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Abstract: A simulator plays an important role in network protocol research, as it enables researchers
to develop protocols more flexibly. Many simulators have been developed to support research in
this field, including NS-2, NS-3, OPNET, OMNeT, and Cooja. Although, as a research support tools,
NS3 and Cooja have already been equipped with an Internet of things (IoT) module, their support
for research on IoT centralized scheduling is still limited. Therefore, this study is aimed to develop
a tool for IoT centralized scheduling research, where the IoT technology is based on the IEEE802.15.4e
time synchronized channel hopping (TSCH) standard. The tool is called the TSCH Link-Scheduling
visualization and data processing (TLS-VaD). The results of validity tests show that TLS-VaD works
well; therefore, this tool can be used in the performance measurement of centralized scheduling
algorithms on TSCH networks. As an example of the application, this research used TLS-VaD to
test the performance of three scheduling algorithms: Iman Ramli Bursty Transmission Scheduling
Algorithm (IRByTSA), first top scheduling algorithm (FTSA), and first leaf scheduling algorithm
(FLSA). The test results using TLS-VaD shows that IRByTSA had better performance compared
to FLSA and FTSA, because it saved more power and was able to generate scheduling decisions
relatively quickly.
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1. Introduction

The Internet of Things (IoT) has attracted the attention of many researchers around the world
because they believe that IoT can provide solutions to the latest social challenges faced by the
global community. These social challenges include health; demographic and welfare changes; food
security and sustainable agriculture; safe, clean, and efficient energy; smart, green, and integrated
transportation; climate action, the environment, efficiency of natural resources and raw materials;
inclusive, innovative, and reflective society; and secure societies [1]. This immense role makes the IoT
part of the future Internet, in which billions of heterogeneous objects will be interconnected [1,2]. It is
estimated that in 2020 the number of devices connected to the Internet will be between 20 billion and
46 billion [3].

The huge number of devices connected to IoT will raise new challenges, among which are the
need for better battery endurance, the large number of nodes joined in a network, the need for
low-cost devices, the existence of heterogeneous equipment, scalability issues, and security [4]. One of
the wireless technologies that can overcome these challenges and become a candidate for IoT is
IEEE802.15.4. To respond to the need for energy-efficient devices, the standard body has issued the
IEEE802.15.4e time synchronized channel hopping (TSCH), resulting from a redesign of the medium
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access control (MAC) layer from the initial standard. TSCH technology, the latest generation of MAC
layer protocols in the IEEE802.15.4 standard, is energy-efficient and very reliable. The reliability of
TSCH is seen in its ability to provide low delay and ultra-low jitter [5]. Since TSCH technology is
wireless and has low power, TSCH nodes that are connected in a network can be categorized as a low
power and lossy network (LLN).

Currently, there is a proposal to use a centralized system to organize an IoT network. This
interest sets a meeting point between the Internet of things and software defined network (SDN).
SDN-based technology has the ability to control the network centrally, so as to increase bandwidth
utilization, minimize delay, and do network configuration flexibly and automatically [6,7]. SDN is one
of the most well-known technologies that will be the key and critical enabler for the implementation of
the Internet of things [3,6]. An attempt to realize a centralized control system for the TSCH-based IoT
is the establishment of the Internet protocol version 6 (IPv6) over the TSCH mode of the IEEE802.15.4e
(6TiSCH) Working Group (WG) by the Internet Engineering Task Force (IETF). The 6TiSCH WG was
formed to connect the IEEE802.15.4e TSCH MAC layer with IPv6 located on the top layer. The 6TiSCH
WG builds protocol stacks based on the existing standards on the IoT, such as routing protocols for
LLNs (RPL), IPv6 over low-power wireless personal area networks (6LoWPANs), and constrained
application protocol (CoAP). Figure 1 highlights the 6TiSCH protocol stack for LLN using TSCH [8].
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Based on Figure 1, a sub-layer on the 6TiSCH protocol stack, the scheduling function, is responsible
for handling things related to scheduling. A TSCH-based LLN requires a scheduling mechanism
to manage the timeslot allocation for a large number of network nodes. This scheduling function
will use a scheduling scheme that provides information on all nodes in the LLN when it is time to
transmit, receive, or idle/sleep. The created scheduling scheme will determine the extent of traffic
volume generated by the LLN, the length of packet delay, and the energy consumption at each node.

Noting the importance of a scheduling algorithm for the TSCH network, Palattella et al. [9–11]
proposed a centralized scheduling algorithm for the TSCH IEEE802.15.4e network called the traffic
aware scheduling algorithm (TASA). Research [9,11] has proven that TASA is able to provide the
minimum duty cycle for each node in the network. The minimum duty cycle will reduce the power
consumption per node. TASA uses two graph procedures in its algorithm: graph coloring and graph
matching. Graph coloring is used to save the use of channel offset, while graph matching is used to
avoid duplex conflict. An explanation of the duplex conflict will be given in the next section.

To get the minimum duty cycle, in each timeslot period, TASA will create a schedule based on the
graph-matching principle. The schedule determines which nodes can be active and passive at each
timeslot. Active nodes will carry out transmit or receive activities, while passive nodes will enter into
idle or sleep conditions. The TASA procedure, which carries out a graph-matching process at each
timeslot period to determine the transmit, receive, and sleep schedules of each node, will need more
time to produce scheduling decisions with increasing network size. This is not a desirable condition,
because the number of nodes in the IoT era will be very large.
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In order to increase the speed of the link-scheduling algorithm in generating scheduling
decisions, our previous work [12] proposed a scheduling algorithm that has higher speed than
TASA. This algorithm is called the Iman–Ramli bursty transmission scheduling algorithm (IRByTSA),
which is an upgraded version of the Iman–Ramli TASA algorithm (IR-TASA) [13]. IRByTSA is proven to
be faster than TASA in generating link-scheduling decisions, ranging from 2.5 to 7.14 times for network
sizes from 10 to 100 nodes. In [12], IRByTSA was tested for its performance and was implemented in
a text-based tool created using the C and C++ programming languages.

As a development of IRByTSA, this research has created a new tool called the TSCH link-scheduling
visualization and data processing or abbreviated as TLS-VaD. This name is based on the tool’s
two facilities: a visualization of the workings of the scheduling algorithm and the output data,
which shows the algorithm’s performance. TLS-VaD was created specifically for developing
a centralized link-scheduling algorithm on the TSCH network. This new tool uses the concept
of a graphical user interface (GUI), which was created by using the PHP and JavaScript programming
languages. The use of a GUI-based tool makes it easier to develop scheduling algorithms. As a research
support tool, TLS-VaD was developed as an alternative to existing simulators because those simulators
have not provided sufficient support for the development of a centralized scheduling algorithm for
TSCH networks. The related existing simulators are NS-3, OPNET, and NS-2.

Many factors can affect the performance of scheduling algorithms on a communication network,
including signal interference, network congestion, data transmission failure, and so on. As this
research concentrates on the duty cycle parameters and the speed of generating scheduling decisions,
the TLS-VaD development will use the following limitations and assumptions:

(a) The server knows the overall network conditions, such as the network topology, the number of
nodes in the network, and the number of packets waiting in the queue of each network node.

(b) Each node can synchronize itself to the network and know the schedule to transmit,
receive, and sleep, based on information sent by the server.

(c) At the beginning of each slotframe, each node generates one packet of data regularly to be sent to
the master node.

(d) Each node will do a bursty transmission when it gets its turn to transmit, so that after the transmit
process, the queue in the node becomes empty.

(e) There is no interference and packet loss.

Henceforth, this paper will be organized according to the following research framework. The first
part discusses the introduction, the second part describes related works, the third part explains the
theories that underlie this research, the fourth part explains the centralized scheduling algorithm for
the IEEE802.15.4e TSCH network, the fifth part describes the TLS-VaD and how to use it, the sixth
part discusses testing three centralized scheduling algorithms using TLS-VaD, and the last part is the
conclusion of the study.

2. Related Works

In addition to the research of [12,13], there is a number of studies that examine the TSCH
centralized scheduling algorithm, directly related to TASA or not. There are studies directly related
to TASA [14–16], and studies not related to TASA [17,18]. Specific to [12,13], this research refers to
studies conducted by Shreedar [19] and Sayenko [20]. Shreedar et al. provide an example of how
a scheduling algorithm is built and tested for its performance, while Sayenko’s study introduces the
term “scheduling decision”, which is one of the topics discussed in this research.

The latest research that refers to TASA was conducted by Meng et al. [14], who produced
a scheduling algorithm called matching scheduling algorithm optimization of MSA (MSA-OSA),
which has almost the same characteristics as IRByTSA. The only difference is that MSA-OSA gives
transmission priority to leaf nodes, while IRByTSA gives transmission priority to high-ranking nodes.
Nonetheless, the research conducted by Meng does not discuss the achievement of duty cycles that
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can be generated by MSA-OSA. It also does not discuss the mechanism of multihop data transfer to be
collected at the master node. To test the scheduling algorithm they created, Meng et al. did not mention
the use of simulators or specific programming languages. Other research that refers to TASA is a study
conducted by Ojo et al. [15], who developed a scheduling algorithm for TSCH networks to maximize
energy efficiency. The scheduling algorithm was developed using the energy consumption model on
TSCH nodes and nonlinear programming (NLP). However, similar to [14], the study conducted by Ojo
et al. also did not mention the simulator/tool used in their research.

Some studies that examined the 802.15.4e TSCH network were conducted by Choi et al. [17],
Livolant et al. [18], and Khoufi [21]. In Reference [17], a centralized scheduling algorithm called
centralized link scheduling (CLS) was proposed, which utilized the RPL routing protocol to produce
its scheduling decisions. The target of this research was to make scheduling algorithms that required
fewer control messages. To test the performance of the proposed CLS algorithm, Choi et al. used an
OPNET simulator. However, this research did not clearly describe how the OPNET simulator was
used to carry out the tests. Meanwhile, Livolant et al. [18] examined the signaling mechanism of
the multichannel optimized delay timeslot assignment (MODESA) centralized scheduling algorithm,
comparing the number of messages needed to install and upgrade a scheduling scheme on the TSCH
network. However, they did not explain what simulators or software were used to do the testing.
Research by Khoufi et al. [21] examined the mechanism of TSCH network formation and how long
it took to form a network, using the NS3 simulator as a performance test tool against the proposed
mechanism. That study showed that NS3 had a TSCH module even though it did not have sufficient
support for the development of a centralized scheduling algorithm.

One of the aims of this research was to develop a research support tool. To explain how the
tool was designed, written, and developed, this research referred to the work of Felicetti et al. [22]
and Beshay et al. [23]. The research of Felicetti et al. [22] developed a new simulator using the JAVA
language with the ability to model an information exchange on a nano scale. This simulator provided
a toolkit for simulating any types of nano networks. Nanonetworking is a new interdisciplinary area
that combines the materials of nanotechnology, biotechnology, and ICT in one unit of research. The first
part of this research explained how this simulator was developed, starting from the identification of
the main features of the nanonetwork communication. It then explained the simulator’s architecture,
which is comprised of classes, and lastly explained the specific aspects of the simulator’s architecture.
Meanwhile, research by Beshay et al. [23] described another types of research support called WiNeTestEr,
which is a channel emulator that provides better results than existing commercial products do and
is an alternative for wireless device testing. The WiNeTestEr emulator is easier to implement than
is the drive test procedure. For the ease of use, WiNeTestEr uses the GUI system in its application.
This approach is also used by TLS-VaD.

3. Underlying Theories

3.1. IEEE802.15.4 Standards

IEEE802.15.4 is a standard for personal area networks (PAN) that is low-rate, low-power,
and low-cost. In this standard, devices are divided into two types: full function device (FFD)
and reduced function device (RFD). An FFD can function as a PAN coordinator, coordinator for part
of the network, or ordinary device, whereas an RFD only functions as an ordinary device to send
data to the PAN coordinator. The FFD, which acts as a coordinator, besides sending its own data,
also functions to forward data sent by the RFD. Network topologies supported by the standard are star
(single-hop), cluster tree, and mesh (multihop). In the star topology, all communication can be done
only through the PAN coordinator, while in other topologies, communication can be done through
several coordinators on a multihop basis. The 802.15.4 standard defines two types of channel access
methods: beacon enabled (BE) mode and non-beacon enabled (NBE) mode, where the PAN coordinator
ensures which one will be selected as the access method. BE mode uses the superframe structure (see
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Figure 2), where the slotframe format is determined by the coordinator. Each slotframe is limited by
beacons that are generated periodically by the PAN coordinator and divided into 16 slots of the same
size. The time between two consecutive beacons is called the beacon interval (BI). The duty cycle
principle used in the BE mode can be used for power management [24,25].
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Optionally, each superframe can consist of active and inactive periods. In the active period,
the nodes communicate with their coordinator, while during the inactive period the nodes enter
low-power mode to save energy. The active period can then be divided into the contention access
period (CAP) and contention free period (CFP). During the CAP, the CSMA-CA slotted algorithm is
used to access the channel, whereas CFP communication uses the TDMA method with a number of
guaranteed time slots (GTSs), which are predetermined for each node. There is no superframe in the
NBE mode. Thus, the node is always active (energy conservation is delegated to the layer above the
MAC protocol) and it uses an unslotted CSMA-CA algorithm to access the channel.

A number of studies have examined the performance of the MAC 802.15.4 protocol, in both BE
and NBE modes, so that limitations and deficiencies in the standard have been identified. Some of the
limitations and disadvantages of the 802.15.4 standard are explained in [24]. These include unlimited
delay, limited communication reliability, no protection against interference or fading, and relay nodes
that always require energy. For this reason, the 802.15.4 standard is not suitable for many important
scenarios that require stringent requirements in terms of timeliness and/or reliability.

3.2. IEEE802.15.4e TSCH

In 2008, IEEE created the 802.15 Task Group 4e [26] to redesign the MAC protocol in the existing
802.15.4 standard to overcome the deficiencies explained in the previous section. One of the results
of the design is the use of a time synchronized channel hopping (TSCH) strategy that is useful
for improving transmission reliability and energy efficiency. With these energy-saving and reliable
characteristics, the IEE802.15.4e TSCH standard is suitable to be part of the Internet of things protocol
stack [27].

The 802.15.4e TSCH technology provides a reliable and energy-efficient transmission because
it uses the timeslot (TS) and channel-hopping (CH) methods simultaneously. The timeslot access
method will eliminate collisions between active nodes to provide deterministic latency and increase
throughput on the application that uses it. In the absence of collisions, it will also save on energy
use at each node. The channel hopping mechanism will make each node use different frequencies on
each transmission. Channel hopping can reduce the influence of interference and multipath fading to
improve communication reliability. Thus, TSCH will increase network capacity, increase transmission
reliability, and improve latency, while maintaining duty cycles at a low level [24].

The TSCH standard uses a slotframe structure in its timeslot arrangement. Figure 3 shows
an example of a slotframe (S) with 12 timeslot times, with a duty cycle of 50%. Thus, in each slotframe
there will be six timeslots (λ) that can be used by nodes to stay active and six timeslots for idle/sleep
mode. The smaller the value of the duty cycle, the more efficient the use of energy on the network.
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The number of timeslots in a slotframe (slotframe size) will determine the repetition frequency of the
timeslot and the timing for the nodes to carry out the communication process. The smaller the size
of the slotframe, the more chance for nodes to actively send/receive data, with the consequence that
the duty cycle will increase. The standard does not specify the size of the slotframe, but depends
on its application, the size of the slotframe ranges from 10 to 1000 ts [28]. Within each individual
timeslot duration, network nodes have the opportunity to send or receive data, receive or send
acknowledgments (ACKs), or sleep. By default, the duration of one timeslot according to the 802.15.4e
standard is 10 ms [27].
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As previously stated, channel hopping can improve communication reliability, because at each
transmission opportunity, the nodes will use different frequencies. The frequencies used are related to
the channel offset parameter, ChOff. ChOff is translated into a frequency using Equation (1); by using
this equation, channel hopping will occur:

f = F{(ASN + ChOff) mod nch}. (1)

ASN is the absolute slot number, and the ASN value shows the number of timeslots used since
the network started operating or since a certain time determined by the PAN coordinator. The ASN
value will increase along with the passing of the timeslot used for the process of transmitting and
receiving in the network. F is a function realized with a lookup table, containing a set of frequencies
that are ready to use. ChOff is the channel offset and nch is the number of frequencies available,
where 0 5 ChOff 5 (nch − 1). In the IEEE802.15.4e standard, the value of nch is 16 [27]. The relationship
between ASN, S, and slotframe cycle (R) is ASN = (R × S + T), where T is the timeslot number (0 5 T 5
S − 1). To be more clear, we can see the illustration in Figure 4.
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in light blue. The figure shows one green cell that occupies timeslot 1 and ChOff 2. According to the
IEEE802.15.4e standard, the cell is a link, because the standard states that a link is defined as “the
pairwise assignment of a directed communication between devices in a given timeslot on a given
channel offset”. The use of the cell/link enables communication between two nodes on the TSCH
network. Even if the green cells use the same ChOff and T values, based on Equation (1), the ChOff and
T values will produce different frequencies because the ASN values for the two cells are different, i.e., 2
and 14. With different ASN values, the transmit/receive process on the link will use different frequencies,
f1 in cycle 1 and f2 in cycle 2, which leads to the occurrence of the channel hopping mechanism.

3.3. Link Scheduling

In TSCH networks, the mechanism of scheduling becomes a very important part, because the
nodes in the network will be active or sleep according to a predetermined schedule. As for what is
meant by scheduling, in this research it is link scheduling, because the things to be set up are the
timeslots in each slotframe. The scheduling system will generate a schedule that provides information
for each node in what timeslot it must transmit, receive, or sleep. In order to save energy, when it gets
a sleep turn, the nodes will turn off the radio system because it requires the most energy [27].

In TSCH networks, scheduling must be designed carefully because it will determine the success
of the transmission. As an illustration, Figure 5a shows a network with six nodes, a tree topology
network with a directed graph showing the links between nodes and its parents. If node E in the figure
has a timeslot to send data to node D, D must be ready to receive the data in that slot. Figure 6b shows
an example of an activity schedule for each node, starting from timeslot 0 to timeslot 5, using four
offset channels. The assumption used in this example is that each node will send one data packet to the
master node (node A) on each slotframe. Within the duration of one slotframe, all data in the network
nodes must arrive at the master node. If the schedule in Figure 5b is carried out by the network node
in Figure 5a, the process of transmitting, receiving, and collecting data and idling will be as shown in
Figure 6.
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4. Centralized Scheduling Algorithm for the IEEE802.15.4e TSCH Network

The IEEE802.15.4e standard explains how the MAC layer executes a schedule, but it does not
specify how to create/make the schedule. Scheduling can be done by a centralized or distributed
system. In a centralized scheduling system, there is special node responsible for generating and
maintaining network schedules. This particular node is called master node. Each node on the network
reports its latest condition to the master node. The conditions that are reported can contain connectivity
information or the amount of data queuing in each node [27]. Information entered at the master
node will be the basis for the master node to do scheduling. After the scheduling decision is made,
the master node will inform the schedule to all nodes in the network.

As noted in the introduction, there have been many centralized scheduling algorithms for TSCH
networks. This section will explain some of the centralized scheduling algorithms that will be tested
for performance using the TLS-VaD. The scheduling algorithms are IRByTSA, the first top scheduling
algorithm (FTSA), and first leaf scheduling algorithm (FLSA). FTSA and FLSA are relatively simple
new algorithms used to compare with IRByTSA. Other researchers who are developing link-scheduling
algorithms can use the TLS-VaD as a performance test tool.

4.1. Network Models

In this research, the scheduling algorithm is implemented in a tree topology network represented
by a directed graph G = (V, E), where V = {n0, n1, ..., nN-1} is a set of devices, and |V| = N is the total
number of nodes in the network. n0 is the master node (PAN coordinator), and 1 ≤ i ≤ (N − 1) is the
i-th generic node on the network (FFD or RFD). Figure 7 shows graph G for a network. The PAN
coordinator knows graph G and the traffic load generated by each node, that is,

∼
qi, ∀ ni ∈ V, and i , 0.

Each node has (i) a parent node, pi; (ii) a collection of child nodes, ch (ni); and (iii) a sub-tree ST (ni),
which is composed of ni itself and all nodes connected to it via multihop paths.
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Figure 7. Graph G = (V, E) modeling a network with tree topology.

In Figure 7, it is clear that ST(n0) represents the entire network, G. Each node is connected to its
parent pi through a dedicated link, (ni, pi) ∈ E ⊂ (V × V). Thus, there are a number of links |E| = N − 1.
In this study, it is assumed that all links are dedicated to avoiding collisions and reliable links are
available. Each node ni is only connected to its parent pi even though the node has many neighbors.

4.2. Maximal Matching Algorithm

The Internet of things based on IEEE802.15.4e TSCH requires a link-scheduling algorithm, because
only duplex conflict-free links can be allocated to the network nodes [9]. A link is in a duplex conflict
condition if it is used by the node that transmits and receives data simultaneously and/or receives
data from several child nodes at once. The link used by nodes involved in duplex conflict is called
the duplex conflict link (DCL), while the link used by nodes that are free of duplex conflict is called
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the duplex conflict free link (DCFL). Figure 8 depicts DCLs and DCFLs. In Figure 8a, duplex conflict
occurs in the links used by node 0 and node 9, while Figure 8b shows links that are duplex conflict free.
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To get DCFLs, the scheduling algorithm in this research uses the graph maximal matching method,
which is described as follows:

Maximal matching (G; V; E):
1. M = Ø;
2. While (more edges can be added):
2.1. Starting from the edge that connected to the highest rank node, select an edge, e, which has

no vertex in common with an edge in M;
2.2. M = M∪ e.
3. Return M.
G is a directed graph with tree topology, V and E are sets of vertex and edge in graph G. M is a set

of matching edges on graph G, where M is a subset of E.

4.3. Network Traffic and the Duty Cycle

This research assumes that in each duration of an S-sized slotframe, the ni node in graph G
generates a constant number of packets, that is,

∼
qi. The network supports multi-point to point traffic,

in which all packets are aimed at the root node, n0, so that each link (ni, pi) is only used for the uplink.
Each of these nodes forwards the data packet to the parent pi node, which eventually will lead all the
packets to the master node (PAN coordinator). Assuming that all packets in the node are waiting in

the queue at the beginning of the slotframe, this research uses the parameter
∼

Q as a symbol of the total
packets that must be sent to the PAN coordinator (n0) in one slotframe, which can be expressed by
Equation (2):

∼

Q =
N−1∑
i=1

∼
qi. (2)

It is stated in Section 3.2 that each node on the network cannot transmit and receive simultaneously
and receive data from many nodes at once. Therefore, to collect all data in the master node, the transmit
and receive processes are needed in stages. All network nodes that have been scheduled to be active
by the master node, send/receive the data simultaneously. The simultaneous transmit/receive process
will be done in several cycles, until all data in the network reach the master node (n0). The state that all

data have arrived at the master node is marked by the fulfillment of q0 =
∼

Q condition, where q0 is the
queue size of node 0 (n0).

To meet the stringent requirements related to packet delay and power consumption, the scheduling
algorithm in this study strived for a minimum duty cycle value for each node in the network. To send
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network traffic of
∼

Q to master node (n0), the scheduling algorithm will arrange to enable the entire
transmission to be carried out in the first λ slot of each slotframe. Since λ ≤ S, the remaining slots of
(S − λ) will be left empty, thus leading to the duty cycle of λ/S. If the nodes are evenly distributed on

the network, the minimum number of active timeslots (λ) in one slotframe is equal to
∼

Q.

4.4. Deepening of the Observed Scheduling Algorithm

This section explains IRByTSA, FTSA, and FLSA, to make sure that they proceed according to
plan when their visualization/animation is displayed by the TLS-VaD. The algorithms were applied to
networks with topology as shown in Figure 9.
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As an introduction, Table 1 provides a summary of the three scheduling algorithms to highlight
their similarities and differences. It can be seen in item 2 of the table that all three algorithms used
the bursty transmission mechanism. As for what is meant by bursty transmission, when a node gets
a chance to transmit, the node will send all the data in its queue. Thus, with a scheduling algorithm
that uses the principle of bursty transmission, every chance to transmit is an opportunity to empty
the queue.

Table 1. Comparison of Iman–Ramli bursty transmission scheduling algorithm (IRByTSA), first top
scheduling algorithm (FTSA), and first leaf scheduling algorithm (FLSA).

No Item IRByTSA FTSA FLSA

1
Process of generating

scheduling decisions is done
on/for each timeslot

No No No

2 Bursty transmission Yes Yes Yes

3 Transmission priority on the
network

From higher-rank
node

From higher-rank
node From leaf node

4 Transmission priority based
on queue size of a node No No No

5 Transmission priority based
on number of child nodes No No No

6 Resource allocation is only
given to nodes with qn , 0 Yes Yes Yes

7
Chance to transmit from

child to parent node based
on turn

Yes No No
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Since IRByTSA, FTSA, and FLSA apply the bursty transmission principle, the relationship between
λ and the number of cycles (C) is formulated in Equation (3) as follows:

λ =
C∑

s=1

TS(s), (3)

where TS (s) is the number of timeslots needed for each cycle (s) and variable C states the number of

cycles needed to send all data to the master node, so that condition q0 =
∼

Q can be achieved. TS(s) is
determined by Equation (4), as follows:

TS(s) = max{ts i(s)|ni ∈ Active(s)
}

= max
{
q i(s)|ni ∈ Active(s)

}
.

(4)

Equation (4) implies that tsi(s) = qi(s), where tsi(s) represents the total timeslot needed by ni for
transmitting data in step/round (s) and qi(s) is the number of packets queued in ni in a given round s.
This is an applicable formula because: (a) the TSCH network requires one timeslot to send one data
packet, and (b) the node that receives a transmit turn will do bursty transmission when sending its
data. Thus, the number of timeslots needed by each node will be equal to the number of packets in the
node’s queue. Active(s) in Equation (4) indicates a set of nodes that are active at a particular cycle(s).
Based on Equation (4), TS(s) will take the largest qi(s) value from Active(s). This is done to ensure that
the number of timeslots allocated at each cycle meets the needs of all nodes that are scheduled to be
active (sending or receiving data). If the value of TS(s) is smaller than the number of packets that are
queuing at the nodes, even only one node, then not all nodes will be able to do bursty transmission
because the number of allocated timeslots is insufficient.

4.4.1. IRByTSA

Prior to the discussion of IRByTSA, it is necessary to look at Table 2, which shows the symbols
used in this algorithm.

Table 2. Variables used in IRByTSA.

Variables Description

G Graph representation
ND Total number of nodes in the network

NCD[i] Number of child nodes of node [i]
TS(s) Number of timeslots needed for each cycle (s)
∼

Q
Total number of packets in network nodes waiting to be sent to

master node within 1 slotframe duration
i Node number
y Turns
s Cycle/iteration

qz Queue size in node z

turn_now[i] Refers to one child of node i that gets a transmission turn at a
particular cycle/iteration

child_of_node[i][j] j-th child node of node i

child_number_of[i][z] The function that will produce a number showing the sequence
number of node z as a child node of node i.

mod_node[i] Value used for modulus operations on node i, used to enable child
nodes to send data to node i alternately (no priority)

Matching_link[s] Variable that stores the set of active links in each cycle/iteration (s)

A flowchart of IRByTSA is presented in Figure 10, while the explanation for the algorithm is as
follows:
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1 IRByTSA starts with a flowchart symbol, as shown in Figure 11. Once we start the program,
we will see several variables. G is a graphic representation of the tree topology network, as shown
in Figure 9.

2 IRByTSA contains two loops/iterations, L1 and L2, where L2 is inside L1. The continuity of the

looping process in L1 is determined by the condition q0 <
∼

Q, as shown in Figure 12.
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Figure 12. Flowchart of the L1 loop in IRByTSA.

Meanwhile, the L2 loop is controlled by the symbol shown in Figure 13. In the L2 loop, the iteration
symbol For: i = 0 to (ND – 1) states that the scheduling will process all nodes in the network, starting from
node 0 to node (ND – 1).
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Figure 13. Flowchart of the L2 loop in IRByTSA.

3 The decision-making symbol in Figure 14 is used to indicate that if at a certain cycle/iteration
node i is not active (because it has not had a turn to transmit or receive), one of the children of
node i will get a turn to transmit. Meanwhile, if node i is active, the iteration in L2 will continue
to node (i + 1) until all inactive nodes in the network get a turn to transmit or receive. In this way,
the principle of graph matching will be realized in this scheduling algorithm.
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Figure 14. Decision-making process to give a turn to a node in IRByTSA.

The variable turn_now [i] is used to indicate which child of node i will be given a turn to transmit
as long as the child node has data in its queue. The child number of node i is contained in variable z.

4 The green decision symbol in Figure 15 is used to indicate whether node i has more than one
child or not. If node i has more than one child, it will proceed to the blue decision symbol on the
right, and if it only has one child, it will proceed to the left. Meanwhile, the two blue decision
symbols are used to determine whether the queue is empty at the child node of node i.
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5 Part of the IRByTSA flowchart in Figure 16 states that if node i has more than one child (NCD
[i] > 1) and the child of node i has a transmit turn (node z) and its queue is not empty (qz > 0),
then node z is given the opportunity to transmit to node i, as indicated by the command line
matching_link[s] = matching_link[s] + [nz,ni].
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y = mod_node[i] % NCD[i]

turn_now[i] = child_of_node[i][y],

is used to give each child of node i, as long as it still has data to send, a transmit turn alternately.
The turn_now[i] variable is used to store information related to the turn. Thus, supposing we have
turn_now [10] = 5 in a cycle, the child of node 10 that gets the transmit turn is node 5.

If node i has more than one child (NCD [i] > 1) and the child of node i has a transmit turn (node z)
and its queue is empty (qz = 0), the transmit turn will be given to another child of node i. If no child of
node i has data to send, the scheduling process will continue for node (i + 1). The flowchart section in
Figure 17 describes these steps.

Electronics 2019, 8, x FOR PEER REVIEW 15 of 35 

 

 
Figure 17. Giving turns to child nodes (parents with more than one child and qz = 0). 

6 If node i only has one child node and it has data to send, the child node (nz) will be scheduled to 
transmit data to its parent (ni), indicated by the command line matching_link[s] = 
matching_link[s] + [nz,ni]. Figure 18 shows the part of flowchart that illustrates that step. 

 
Figure 18. Process of giving a turn to a child node (parent has only one child node and qz > 0). 

7 The part of the flowchart in Figure 19 is used to find the node that has largest number of packets 
to be sent in a cycle (s), since the number of packets indicates the number of timeslots needed. 
IRByTSA looks for the largest timeslot value required by active nodes in each cycle (s) to ensure 
that the number of timeslots allocated meets the transmission needs of all active nodes. 

Figure 17. Giving turns to child nodes (parents with more than one child and qz = 0).

6 If node i only has one child node and it has data to send, the child node (nz) will be scheduled to
transmit data to its parent (ni), indicated by the command line matching_link[s] = matching_link[s]
+ [nz,ni]. Figure 18 shows the part of flowchart that illustrates that step.
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Figure 18. Process of giving a turn to a child node (parent has only one child node and qz > 0).

7 The part of the flowchart in Figure 19 is used to find the node that has largest number of packets
to be sent in a cycle (s), since the number of packets indicates the number of timeslots needed.
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IRByTSA looks for the largest timeslot value required by active nodes in each cycle (s) to ensure
that the number of timeslots allocated meets the transmission needs of all active nodes.Electronics 2019, 8, x FOR PEER REVIEW 16 of 35 
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Figure 20 shows the application of IRByTSA on the 16-node network shown Figure 9. Figure 20
illustrates the steps, starting from the initial condition where each node has one packet waiting to
be transmitted, and it continues with the process of sending packets gradually to the master node.
IRByTSA requires eight cycles to collect all data in the master node.
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Based on Figure 20, we could determine the values of parameters C, λ, and total channel offsets
(ChOffs) required if we used IRByTSA as in the following:
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_ CIRByTSA = 8 cycles;

_ Total ChOff =
C∑

s=1
ChO f f (s) = ChOff(1) + ChOff(2) + ChOff(3) + ChOff(4) + ChOff(5) + ChOff(6)

+ ChOff(7) + ChOff(8) = 5 + 5 + 5 + 3 + 2 + 1 + 1 + 1 = 23 ChOffs;

_ λIRByTSA =
C∑

s=1
TS(s) = TS(1) + TS(2) + TS(3) + TS(4) + TS(5) + TS(6) + TS(7) + TS(8) = 1 + 2 + 3 +

4 + 2 + 1 + 2 + 2 = 17 timeslots.

4.4.2. FTSA

The FTSA is the first comparison for IRByTSA. This algorithm has a simpler structure than
IRByTSA, as shown in Figure 21. Table 1 shows that the difference between FTSA and IRByTSA only
lies in item 7, particularly in the process of providing transmission opportunities between child nodes
to its parent, be it based on turn or not. The sequence of FTSA child nodes that are given the chance to
transmit is always fixed or not based on turn. The transmission chance in each cycle always starts from
the same node as long as the node has data, while in IRByTSA, the opportunity to transmit is given to
the child nodes based on turn.

Electronics 2019, 8, x FOR PEER REVIEW 17 of 35 

 

 



C

1s
IRByTSA TS(s)λ = TS(1) + TS(2) + TS(3) + TS(4) + TS(5) + TS(6) + TS(7) + TS(8) = 1 + 2 + 3 + 4 + 

2 + 1 + 2 + 2 = 17 timeslots. 

4.4.2. FTSA  

The FTSA is the first comparison for IRByTSA. This algorithm has a simpler structure than 
IRByTSA, as shown in Figure 21. Table 1 shows that the difference between FTSA and IRByTSA only 
lies in item 7, particularly in the process of providing transmission opportunities between child 
nodes to its parent, be it based on turn or not. The sequence of FTSA child nodes that are given the 
chance to transmit is always fixed or not based on turn. The transmission chance in each cycle 
always starts from the same node as long as the node has data, while in IRByTSA, the opportunity to 
transmit is given to the child nodes based on turn. 

START

Variable: 
G(V,E); ND;TS;s;qi;i;

node[i];parent_of_node[i],
matching_link(s)

For: i = 1 to (ND –  1)

 z = parent_of_node[i]
TS(s) = 0

Is (qi>0) & 
(node[i] & node[z]) not active?

matching_link[s] = matching_link[s] + (ni ,nz)

TS(s)<qi?

TS(s) = qi

q0 < Ǭ? s = s + 1

END

matching_link(s) = [ ]

Y

N

Y

N

Y

N

L2
L1

 
Figure 21. FTSA. 

Just like the IRByTSA, the FTSA will provide output in the form of matching_link(s) containing 
the schedule for each node in each cycle. Figure 22 shows both active and idle/sleep nodes in each 
cycle by leaning on the matching_links(s) generated by the FTSA. Figure 22 enables us to determine 
the values of parameters C and λ if we use the FTSA: 
 CFTSA = 7 cycles; 

 



C

s
sChOff

1
)(ChOff Total = ChOff(1) + ChOff(2) + ChOff(3) + ChOff(4) + ChOffS(5) + ChOff(6) 

+ ChOff(7) = 5 + 5 + 4 + 4 + 3 + 2 + 1 = 24 ChOffs; 

Figure 21. FTSA.

Just like the IRByTSA, the FTSA will provide output in the form of matching_link(s) containing
the schedule for each node in each cycle. Figure 22 shows both active and idle/sleep nodes in each
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cycle by leaning on the matching_links(s) generated by the FTSA. Figure 22 enables us to determine
the values of parameters C and λ if we use the FTSA:

_ CFTSA = 7 cycles;

_ Total ChOff =
C∑

s=1
ChO f f (s) = ChOff(1) + ChOff(2) + ChOff(3) + ChOff(4) + ChOffS(5) + ChOff(6)

+ ChOff(7) = 5 + 5 + 4 + 4 + 3 + 2 + 1 = 24 ChOffs;

_ λFTSA =
C∑

s=1
TS(s) = TS(1) + TS(2) + TS(3) + TS(4) + TS(5) + TS(6) + TS(7) = 1 + 2 + 2 + 4 + 1 + 4 +

4 = 18 timeslots.
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4.4.3. FLSA

The FLSA is the second comparison for IRByTSA. Just like FTSA, FLSA has a simpler structure
than IRByTSA, as indicated by the flowchart in Figure 23. As illustrated in Table 1, FLSA differs from
IRByTSA in only two ways: (1) its transmission turn always starts from the leaf node, and (2) at each
cycle, the order of transmission from the child node to its parent is always fixed, and the chance of
transmission always starts from the same node as long as the node has data.
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Figure 23. FLSA.

The algorithm output is schedule information summarized in the matching_link (s) variable.
The schedule information will be announced by the master node to all nodes in the network to inform
them about the timeslot when the nodes must be active or idle/sleep. Figure 24 shows the active and
idle/sleep nodes in each cycle based on matching_links (s) generated by the FLSA.
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From Figure 24 the values of parameters C and λ can be determined if the TSCH network uses
the FLSA:

_ CFLSA = 5 cycles;

_ Total ChOff =
5∑

s=1
ChO f f (s) = 6 + 4 + 4 + 2 + 1 = 17 ChOffs;

_ λFLSA =
CFLSA∑
s=1

TS(s) = TS(1) + TS(2) + TS(3) + TS(4) + TS(5) = 1 + 2 + 3 + 3 + 8 = 17 timeslots.

To compare the performance of IRByTSA, FTSA, and FLSA, we recapitulated the results of the
algorithm test for small networks in Table 3. In terms of the number of active timeslots (λ) and number
of cycles, the table indicates that the performance of FLSA was better than that of IRByTSA and
FTSA, while IRByTSA’s performance was slightly better than FTSA’s. However, to draw conclusions
about which of these scheduling algorithms has the best performance in terms of the λ or duty cycle
parameters and the number of cycles, we need further testing on networks with larger dimensions.
Therefore, we continued performance testing of these three algorithms by measuring their performance
on a larger network. The testing used the TLS-VaD to hasten the process.

Table 3. Temporary recapitulation of the scheduling algorithm performance.

Scheduling Algorithm Active Timeslots (λ) Cycles (C) Total Channel Offsets
(ChOff)

IRByTSA 17 8 23
FTSA 18 7 24
FLSA 17 5 17

5. TSCH Link Scheduling Visualization and Data Processing

Research in the field of network protocol requires simulators as a tool for visualization,
validation, and performance testing, and one of the research topics in this field is scheduling
algorithms. Studies of scheduling algorithms commonly use NS-2, NS-3, OPNET, and other simulators.
However, the centralized scheduling algorithm on TSCH has very few supporting simulators,
including NS-3 [29] and 6TiSCH simulator [30], which only provide limited support. Therefore, this
research seeks to develop a tool for developing a centralized link-scheduling algorithm on the
IEEE802.15.4e TSCH network. We succeeded in making a tool known as the TSCH link-scheduling
visualization and data processing or abbreviated as TLS-VaD. The TLS-VaD was developed to meet the
following objectives:

q It visualizes the transmit and receive processes between nodes in a network in a number of cycles.
The data in the nodes of each cycle will move toward the master node gradually. Information on
which nodes are active in each round is determined by the schedule matrices generated by the
scheduling algorithm. With this visualization, researchers can determine whether the developed
scheduling algorithm is in accordance with the plan or not.

q It provides data output that shows the performance of the developed scheduling algorithm:
number of active timeslots per slotframe (λ), number of cycles (C) and duty cycles (DC),
and number of required channel offsets (ChOffs). The output of this tool will show the
following performance:

� Number of active timeslots per slotframe (λ): the fewer active timeslots, the shorter the on
time of network nodes, thereby saving on the amount of energy used.

� Number of cycles: indicates the speed of the scheduling algorithm in generating schedules.
The smaller the number of cycles, the faster the algorithm can create a schedule. In terms of
centralized network management, the faster the schedule, the better, because the resources
to create the schedule can be used to serve other networks.
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� Duty cycle: number of active timeslots when connected to the size of the slotframe. At the
same slotframe size, the smaller the duty cycle, the better, because it indicates a network
condition that is increasingly energy-efficient.

� Required channel offset: used to get the channel offset per cycle (ChOff/C) parameter.
ChOff/C shows the average number of channel offsets used in each cycle. Since the
802.15.4e standard only provides 16 channel offsets, the ChOff/C value should be smaller
than 16. The smaller the ChOff/C value, the better, because it will reduce the possibility
of interference with other nodes that are active at the same time/cycle. Even though this
research assumes there is no interference, it is still important to note ChOff/C data as
preliminary information for researchers who want to include interference problems as
a parameter to consider.

q It provides a platform for researchers in the field of centralized link-scheduling algorithms to test
the performance level of developed algorithms. A scheduling algorithm has good performance
if all output data released from TLS-VaD has a minimum value. If we want to improve the
performance of the algorithm, it can be repaired separately, because in order to use TLS-VaD,
researchers can simply create an executable (exe) file from the developed algorithm and embed the
file on TLS-VaD. Since TLS-VaD only requires exe files, researchers do not need to be bound to one
particular programming language; they only need to create an exe file capable of processing input
in the form of an adjacency matrix and producing schedule matrices as output. These schedule
matrices will then be processed by TLS-VaD to produce animations and data output. A description
of the relationship between TLS-VaD and the exe file of the scheduling algorithm is presented in
Figure 25.
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5.1. The Design of TLS-VaD

5.1.1. System Design

TLS-VaD is an open platform for anyone who wants to observe the performance of a scheduling
algorithm. To observe or examine an algorithm, all users of TLS-VaD must have an executable file of
the algorithm to be observed. The use case diagram for this tool can be seen in Figure 26, which shows
that the application contains two main feature: simulation and experiment. The simulation feature
will visualize the process of transmitting and receiving the data on a network that is controlled by
a scheduling algorithm. Whereas with the experiment feature, besides being able to see animations,
users can also obtain data that are related to the performance of the selected scheduling algorithm.
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The activities that are carried out in the simulation feature can be seen in Figure 27, which shows
that to obtain the desired results, user must first enter the network topology. Network input can
be done by either drawing node by node or by inputting the adjacency matrix of the network.
After accomplishing the input process, the next activity is applying the scheduling algorithm and
the running animation procedure to the network. As for the experiment feature, Figure 28 shows
that the activities that must be carried out are almost the same as those for the simulation feature.
The difference lies in that the experiment feature also includes a process for inputting the network
topology iteratively as well as a process for displaying experimental data.
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As stated in the previous section, to test a scheduling algorithm using TLS-VaD, researchers must
attach the executable file of the scheduling algorithm to be observed. The processes of developing the
algorithm and the programming language used are left to each researcher. For success with TLS-VaD,
researchers must abide by the following rules: (1) the attached executable file must be able to accept
input in the form of an adjacency matrix that represent the network topology (see Figure 29). The digit
1 in the matrix shows a connection between a pair of nodes where its node number corresponds to
the row and column numbers of the digit. (2) The attached executable file must be able to produce
scheduling matrices that represent the activities of transmitting and receiving data at nodes in the
network. The number of matrices shows the number of cycles needed to send all data to the master
node (see Figure 30 for more details).
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5.1.2. Implementation

This tool was designed and built using the following website-based programming technologies:
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1. Native PHP (hypertext processor): A technology for creating basic scripts that are widely used
for website-based applications.

2. C ++: the programming language used in this software for processing input data in the form of
a matrix that is transformed into the software using a multi-dimensional array.

3. Javascript: a high-level programming language that runs on the client-side like a browser.
Here, it was used to create animations/visualizations.

4. HTML (hypertext markup language): a markup language that is used to make the main structure
of the display of web-based software.

5. Bootstrap: a CSS framework that is used for HTML styling so that the software display becomes
neater and more attractive.

6. Animate traffic: this library, which was created using Javascript, displays animation from input
data in the form of arrays. Here, it was used as a library to display animation/visualization.

The flowchart that illustrates how the TLS-VaD works as a whole can be seen in Figure 31.
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5.2. Using the TLS-VaD 
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5.2. Using the TLS-VaD

To make this tool easy to use and more interesting, TLS-VaD uses a GUI in its application. Figure 32
shows the display of TLS-VaD. This tool provides two menus (simulation and experiment), and two
input system (network topology and adjacency matrix). As mentioned in Section 5.1, the simulation
menu is used to test whether the algorithm being designed is running as planned, while the experiment
menu is used to obtain data so that we can measure the performance of a scheduling algorithm.
Figure 32 shows the network topology that was entered into the network topology section, and the
adjacency matrix section shows the relevant adjacency matrix.
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Figure 32. Menus and input systems in TLS-VaD.

If the user selects the simulation menu, then after entering the input, he/she can press the generate
simulation button to see the animation or visualization of the transmit and receive processes in the
network (see Figure 33). Figure 33 shows red and blue nodes in the network, with red indicating
a node with an empty queue and blue indicating a node with a queue filled with packets waiting to be
sent. Figure 33 shows no nodes that transmit and receive activities simultaneously and no node that
receives data from child nodes simultaneously. Sending data from child nodes to their parents is done
alternately. To ensure that the designed algorithm runs as planned, we could observe the transmit
and receive processes at each cycle, which could be played back using the Play All, Play, Rewind, and
Forward buttons.
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Figure 33. Transmit and receive visualization on the simulation menu.

Meanwhile, if the user is in the experiment menu, then the user will be guided to enter the
desired experiment scenario. Figure 34 shows the display when the experiment scenario is entered.
After the scenario is determined, the data collection process can be commenced by pressing the Start
Experiment button. The results of the experiment will bring up the data summarized in the result
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table. Figure 35 shows the result table containing data about the number of cycles (C), channel offset
(ChOff), active timeslots (λ), and duty cycle (DC) for network dimensions ranging from 10 to 50 nodes.
These data allow researchers to analyze the performance of the developed scheduling algorithm.
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6. Scheduling Algorithm Performance Test Using TLS-VaD

In this section, the TLS-VaD was used to compare the performance of IRByTSA with FTSA and
FLSA. A good link-scheduling algorithm in TSCH networks has the following characteristics:

(a) It results in minimum values for active timeslots (λ) and duty cycles (D).
(b) It is quick at generating scheduling decisions that are marked by a minimum cycle (C) value.

Active timeslot (λ) has minimum magnitude if its value is equal or close to
∼

Q, while the speed in
generating scheduling decisions is indicated by the number of cycles (C) in Equation (3). The smaller
the value of C, the faster the algorithm generates scheduling decisions.
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6.1. Hypotheses on the Performance of Scheduling Algorithms

This section explains some hypotheses related to the performance of each scheduling algorithm,
as follows:

(a) In producing minimum λ, IRByTSA will outperform FTSA and FLSA. This is estimated because
IRByTSA prioritizes transmission at higher-rank nodes. By prioritizing higher-rank nodes,
data packets will arrive at the master node faster, which decreases the number of timeslots needed
to send data along the passing of cycles. The decreased need for timeslots in each cycle will
produce the minimum λ value.

(b) In producing the minimum number of cycles, FLSA will outperform IRByTSA and FTSA. This can
occur because FLSA gives priority to transmission at leaf nodes that will give more links to the
DCFL(s) than the algorithm that prioritizes transmission at higher nodes. With more links on
DCFL(s), network data will reach the master node faster. Faster arrival of data at the master node
on a network that uses FLSA will be reflected in fewer cycles than a network that uses IRByTSA
or FTSA.

(c) In producing a minimum λ, FTSA will not perform as well as IRByTSA, because in FTSA,
the opportunity to transmit from the child node to its parent is not done in rotation, resulting in
a buildup of data at certain nodes, leading to increased λ value generated by the algorithm.

(d) In producing a minimum number of cycles, FTSA will not perform as well as FLSA because of
two factors: (i) transmission priority is given to higher nodes. Algorithms that give priority to
transmission at higher nodes will not be able to provide more DCFLs than algorithms that give
priority to transmission at leaf nodes. Thus, what happens to IRByTSA will also happen to FTSA.
(ii) The process of transmitting from a child node to its parent always starts from the first child
node, not based on turns. As long as the child nodes have data, even if only one data packet,
the node will be given the opportunity to transmit. This will result in data reaching the master
node slowly, so the number of cycles needed to collect all data at the master node will be greater
than the number of cycles in IRByTSA and FLSA.

6.2. Experimental Scenarios

The experiment uses TLS-VaD as a tool to analyze the performance of the scheduling algorithms
applied to network topologies that increase in dimension from 10 to 100 nodes, in increments of 10.
In the meantime, starting from a network of 50 nodes, node addition is done in two ways, horizontal
and vertical increments. With horizontal increments, network nodes are increased by adding children
to the master node, whereas with vertical increments, network nodes are increased by adding new leaf
nodes. The two types of node additions are illustrated in Figure 36.

Therefore, to get a performance comparison between IRByTSA, FTSA, and FLSA, the algorithms
are applied to a network with two scenarios. In the first scenario, the scheduling algorithm is applied
to a network that grows horizontally, and in the second scenario it is applied to a network that grows
vertically. To collect all data at the master node, networks that increase in size vertically will require
more cycles and timeslots than networks that increase horizontally. This happens because with vertical
increase, the number of child nodes of the master node does not increase when the network dimensions
increase, which will cause a bottleneck in the network. Thus, if a scheduling algorithm can show good
performance in the second scenario, it indicates the reliability of the algorithm. In this test, we will see
which of the scheduling algorithms (IRByTSA, FTSA, or FLSA) can produce the minimum number of
active timeslots (λ), duty cycles (D), and cycles (C). The tests were performed using slotframe sizes of
200 timeslots.
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6.3. Results and Discussion

TLS-VaD was used in the process of testing and retrieving data for performance comparison of
IRByTSA, FTSA, and FLSA. The use of TLS-VaD eases the process. The TLS-VaD outputs are the data
of active timeslots (λ), duty cycles (D), number of cycles (C), and total channel offsets (ChOffs) for
IRByTSA, FTSA, and FLSA, collected in Tables 4–7. Furthermore, the data are displayed in graphical
form to ease the process of performance comparison. As a reference for performance comparison,
as stated in Section 4.2, the desired TSCH scheduling algorithm is one that can produce a minimum
value of λ and minimum number of cycles (C).
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Table 4. Active timeslot (λ) data of IRByTSA, FTSA, and FLSA.

Number of
Nodes

IRByTSA FTSA FLSA

Horiz. Vert. Horiz. Vert. Horiz. Vert.

10 9 9 9 9 10 10
20 19 19 22 22 22 22
30 30 30 35 35 35 35
40 40 40 51 51 49 49
50 51 50 64 66 59 60
60 60 60 73 82 73 75
70 70 70 86 93 79 90
80 80 82 110 114 87 105
90 90 101 126 137 101 126
100 100 112 137 135 118 133

Table 5. Duty cycle (D) data of IRByTSA, FTSA, and FLSA.

Number of
Nodes

IRByTSA FTSA FLSA

Horiz. Vert. Horiz. Vert. Horiz. Vert.

10 0.045 0.045 0.045 0.045 0.050 0.050
20 0.095 0.095 0.110 0.110 0.110 0.110
30 0.150 0.150 0.175 0.175 0.175 0.175
40 0.200 0.200 0.255 0.255 0.245 0.245
50 0.255 0.250 0.320 0.330 0.295 0.300
60 0.300 0.300 0.365 0.410 0.365 0.375
70 0.350 0.350 0.430 0.465 0.395 0.450
80 0.400 0.410 0.550 0.570 0.435 0.525
90 0.450 0.505 0.630 0.685 0.505 0.630
100 0.500 0.560 0.685 0.675 0.590 0.665

Table 6. Cycle (C) data of IRByTSA, FTSA, and FLSA.

Number of
Nodes

IRByTSA FTSA FLSA

Horiz. Vert. Horiz. Vert. Horiz. Vert.

10 6 6 5 5 4 4
20 8 8 9 9 6 6
30 8 8 11 11 7 7
40 11 11 11 11 7 7
50 11 12 12 11 8 8
60 12 12 15 16 9 9
70 12 13 15 17 9 10
80 13 14 17 18 10 11
90 14 15 17 18 11 11
100 14 15 19 21 11 11
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Table 7. Channel Offset (ChOff) data of IRByTSA, FTSA, and FLSA.

Number of
Nodes

IRByTSA FTSA FLSA

Horiz. Vert. Horiz. Vert. Horiz. Vert.

10 12 12 11 11 9 9
20 26 26 27 27 21 21
30 40 40 45 45 31 31
40 62 62 62 62 43 43
50 78 80 78 79 56 59
60 95 97 101 113 67 76
70 110 122 116 148 81 90
80 131 143 144 184 97 107
90 152 159 167 204 112 117
100 169 175 192 233 124 135

Based on the λ data in Figure 37, with an increasing number of nodes, IRByTSA always produced
a lower value of λ than FTSA (λFTSA) and FLSA (λFLSA). The value of λ in IRByTSA (λIRByTSA) remained
the smallest when the network dimension increased. Only at the network dimension of 10 nodes was
the value of λIRByTSA the same as λFTSA. However, this did not indicate anything significant, because the
network dimension was still too small. The performance of the actual algorithm will only be seen on
large networks, on which will arise more problems, such as processing time, processing delay, memory
capacity, and so on. Efficient algorithms are mostly needed in large networks.
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Figure 37. Value of λ in IRByTSA, FTSA, and FLSA.

In addition to being the smallest, λIRByTSA also had a distance value that tended to get further
away from λFTSA and λFLSA as network dimensions increased. This was indicated by the difference
data between λIRByTSA and λ of FTSA and FLSA, as shown in Table 8. In scenario I (Horiz.), the biggest
difference between λIRByTSA and λFTSA was 37 timeslots, while between λIRByTSA and λFLSA the
difference was 18 timeslots. In scenario II (Vert.), the biggest difference between λIRByTSA and λFTSA

was 36 timeslots, while between λIRByTSA and λFLSA it was 25 timeslots.
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Table 8. Difference between λIRByTSA and λ of other algorithms.

Number of Nodes
(λIRByTSA − λFTSA) (λIRByTSA − λFLSA)

Horiz. Vert. Horiz. Vert.

10 0 0 1 1
20 3 3 3 3
30 5 5 5 5
40 11 11 9 9
50 13 16 8 10
60 13 22 13 15
70 16 23 9 20
80 30 32 7 23
90 36 36 11 25

100 37 23 18 21

In scenario II, the value of λIRByTSA was slightly increased, especially in network dimensions above
80 nodes. It is seen on the IRByTSA-Vert graph, which moved away from the IRByTSA-Horiz chart.
However, in both scenarios I and II, λIRByTSA was always smaller than λFTSA and λFLSA. This indicates
that IRByTSA had a high level of stability in the effort to get the best λ value and was superior to FTSA
and FLSA in terms of its ability to reach the minimum λ value.

Meanwhile, for FTSA, its λFTSA value in scenario I and II was much greater than λIRByTSA.
This shows the performance of FTSA in terms of getting a minimum value of λ, which was far below
that of IRByTSA. The performance of FTSA, which was worse than IRByTSA, even though the way
they work is most similar (Table 1 shows that all items are the same except for number 7), was evidence
that the mechanism for providing transmission opportunities among child nodes based on turn was
an important procedure to have a scheduling algorithm that can give minimum λ. As for FLSA,
with increased network size, this algorithm performed better in producing λ values than FTSA but not
better than IRByTSA. As seen in Figure 37, the value of λFLSA was always above λIRByTSA and almost
always below FTSA, especially for networks with large dimensions.

Although λFTSA was far above λIRByTSA in both scenarios, the λFTSA values in scenarios I and II
were not very different, whereas in FLSA, the values of λFLSA for scenarios I and II had quite large
differences. IRByTSA also had the same tendency as FTSA, in that the λIRByTSA values for scenarios I
and II were not much different. The difference in λ that was not large in scenarios I and II for IRByTSA
and FTSA was evidence that the algorithm that gave transmission priority to higher-rank nodes would
provide a stable λ value for various network conditions.

The value of λ would be directly proportional to the value of the duty cycle, as shown in Figure 38.
The duty cycle generated by IRByTSA for the number of nodes ranging from 10 to 100 had the minimum
value, which was below 0.5 for both scenarios. With a low duty cycle, the energy consumption of the
nodes on the network will be low.

Figure 39 shows the number of cycles needed by each algorithm to collect all data in the master
node. It can be seen that the number of cycles in IRByTSA (CIRByTSA) was always smaller than the
number of cycles in FTSA (CFTSA), and this occurred in scenarios I and II. As the network size increased,
the difference between the values of CIRByTSA and CFTSA became even greater. Based on these data,
it was conclusive that in terms of speed in generating scheduling decisions, IRByTSA performed
better than FTSA. IRByTSA required fewer cycles, because the process of providing transmission
opportunities among child nodes was based on the turn. This highlights that it is important to apply
procedure 7 in Table 1 to algorithms that give high priority to higher-rank nodes, such as IRByTSA
and FTSA.
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Meanwhile, in terms of the number of cycle parameters, FLSA shows the best performance, as
indicated by the fewest cycles (CFLSA) compared to CIRByTSA and CFTSA, for both scenarios I and II.
This result is proof that link-scheduling algorithms with priority transmission from leaf nodes will
produce scheduling decisions faster than algorithms prioritizing higher-rank nodes. The differences
between CFLSA, CIRByTSA, and CFTSA are shown in Table 9. The greatest difference between CIRByTSA

and CFLSA lies in four cycles, while between CFTSA and CFLSA it is seven cycles, all of which occur in
scenario II with a network dimension of 100 nodes. Based on this difference, the actual performance of
IRByTSA in terms of the number of cycles is almost close to FLSA, because the difference between the
two is only four cycles for network dimensions ranging from 10 to 100 nodes.
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Table 9. Difference between CFLSA, CIRByTSA, and CFTSA.

Number of Nodes
|CFLSA − CIRByTSA| |CFLSA − CFTSA|

Horiz. Vert. Horiz. Vert.

10 2 2 1 1
20 2 2 3 3
30 1 1 4 4
40 4 4 4 4
50 3 4 4 3
60 3 3 6 7
70 3 3 6 7
80 3 3 7 7
90 3 4 6 7

100 3 4 8 10

The performance of scheduling algorithms in terms of the need for channel offsets is presented
in Figure 40. Through this figure we could compare the number of channel offsets required by
each algorithm in the process of collecting all data at the master node. Meanwhile, the exact
number of required channel offsets is presented in Table 7. The data show that IRByTSA usually
requires fewer ChOffs than FTSA, especially in the same scenario and in large network dimensions.
However, when compared to FLSA, IRByTSA needs more ChOffs. Figure 40 shows that with increased
network size, the amount of ChOffs in IRByTSA was generally smaller than that in FTSA, but it was
always greater than that in FLSA.Electronics 2019, 8, x FOR PEER REVIEW 33 of 35 
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In fact, the more important thing to observe from ChOff data was ChOffs per cycle (ChOff/C),
because ChOff/C will show the average number of ChOffs used in each cycle. As previously stated,
according to the 802.15.4e standard, the number of available ChOffs is 16 channels. If there are
more than 16, several transmissions will use the same channel offset, which can increase interference
opportunities. Thus, the smaller the value of ChOff/C, the better, because it can reduce the possibility
of interference. ChOff/C data are presented in Table 10, and based on the table, although these data for
the scheduling algorithms varied in size, they show that the three algorithms had almost the same
performance. The table shows that the value of ChOff/C for each scheduling algorithm was not much
different in scenarios I and II. The performance of FTSA was usually below that of IRByTSA and FLSA,
but based on ChOff/C, FTSA had the smallest ChOff/C value on a network dimension of 100 nodes for
both scenario I and II. This shows that based on ChOff/C data, the three scheduling algorithms had
relatively similar performance.
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Table 10. ChOff/C data of scheduling algorithms.

Number of
Nodes

IRByTSA FTSA FLSA

Horiz. Vert. Horiz. Vert. Horiz Vert.

10 2 2 2 2 2 2
20 3 3 3 3 4 4
30 5 5 4 4 4 4
40 6 6 6 6 6 6
50 7 7 7 7 7 7
60 8 8 7 7 7 8
70 9 9 8 9 9 9
80 10 10 8 10 10 10
90 11 11 10 11 10 11
100 12 12 10 11 11 12

7. Conclusions

This research successfully developed a simulator that could be used as a tool to develop
a centralized link-scheduling algorithm on the IEEE802.15.4e TSCH network. The developed simulator
is known as the TSCH link-scheduling simulator, or TLS-VaD. As a research aid, the TLS-VaD provides
the following facilities: (a) visualization for designed scheduling algorithms so that researchers can
verify and validate them, (b) four types of data that can be used to analyze the performance of
scheduling algorithms, and (c) a simplified experiment, because TLS-VaD can be used independently
by researchers as a tool for processing and visualization scheduling data.

In the validity test, TLS-VaD was proven to be valid. This was indicated by a match between
the visualization and output data generated by TLS-VaD with the link-schedule matrices generated
by the scheduling algorithm. After passing the validity test, TLS-VaD was used to compare the
performance of the Iman–Ramli bursty transmission scheduling algorithm (IRByTSA) with the first top
scheduling algorithm (FTSA) and first leaf scheduling algorithm (FLSA). The parameters observed
in this performance test were active timeslots (λ) and the speed of the algorithm in generating
scheduling decisions.

The performance comparisons using TLS-VaD reveal that IRByTSA performed better than FLSA
and FTSA, because it could save more power and generate scheduling decisions relatively quickly.
The ability of IRByTSA to save power is shown by its λ value (λIRByTSA), which was smaller than
the values in FTSA (λFTSA) and FLSA (λFLSA), while the ability to generate scheduling decisions in
a relatively quick manner is shown by the number of cycles (C) required by IRByTSA (CIRByTSA),
which was smaller than C in FTSA (CFTSA) and almost close to that in FLSA (CFTSA). Although in terms
of the number of cycles IRByTSA was not able to show the best performance, the difference between
CIRByTSA and CFLSA, only four cycles, could be compensated by the difference between λIRByTSA and
λFLSA, which amounted to 25 timeslots.

The performance comparison of these three scheduling algorithms was in line with the hypotheses.
This was reinforced by two additional pieces of information: the performance of the three algorithms
was almost the same in terms of the ChOff/C parameter, and the CIRByTSA value was almost close
to CFLSA. This research proved that TLS-VaD could be used as a tool to develop a centralized
link-scheduling algorithm on the IEEE802.15.4e TSCH network.
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