delay can be

jointly estimated by 
σ̂l =

√
− cot βl

µ0

τ̂l =
σ̂l f0−ml csc βl

µ0σ̂2
l

(βl , ml) = argmax
β,m

∣∣∣YSigmoid(β, m)
∣∣∣ . (16)

4.2. Boundedness of Sigmoid-FRFT to the SαS Noise

Assumed the signal x(t) contains the impulsive noise, we can define as

x(t) = s(t) + n(t), (17)

where s(t) is the signal and n(t) is the SαS random variable noise.
The fractional power spectrum function is defined as [23]

Pβ
xx(m) = lim

T→∞

E
∣∣∣XSigmoid(β, m)

∣∣∣2
2T

, (18)

where XSigmoid(β, m) is the Sigmoid-FRFT of the signal x(t). Then, substituting Equation (13) into
Equation (18), we get

Pβ
xx(m) = lim

T→∞
1

2T E
[∫ +T
−T Sigmoid[x(t1)]Kβ(t1, m)dt1

∫ +T
−T Sigmoid∗[x(t2)]K∗β(t2, m)dt2

]
= lim

T→∞
1

2T E
[∫ +T
−T

∫ +T
−T Kβ(t1, m)K∗β(t2, m)Sigmoid∗[x(t2)]Sigmoid[x(t1)]dt1dt2

]
= lim

T→∞
1

2T
∫ +T
−T

∫ +T
−T Kβ(t1, m)K∗β(t2, m)E[Sigmoid[x(t1)]Sigmoid∗[x(t2)]]dt1dt2

(19)

where x(t1) and x(t2) are the sample values of x(t).
According to the properties of the Sigmoid transform, we can obtain that

E[Sigmoid[x(t1)]Sigmoid∗[x(t2)]] is bounded for the SαS process because it is only involved
with Sigmoid[x(t)]. Therefore, the boundedness of the Sigmoid[x(t)] can guarantee the boundedness
of Pβ

xx(m) under the SαS noise, resulting in that XSigmoid(β, m) is bounded.

4.3. Robustness of Sigmoid-FRFT to the SαS Noise

The characteristic exponent α is used to control the thickness of the tail in the alpha stable
distribution. The smaller α is, the stronger the impulsiveness is. The stronger impulsive noise has
negative impacts on the estimation performance of the algorithm [24]. The FLOS theory has certain



Electronics 2019, 8, 121 7 of 13

ability to suppress impulsive noise. The suppression ability increases as the fractional lower-order
moment p decreases. However, the suppression ability of the FLOS is not effective, due to |x1(t)|〈p〉 >
|x2(t)|〈p〉 > 1 for |x1(t)| > |x2(t)| > 1. Therefore, a stronger impulsive noise cannot be suppressed
effectively when the impulsiveness is extremely intense, and the estimation performance would be
affected. Compared with the FLOS, for any stronger impulsive noise, the Sigmoid function can be
written as

|Sigmoid[x(t)]| =
∣∣∣∣ 2
1 + exp[−x(t)]

− 1
∣∣∣∣ < 1. (20)

For any |x(t)| > 1, we get

|Sigmoid[x(t)]| < 1 < |x2(t)|〈p〉 < |x1(t)|〈p〉. (21)

This shows that the Sigmoid transform can suppress impulsive noise better than the FLOS.
Therefore, the performance of the Sigmoid transform outweighs those of the FLOS theory. The
simulation results are shown in Figure 2.
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Figure 2. Comparison of the noise suppression ability for SαS with generalized signal-noise-ratio
(GSNR) = 5 dB and α = 1.2. (a) Sigmoid transform; (b) fractional lower-order statistics (FLOS) theory.

Figure 2 shows a comparison of the impulsive noise suppression ability between two theoretical
algorithms. From Figure 2, we can find that both algorithms have suppression ability of the impulsive
noise, however, the performance of the Sigmoid transform method is superior to that of the FLOS.
Furthermore, it is worth noting that the suppression capacity of the FLOS method is affected by
the fractional lower-order moment p, where the suppression capacity of the FLOS with p = 1.1
outperforms that of the FLOS with p = 1.4.

4.4. Complexity Analysis

In this section, we evaluate the computational complexity of the proposed method, FRFT method,
and FLOS-FPSD method. Suppose that the data length is N, the computational complexity of the
FRFT method is O(N log2 N) [25]. The parameter estimation based on the FLOS-FPSD method is
a two step process. The first step computes the fractional lower order correlation and the second
step carries the FRFT transformation. Accordingly, the computational complexity of the FLOS-FPSD
algorithm is O

(
N2 + N log2 N

)
. The proposed method based on the Sigmoid-FRFT also requires two

steps. The first step performs the Sigmoid transform and the second step carries the FRFT transform.
Thus, the computational complexity of the Sigmoid-FRFT algorithm is O(N + N log2 N). Through
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the computational complexity analysis, the Sigmoid-FRFT method can suppress impulsive noise
interference and has a lower computational complexity compared with the FLOS-FPSD method.

5. Simulation Results

In this section, we perform three types of simulation experiments to evaluate the relative
performance of the FRFT, the FLOS-FC, the FLOS-FPSD, and the Sigmoid-FRFT methods under
impulsive noise, respectively.

The parameters of the transmitted LFM signal in the simulation are assumed as follows. The
initial frequency f0 = 0.2 fs and the modulation rate is set to µ0 = 0.1 f 2

s /N. The sampling rate is set to
fs = 1 MHz with a sampling length of N = 1000. The number of multipath is L = 2 and the Doppler
stretch and time delay are set to σ1 = 0.8, σ2 = 1.2, τ1 = 20/ fs and τ2 = 40/ fs, respectively. The Root
Mean Square Error (RMSE) is defined as

RMSE =
1
2


√√√√ 1

K

K

∑
k=1

[x̂1(k)− x1]

2

+

√√√√ 1
K

K

∑
k=1

[x̂2(k)− x̂2]

2
, (22)

where x̂1 and x̂2 are the estimation of x1 and x2, and K is the number of Monte Carlo. For each
simulation, the number of Monte Carlo runs is 500.

5.1. Simulation 1: FRFT, FLOS-FC, FLOS-FPSD, and Sigmoid-FRFT for a Single Estimation for Two Targets

Figure 3 shows the estimation results of the FRFT, FLOS-FC, FLOS-FPSD, and Sigmoid-FRFT
for a single trial of data, two targets, under impulsive noise with GSNR = 5 dB and α = 1.2. From
Figure 3a,b, we can find that the FRFT algorithm fails when an impulsive occurs, where the correct
peak cannot be obtained and the estimation performance degrades severely in the impulsive noise
environment. The reason is that the FRFT method does not have the ability to suppress impulsive
noise. The peak of the FRFT is submerged in noise.

As shown in Figure 3c, the spectrum of the FLOS-FC does not have the energy-concentrated
property at a specific rotation angle. The accurate rotation angle cannot be obtained. Therefore,
the FLOS-FC method fails in this noise environment. The spectrum of the FLOS-FPSD is shown
in Figure 3d, and we can find that the FLOS-FPSD algorithm also fails in the impulsive noise
environment because the peak of the FLOS-FPSD cannot be easily separated from the impulsive
noise in the FLOS-FPSD spectrum of the echo signal with impulsive noise. The FLOS-FPSD algorithm,
combining the fractional lower-order statistics theory with the fractional power spectrum density
function, can effectively suppress the Alpha-stable noise interference under certain impulsive noise
environments. However, when impulsiveness is stronger or GSNR is lower, the FLOS-FPSD method
fails. As shown in Figure 3c,d, the FLOS-FPSD algorithm fails in the impulsive noise environment
with GSNR = 5 dB and α = 1.2 because the correct peak of the FLOS-FPSD cannot be obtained. On the
other hand, the Sigmoid-FRFT spectrum of the echo signal with impulsive noise forms the obvious
pulse, that is because the Sigmoid transform can restrain impulsive noise interference, as illustrated
in Figure 3e. Compared with the FRFT of the echo signal with no noise, it is clearly seen that the
results obtained from the Sigmoid-FRFT of the echo signal with impulsive noise matches quite well
and with peaks at the same location. As analyzed in Section 4.3, the Sigmoid transform can suppress
impulsive noise better than the FLOS. Therefore, the proposed method based on the Sigmoid-FRFT
can effectively suppress impulsive noise interference, yields an accurate peak estimation and has a
better estimation performance.
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Figure 3. The spectrum of FRFT, the fractional correlation based on fractional lower-order statistic
(FLOS-FC), the fractional lower order statistics and fractional power spectrum density (FLOS-FPSD)
and Sigmoid-FRFT with impulsive noise (GSNR = 5 dB and α = 1.2). (a) The FRFT spectrum of the
echo signal without noise and its rotation angle and frequency section planes; (b) the FRFT spectrum
of the echo signal with impulsive noise and its rotation angle and frequency section planes; (c) the
FLOS-FC spectrum of the echo signal with impulsive noise and its rotation angle and delay section
planes; (d) the FLOS-FPSD spectrum of the echo signal with impulsive noise and its rotation angle and
frequency section planes; (e) the Sigmoid-FRFT spectrum of the echo signal with impulsive noise and
its rotation angle frequency section planes.

5.2. Simulation 2: Estimation Accuracy with Respect to GSNR

To evaluate the performance of TD and DS in this simulation, the characteristic exponent α is set
to α = 1.2 and the fractional lower order moment p is set to p = 1.1 and p = 1.5 for the FLOS-FPSD
method, respectively. The resulting RMSE performance versus GSNR is illustrated in Figure 4.

From Figure 4, we can find that the FRFT method has a poor estimation performance with
impulsive noise interference. The FLOS-FPSD method on the other hand, combining the fractional
lower order statistics theory with the fractional power spectrum density, can effectively suppress the
Alpha-stable noise interference. Accordingly, the FLOS-FPSD method yields a clear peak under an
impulsive noise. However, the performance is affected by the fractional lower-order moment p value.
According to the fractional lower order statistics theory, the characteristic exponent of the noise must
be estimated to ensure 1 ≤ p < α or 0 < p < α/2. The methods employing the FLOS theory cannot
accurately estimate the parameters if there is no a priori knowledge of the characteristic exponent. On
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the contrary, the Sigmoid-FRFT has clear peaks because the Sigmoid-FRFT cannot be affected by the
fractional lower-order moment p. Therefore, we can accurately obtain the peaks of the Sigmoid-FRFT
in impulsive noise environment.
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Figure 4. Root Mean Square Error (RMSE) of parameters versus GSNR. (a) Doppler stretch;
(b) time delay.

5.3. Simulation 3: Estimation Accuracy with Respect to Characteristic Exponent α

To measure the estimation performance of TD and DS, the fractional lower order moment p is set
to p = 1.1 and p = 1.5 for the FLOS-FPSD method, respectively. The GSNR is set to GSNR = 5 dB.
Figure 5 shows the performance versus characteristic exponent α. From Figure 5, we can find that the
FRFT algorithm has a better estimation performance when the characteristic exponent α is close to 2.
The FLOS-FPSD method may suppress impulsive noise interference employing the fractional lower
order statistic theory. The performance of the FLOS-FPSD method is shown to be better than that of
the FRFT method.
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of time delay.

Since the suppression impulsive noise performance of the Sigmoid transform outweighs that of
the FLOS theory, the estimation performance of the Sigmoid-FRFT algorithm is superior to that of the
FLOS-FPSD algorithm.
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6. Conclusions

In this paper, a novel time-frequency transform, Sigmoid fractional Fourier transform, is proposed.
The expression of the Sigmoid-FRFT is defined and the properties of the Sigmoid transform is presented.
Next, the method based on the Sigmoid-FRFT is developed to estimate the Doppler stretch and time
delay of wideband echoes for an LFM pulse radar under impulsive noise environment. Furthermore,
boundedness and robustness of the Sigmoid-FRFT to SαS noise, and computation complexity of
the Sigmoid-FRFT are presented to evaluate the performance of the proposed method. Simulation
results and theory analysis are presented to illustrate the validity of the foregoing method. It is clearly
shown that the proposed method not only can effectively restrain impulsive noise interference but also
does not depend on a priori knowledge of noise and yields a higher estimation accuracy and lower
computational complexity in an impulsive noise environment.
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