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Abstract: Wireless sensor networks have recently been widely used in several applications and
scenarios, especially because they have the ability and flexibility for establishing a scalable and
reliable wireless network. Cooperative multi-robotic systems (CMRS) are one example of these
applications where establishing a wireless network between robots is essential and paramount to
their operation. Further, these robots can utilize their mobility to provide sensing functionality for
areas that are not covered by the static sensor. This can be achieved by equipping the robots with
specific sensors to sense the area of interest (AoI) and report the sensed data to a remote monitoring
center for further processing and decision-making. However, the nodes that form the sensor network
have limited energy, and, as such, efficient algorithms in clusters’ formation, packets’ routing, and
energy and mobility management are paramount. In this paper, a literature survey is presented
containing the most related works that have been proposed to solve these challenges utilizing fuzzy
logic. Most of the literature work attempted to utilize a de-centralized approach, where certain input
parameters such as the residual energy, communication link quality, network congestion status, the
nodes’ distance to the sink node and its location with respect to the other nodes, and the data and
their sampling rate are all used as inputs to the fuzzy logic controller. These input parameters are
used to determine several performance vital factors such as the cluster formation and its cluster
head, best route to the sink node, optimal power management policies in terms of sleep/awake times
needed to maximize the network lifetime, nodes’ mobility management policies to maintain network
connectivity, and best route in terms of packet loss and delay.

Keywords: fuzzy logic; wireless sensor networks; clustering; routing; power management

1. Introduction

A wireless sensor network (WSN) comprises spatially circulated self-ruling sensors to agreeably
screen and monitor physical or ecological conditions, out of which contain vibration, temperature,
weight, sound, movement, or contaminations [1–3]. It presents a new generation of real-time embedded
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systems, which are characterized by having limited computation, energy, and memory resources.
Several applications and scenarios, such as military and remote sensing applications, are roused by
WSNs. Further, the improvement of WSNs, for example, in battlefield reconnaissance [4], is currently
being utilized in numerous modern and regular citizen application territories, including mechanical or
industrial procedure checking and control, machine wellbeing observation, condition and territory
checking, medicinal service applications, home robotization, and traffic control [5–7]. It is worth
mentioning that every sensor node in a certain network is commonly outfitted with a radio transceiver
(or an equivalent wireless communications device); an energy source, usually known as a battery;
as well as a micro-controller [8]. Another potential application where WSNs play a crucial role is in
cooperative multi-robotic systems (CMRS) [9–14], where several mobile robots cooperate on performing
a specific mission within certain area of interest (AoI). For instance, the robots can utilize their mobility
to provide sensing functionality for areas that are not covered or reachable by static sensors, thus
enhancing the sensing and coverage capabilities of the legacy static sensor network. However, these
robots usually communicate with each other, as well as with the base station, in order to have full
coordination and optimal management while performing their missions and to send the sensed data to
the monitoring center for further processing and decision-making. However, in order to have efficient,
reliable, and scalable WSN, several parameters and configurations should be optimized, especially
with the mobility challenges of the mobile robots, as well as the limited energy of the sensor nodes.
Another type of sensor network is a hybrid network, where static, mobile, and flying nodes are utilized
to collaboratively sense the AoI in a comprehensive and efficient manner [15,16].

In order to utilize the limited energy source, in cooperative multi-robotic wireless sensor networks
(CMR-WSNs, the sensor nodes are normally grouped into clusters, where all the nodes send their
captured data to a central node called a cluster head (CH). This not only saves energy, but also
mitigates interferences between the different nodes that are deployed within certain AoI. Typically,
data is sent to a remote monitoring center for further analysis and decision-making. Therefore, CHs
communicate with each other and send the captured data using multi-hop routing until the data
reaches the remote and decision-making destination center. Both clustering and routing processes are
vital in WSN operation and need to be optimized in order to increase the network lifetime. Generally,
and as indicated by the WSN structure, routing conventions can be grouped mainly into flat-based and
clustering-based protocols [3–6]. Clustering-based routing conventions are the most widely recognized
method that is utilized in WSNs. It is critical to refer to the fact that a massive measure of research on
WSNs is coordinated towards expanding the network lifetime by making them energy proficient [3–8].
The clustering method is considered as one of the key activities that are actively investigated for
prolonging the network lifetime in WSNs [7,8,17,18].

Furthermore, optimizing the nodes’ power management in terms of sleep/wake times is very
crucial to achieve an extended life network, especially in that the nodes are normally deployed in an area
that is difficult to reach, and, as such, recharging their batteries may not be a viable option. In addition to
these challenges, mobility management is another challenge that is associated with mobile sensor nodes
that are witnessing increased growth in usage and adoption in several applications and scenarios [4].
The existence of mobile nodes creates some new challenges in wireless sensor networks such as power
consumption, dynamic network topology, mobility of the sink, and localization. The new challenges
are strongly connected to a critical issue of mobile sensor networks, that is, network connectivity.

Artificial intelligence mechanisms have been utilized in previous WSN research, particularly in
routing protocols; clustering algorithms; and power management including fuzzy logic [19], artificial
neural network (ANN) [20], neural fuzzy inference system (ANFIS) [21], and optimization algorithms,
such as particle swarm optimization (PSO) [22], genetic algorithms [23], gravitational search algorithm
(GSA) [24], and bacterial foraging algorithm (BFA) [25]. The innovation of fuzzy and neuro-fuzzy
systems in WSNs utilizes soft computing concepts to not only deal with the increment execution
of WSNs, but also make them increasingly intelligent. Interestingly, fuzzy logic helps in settling
on constant choices without requiring information about the environment [26]. Then again, regular
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control instruments or approaches, for the most part, need precise and complete knowledge about the
environment. Fuzzy logic can likewise be used for settling on a choice (i.e., making a decision), which
is dependent on various environmental parameters that are required to be combined as indicated by
predefined rules [27,28]. In particular, fuzzy logic is utilized in clustering for blending distinctive
clustering parameters, as indicated by predefined standards or rules and, afterward, choosing cluster
heads is dependent on the outcomes acquired. Moreover, as widely reported in the literature, the
cluster head election overhead is expected to be substantially reduced through the efficient use of
fuzzy logic.

The aim of this paper was to highlight the main contributions that utilize fuzzy logic in addressing
the major challenges of CMR-WSNs, which were used as a base for the conducted literature review
and selected papers. The main contributions of this paper can be summarized as follows:

• Identification of the main challenges for WSN used in cooperative multi-robotic scenarios, namely,
clustering, routing, power management, and mobility management.

• Conducting a comprehensive literature review for the papers that propose fuzzy logic-based
solutions to the CMR-WSNs’ main challenges and providing comparison tables for various
fuzzy-based approach solutions and algorithms discussed in the literature.

In the literature, several works describe different fuzzy-based solutions for tackling CMR-WSNs’
challenges. However, there are very few papers that group these solutions together, summarize them,
as well as conduct comparisons between them.

The remainder of the paper is organized as follows. Section 2 provides a general technical
overview of fuzzy logic. Section 3 summarizes the most recent related works for solving the clustering
problem utilizing fuzzy logic. Section 4 presents the related works that utilize fuzzy logic as a reason for
addressing the WSN routing challenge. Section 5 discusses how fuzzy logic can be used in optimizing
nodes’ power management. Section 6 describes the potential of fuzzy logic in managing mobility for
CMR-WSNs. Finally, Section 7 concludes the paper and proposes future research directions.

2. Fuzzy Logic Overview

The general structure of a fuzzy logic-based decision system is depicted in Figure 1, which consists
of three main building blocks: the fuzzifier, the inference engine, and the de-fuzzifier [21]. The fuzzy
logic system (FLS) knowledge is represented by fuzzy variables that can take any values between 0 and
1, as opposed to the binary logic system; further, it compromises a set of IF-THEN rules. To illustrate
this, consider an input variable that has an exact value that is measured, for example, from a weather
temperature sensor—in fuzzy logic, these exact values are called crisp values. Next, the fuzzifier will
group the crisp input values and map them to a fuzzy set using the membership function. The fuzzifier
output named the fuzzy linguistic variables are used to describe the system qualitatively. For example,
they can describe the weather on the basis of the measured temperature as hot, cold, warm, freezing,
and so on.
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After that, the inference engine shown in Figure 2 maps the input values to a certain fuzzy output
on thebasis of a set of IF-THEN rules, and the fuzzy outputs of these rules are then aggregated using
the aggregator function. Aggregation is the process by which several fuzzy values are mapped to a
single fuzzy set that represents the output rules of the fuzzy rules. For example, the weighted means
function can be used as an aggregator to map several fuzzy values to a single value that will be used
in the de-fuzzification process. Finally, to get a deterministic decision from the fuzzy logic system,
the aggregator output is fed to the de-fuzzification process, which is responsible for getting a crisp
output (non-fuzzy output) using membership functions analogous to the one used in the Fuzzifier
stage. The choice of the appropriate de-fuzzifier function is application-specific. However, centroid of
area (COA); bisector of area (BOA); and the mean, smallest, and largest of maximum (MOM, SOM,
LOM, respectively) are the most commonly used functions [30].
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3. Fuzzy Logic-Based WSN Clustering

In WSN, nodes clustering and cluster head election play a vital role in optimizing the network
operation and prolonging its lifetime. As depicted in Figure 3, sensor nodes (SNs) are usually
distributed in an AoI to sense and cover it; each node should send its sensed data to the base station
(BS), where data is processed and analyzed to evaluate the situation and make a proper decision if
needed. For instance, if these nodes reported an abnormal increase in CO2 gas concentration, then
this may be an indicator of having a fire, for example, where immediate action should be taken (e.g.,
sending firefighters to the monitored area). If the deployed sensor nodes communicated their sensed
data directly to the BS, each node has to use high power to compensate for the path loss due to the long
distance between them and the BS. Further, SNs will interfere with each other, and the BS will incur a
high packet loss rate. To solve this issue, nodes are normally clustered, where a CH node is selected,
and all the SNs that are close to the CH node will form a cluster and communicate their captured data
to the CH, which in turn will forward it to the BS. This scheme minimizes the energy consumed in
transmitting the data, as SNs have to send their data to the CH, which is closer and needs much less
power than communicating directly with the BS. Further, SNs within the cluster can utilize a specific
communication channel that will not interfere with other nodes in the other clusters. It is noticeable
that the way clusters are formed will significantly affect performance. In what follows, a literature
review for the most related work that utilizes fuzzy logic approach in establishing the network clusters
and cluster head selection is presented.
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Kim et al. [31] proposed a cluster head election mechanism using fuzzy logic (CHEF). In the
traditional clustering models such as the low energy adaptive clustering hierarchy (LEACH) [32], all
the sensor nodes get a chance to become cluster head on the basis of a probabilistic model, evenly
distributing the energy consumption. However, in such a scenario, the elected cluster heads may be
very close to each other, and in few cases, the cluster heads are located on the edge of the cell because
the election process is purely based on a probabilistic model. Moreover, LEACH does not consider the
existing battery power of the nodes during the cluster head selection process, which may lead to the
selection of nodes with relatively small battery power. Such limitations motivated the research on
clustering mechanisms based on fuzzy logic. In the fuzzy logic-based mechanisms discussed in the
literature, parameters such as concentration, energy, and centrality were used as fuzzy variables to
enhance the overall lifetime of the network. Such fuzzy-based schemes are centralized, wherein all the
required information from all the nodes are collected at the base station, and, consequently, the cluster
head is selected on the basis of the collected information using fuzzy logic. However, to avoid having
a centralized solution, Kim et al. [31] proposed CHEF where the election is based on IF-THEN fuzzy
rules, and the operation is localized. Here, the base station is not involved in cluster head election and
the sensor nodes take the responsibility to elect the cluster head using fuzzy rules. On every round, the
nodes generate a random number between 0 and 1. If the number is less than the predefined optimum
value, the node then computes the chance of being a cluster head using a fuzzy IF-THEN rule. Here,
the authors introduced fuzzy variables such as energy, local distance (sum of the distances between the
nodes), and the nodes’ density. The sensor node calculates a chance from its remaining battery power,
the local distance, which is the sum of distances between itself and other nodes within r distance. The
bigger the chance, the higher the opportunity of becoming a cluster head. The node then advertises a
CANDIDATE message with the chance value and likewise receives CANDIDATE messages from all
other nodes of the network. If the chance value in and of itself is bigger than the other nodes, then the
node announces itself as a cluster head and advertises CH_message. The nodes that are not cluster
heads acknowledge the CH_message with Cluster_Join message. In this work, the authors have used
de-fuzzification to transform the fuzzy variables into a single crisp value. The authors showed that
any two cluster heads cannot exist within a distance r, and more efficient cluster heads were elected as
energy and distance were considered in the selection process. Further, the overhead calculation was
reduced due to fuzzy logic and, finally, the network lifetime was enhanced.

Hamzah et al. [33] proposed a fuzzy logic-based energy-efficient clustering for wireless sensor
networks on the basis of minimum separation distance imposition between cluster heads. In this
work, the authors emphasized the fact that if the clustering algorithm exploits more energy affecting
factors, then the clustering will be more efficient. The fuzzy inference system is used for obtaining
better parameter integration. The presented work uses five parameters to elect the cluster head. The
parameters are the residual energy, location suitability, density, compacting, and distance from the base
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station. On the basis of these five descriptors, cluster heads are selected, and the remaining non-cluster
head nodes join one of the elected cluster heads. The authors set a minimum distance of separation
between any two cluster heads to ensure even distribution. In addition, the authors used the Gini
index to measure the energy efficiency of clustering algorithms in terms of their ability to balance the
distribution of energy through the nodes. The performance of the presented work for various network
densities and scenarios is compared with the existing methods. The authors showed that the proposed
approach outperformed the existing work in terms of energy efficiency and network lifetime.

Thangaramya et al. [34] proposed a neuro-fuzzy rule-based cluster formation and routing protocol
for efficient routing in IoT-based WSNs. The authors identified that in most of the fuzzy-based
clustering protocols available in the literature, the cluster size is not considered, which may lead to
non-uniform energy consumption. Most of the work in the literature addressed fuzzy rule-based
clustering for stationary nodes and used a probabilistic approach for decision-making. To overcome
these limitations, the authors used parameters such as cluster head energy, the distance between
cluster head and base station, change in the distance between cluster head and member nodes due to
mobility, and cluster head degree as inputs to the fuzzy inference system. In the proposed protocol,
the network is trained and tested utilizing a convolutional neural network with a neuro-fuzzy rule
manager for weight adjustment. In this work, the base station sent HELLO packets to all the nodes,
and the distance between the nodes and base station was computed. Clusters were formed using k
means clustering algorithm and the base station performed cluster head selection by considering the
distances and nodes’ energy levels. The authors used a fuzzy reasoning approach for proper cluster
formation followed by efficient routing.

Further, the authors adopted the Mamdani inference system in making a decision. De-fuzzification
mapped the fuzzy set to a crisp set for exact decision-making. Once the cluster head was elected, the
nearby nodes had to decide to join one of the elected cluster heads. In this process, the fuzzy inference
system used the four input parameters as mentioned earlier. Once the cluster head was elected, the
best route was decided by finding the shortest route between each node and the base station through
the cluster heads. The authors inferred that the presented work performed better compared to the
existing techniques in the literature in terms of energy utilization, packet delivery ratio, delay, and
network lifetime. The limitation of the presented work was that all the nodes were assumed to be
trustful nodes, which might not have been the case.

Nguyen et al. [35] proposed a novel clustering scheme for WSN based on fuzzy logic to improve
the lifetime of the network. In this work, the authors used parameters such as residual energy, distance
from the sink, and the density of the nodes in a locality as the inputs to the fuzzy system. Once the
sensor nodes were deployed in the area of interest, the nodes self-configured themselves as a network.
In this work, there were two essential phases, namely, cluster head selection and formation. The
cluster head was elected based on fuzzy rules. The authors used a fuzzy inference system as the
decision-making unit that used IF-THEN rules along with OR/AND connectors for decision making.
This decision-making behavior was effectively handled by computing the rank of each node. The
parameters such as density, remnant energy, and distance from the base station were applied as inputs
to the fuzzy inference system. The overhead of the cluster head was also considered during the cluster
head selection process. Further, similar to the work presented in [34], the authors adopted the Mamdani
inference system that imitated the human inference system in making a decision. De-fuzzification
mapped the fuzzy set to a crisp set for exact decision-making. Once the cluster head was elected, the
nearby nodes had to decide to join one of the elected cluster heads. In this process, the fuzzy inference
system used three input parameters such as density, closeness to the cluster head, and cluster head
residual energy. A node expressed its willingness to join a cluster by sending a ‘JOINING’ request
packet to the cluster head, and the request would then be acknowledged by the cluster head. Once the
clusters were formed, the cluster head shared a time division multiple access (TDMA) slot with all the
member nodes in order to avoid a collision. The collected data were fused and transferred to the base
station for further processing by the end-user. The authors inferred that the performance in terms of
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stability period and protracted lifetime was better when compared to the traditional schemes such as
LEACH and CHEF discussed in the literature.

Nayak et al. [36] proposed a novel clustering algorithm for wireless sensor networks to extend the
lifetime of the network. In this work, the authors attempted to improve the performance of the LEACH
protocol by introducing the concept of super cluster head (SCH) election. SCH was elected among the
cluster heads by applying appropriate fuzzy descriptors, and only the SCH could communicate with
the base station. The authors showed that the proposed technique reduced the number of transmissions
and retransmissions performed by the cluster heads. In this work, the authors used parameters such
as remaining battery power, mobility, and centrality as the fuzzy descriptors to elect an appropriate
SCH that can communicate with the base station. Because the energy level of the cluster head gets
reduced each round, remaining battery power was considered as one of the metrics. Another critical
metric was centrality, which depicted the reachability of SCH concerning all the cluster heads, and
the mobility metric referred to the variation in the distance between the base station and SCH, as the
authors assumed that base station was mobile. Here, the proposed algorithm was composed of four
essential blocks, these being fuzzification, rule evaluation, fuzzy inference engine, and de-fuzzification.
In this work, the authors used the Mamdani’s fuzzy inference technique to elect an appropriate SCH,
which used the metrics mentioned above as inputs. Here, the authors chose the linguistic variables on
the basis of fuzzy descriptors. Less, medium, and high were used as linguistic variables for remaining
battery power; low, moderate, and frequent were used for mobility; close, adequate, and far were used
for centrality. The authors inferred that the performance in terms of overall network lifetime was better
when compared to the traditional schemes discussed in the literature due to the idea of sink mobility
along with the fuzzy logic-based election of SCHs.

Most of the research works reported in the wireless sensor networks domain considered random
deployment of nodes. In such cases, there was a possibility that the nodes were not deployed uniformly
in the area of interest, which may have led to network partition or formation of holes in the network. In
such scenarios, there is a possibility that the nodes in the edges of the holes may not capture the event
and report it to the cluster head in the correct time, which may lead to a huge disaster. Vajdi et al. [37]
proposed an approach to detect the holes in the network. Here, the authors used the Delaunay
triangulation approach to detect the holes in the network and applied a virtual gridding scheme to form
grids that represent a cluster. The authors inferred that the employed gridding mechanism saved a
considerable amount of energy and time compared to the traditional clustering mechanisms discussed
in the literature. In this work, the authors proposed a novel idea of constructing routing paths, namely,
common and emergency routing paths. Common routing paths were used by the cluster heads that do
not use their full signal strength to transfer messages to the base station, whereas hop nodes that use
their full signal strength to transfer critical messages to the base station used the emergency routing
paths. Finally, cluster heads and hop nodes were elected by employing fuzzy logic-based approaches
to overcome the uncertainties in the environment. In this work, the authors used residual energy
and centrality as the fuzzy descriptors for electing the cluster heads, whereas residual energy and
radio energy dissipation were used as fuzzy descriptors for electing hop nodes. The authors showed
that the proposed mechanism was efficient and applicable to event-based large-scale wireless sensor
networks, as the proposed model was not based on rounds and did not stop the network’s operation
for reconfiguration.

In the traditional clustering approaches discussed in the literature, clusters were formed, and
cluster heads were elected in more or less the same way. However, practically, the same node cannot
continue as a cluster head for a longer duration, which may lead to battery exhaust and, hence, cluster
reformation was proposed, wherein the protocol should reform clusters and rotate the responsibility of
the cluster heads among the member nodes to improve the network lifetime. Although these protocols
were best suited for clustering, it was proven that these protocols do not guarantee suitable cluster
head selection. To overcome these limitations, Toloueiashtian et al. [38] proposed an energy-efficient
clustering protocol using fuzzy logic utilizing fuzzy parameters such as the amount of energy in cluster



Electronics 2019, 8, 1513 8 of 30

head, distance from cluster head to the base station, and the number of connections in cluster head.
In this work, the member nodes were attached to a cluster head having a higher chance concerning
the aforementioned three parameters and the fuzzy inference system. For example, if the energy in
the cluster head was low, the distance from the base station to the cluster head and the number of
connections to the cluster head was high, and then automatically the chance of becoming a cluster
head became very low. On the other hand, if the energy level in the cluster head was high, the distance
from the base station to the cluster head and the number of connections to the cluster head was low,
and then the chance of this node to be a cluster head became very high. The authors depicted that the
proposed algorithm achieved an improvement of about 12% in the network lifetime compared with
LEACH [24], and the fuzzy logic cluster formation protocol (FLCFP).

Qin et al. [39] introduced a synchronous distributed fuzzy C-means algorithm that was capable of
clustering the nodes based on the nodes’ measured data, with degrees of membership values varying
from 0 to 1. Simulation results showed that the decentralized approach had almost similar results to the
centralized one. However, as expected, by de-centralized algorithms, they had higher communication
overhead in terms of data exchanged between nodes than centralized algorithms. Recently, the authors
in [40] reported a distributed C-means clustering algorithm implementation in an asynchronous
distributed fashion via broadcast-only token-passing for wireless sensor networks to address the issues
such as managing a huge amount of data that were collected from the field of interest and analyzing the
behavior of the nodes on the basis of the collected data. In this work, the authors proposed to partition
the networks into homogeneous groups, such that the agents belonging to the same set had similar
information, and agents in different groups would have distinct information. The presented work
organized data transmission following a broadcast only token-passing approach, thereby reducing the
undesirable communication efforts that may happen in such networking scenarios. The simulation
results depicted that the distributed C-means algorithm based on asynchronous, event-driven, and
broadcast-only communication yielded similar results to the centralized C-means algorithm, but
with a reduced amount of data exchanged compared to synchronous distributed fuzzy C-means
algorithm [39].

In the study by [41], the authors proposed a distributed opinion dynamics model utilizing fuzzy
states. This model was extended and used to cluster wireless sensor nodes in a distributed manner [42],
where each sensor held a large set of data. The main goal was to group the nodes into homogeneous
clusters by information type. In the literature, most of the proposed algorithms ask the user to specify
the desired number of clusters beforehand. In their approach, the number of clusters was calculated on
the basis of the distance constraint among cluster centroids, which did not require a central authority
and depended only on the exchanged data between nodes, thus making the clustering algorithm rely
merely on the sensed data and not on the network topology.

Figure 4 depicts a diagram summarizing the different parameters discussed in this paper used in
cluster formation utilizing fuzzy logic.

Table 1 summarizes the various protocols discussed earlier in terms of some essential characteristics
and capabilities possessed. All the protocols discussed in Table 1 are cluster-based protocols
implemented with the fuzzy-based approach. According to Table 1, self-management model [37]
performs better than the other mechanisms as it is highly reliable because the authors proposed a novel
hole detection mechanism along with the fuzzy-based approach. One more vital factor to be noted in
the comparison chart is that the self-management model is not round-based, and hence the network
operation is never affected due to reconfiguration. In addition, the model proposes the idea of hop
nodes, which, in case of emergencies, can deliver critical information faster to the base station.
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Table 1. A comparison for the surveyed fuzzy-based clustering protocols.

Protocol/Algorithm Round-Based Cluster Size Fuzzy-Based Multi-Hop Detecting Hole

Cluster head election
mechanism using
fuzzy logic [31]

Yes Not fixed Yes No No

Fuzzy logic-based
energy-efficient

clustering for WSN on
the basis of minimum

separation distance
imposition between

cluster heads [33]

Yes Not fixed Yes No No

Energy aware cluster
and neuro fuzzy-based
routing algorithm, [34]

Yes Fixed Yes No No

Fuzzy logic for
clustering scheme [35] Yes Not fixed Yes No No

Fuzzy logic-based
clustering algorithm
for wireless sensor

network [36]

Yes Fixed Yes No No

Self-management
model [37] No Fixed Yes Yes Yes

Clustering approach in
WSN using fuzzy

system [38]
Yes Not fixed Yes No No

Furthermore, in most of the fuzzy-based clustering algorithms discussed in the literature, the
metrics such as first node dies (FND), half of the nodes dies (HND), and last node dies (LND) were used
to evaluate the network lifetime [33,35,37]. The authors validated the performance of the proposed
techniques under different network densities and for different locations of base station. Table 2 depicts
the network lifetime in rounds based on the HND metric. Average lifetime in rounds was calculated
using the fuzzy descriptors proposed by the corresponding authors. The projected data demonstrate
the variations in the performance on the basis of the fuzzy descriptors utilized in the fuzzy-based
clustering algorithms.
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Table 2. Half of the nodes dies (HND) comparison.

Fuzzy-Based Clustering Algorithms Fuzzy Descriptors Average Lifetime in Rounds

CHEF [31] remaining energy of a node, local distance 630

FL-EEC/D [33] energy, BS_Distance, AVG_Energy,
density, compact 1437

Energy aware cluster and neuro fuzzy
based routing algorithm, FBCFP [34]

CH energy,
distance (CH, BS)

distance (CH, node)
CH degree

1400

Fuzzy logic for clustering scheme [35] densities, distances, residual 675
Fuzzy logic-based clustering

algorithm for WSN [36] battery power, mobility, centrality 300

Self-management model [37] residual energy, radio energy dissipation,
centrality 500

4. Fuzzy Logic-Based Routing Algorithms

This section reviews the-state-of-the-art routing algorithms that use fuzzy logic systems for
selecting the next forwarding nodes among candidate sensor nodes. This section highlights the
main parameters utilized by each algorithm with different fuzzy logic systems. All of the presented
algorithms focus on forwarding strategies by selecting the node that is placed closer to the sink node.
In fact, the improper selection of the next forwarding node can be considered as one of the main
problems in routing protocols that have a direct impact on packets’ delivery. The selection of the
next forwarding nodes with high residual energy, best link quality, and physical distance helps in
reducing packet loss, leading to increase reliability, energy-efficiency, and reducing delay. Furthermore,
proper selection to the next hop reduces interference and can achieve better load balancing between
the intermediate nodes in terms of energy consumption and network traffic flows, which is depicted in
Figure 5. As shown in Figure 5a, if both nodes 1 and 2 want to send data to node 8, then node one may
choose the blue route, and node two may choose the green route which will overland nodes 4 and 6, as
they are relaying the traffic and are thus consuming more energy and reducing their batteries. On the
other hand, in Figure 5b, node 1 has chosen a different route, which loads balance the traffic among all
nodes, thus not overloading any nodes and obtaining a fair energy consumption among all nodes.
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respectively. (a) Demonstration of a possibility for overloading nodes 4 and 6 while routing the traffic
to node 8, where (b) shows a more balanced traffic distribution among the nodes.

To solve these problems, several researchers have introduced several fuzzy-based intelligent
delays and energy-aware algorithms. In what follows, a survey of the most known examples is
presented. Mothku and Rout [43] proposed a protocol that comprises a fuzzy-based energy-aware
routing mechanism (FEARM) and fuzzy logic system. The protocol starts by finding the next forwarding
nodes among neighbors by combining four parameters as input values for the FLS, namely, link quality,
residual energy, physical distance, and available buffer, as shown in Figure 6. The output of FLS can be
considered as a metric value named “chance of becoming the next node”. In terms of routing, this
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protocol takes advantage of Dijkstra’s algorithm to establish a different route and then discovers the
best path. Simulation results show that the proposed protocol reduces packet loss, delay, and energy
consumption. Moreover, it proves that the use of fuzzy with four parameters performs better results
than fuzzy with fewer parameters.
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Hu et al. [44] proposed a novel fuzzy logic-based geographical routing (FLGR) protocol to enhance
routing overhead, void, and location accuracy problems. FLGR proposes a novel-forwarding mode
based on the fuzzy location region of the receiver node and void avoidance scheme, being a fuzzy
logic system that is capable of choosing the routes with a lower number of hops and with high packet
delivery ratio. FLGR is composed of three phases—it starts by determining the next forwarding nodes
on the basis of the fuzzy location region of the receiver node. Next, the best forwarding node is selected
on the basis of the following three steps: fuzzification, fuzzy reasoning, and de-fuzzification of the
node’s parameter. Lastly, in the routing process, avoid avoidance scheme was designed and developed
to avoid the void nodes in trap areas. Simulation results demonstrated that FLGR can avoid the
trap area efficiently. Moreover, FLGR performed a high delivery ratio and reduced routing overhead
compared with existing protocols.

Gholipour [45] conducted a novel research study focusing on prolonging the network lifetime
named “a new ant colony optimization routing approach based on fuzzy clustering”. This approach is
composed of two phases: clustering and routing. In clustering, a local self-selection process by an
ordinary node is applied to be a cluster head, and then the decision among neighbors in the network is
advertised. This process is split into two phases: setup and steady. In the first phase, an ordinary node
uses a fuzzy system to calculate its chance of helping in deciding to be a cluster head on the basis of
residual energy, number of neighbors, received signals, and centrality. The node with a higher chance
becomes a cluster head and determines its members.

On the other hand, clusters are fixed until the end of the steady phase. This approach is repeated
continuously until the end of the network. In the routing phase, an inter-cluster routing was proposed
on the basis of ant colony optimization as per the following steps. First, finding the best relay node for
cluster head on the basis of neighbor information data collection by cluster head. Second, finding a
path towards the base station using ants in the cluster head, helping in determining the next hop. In the
third step, ants that passed by the base station collect path information. Moreover, each cluster head
can find the best cluster head candidate to forward its packets. Lastly, the transmission process starts
forwarding the data packet. The proposed approach was compared with other studies in the literature,
showing that the proposed work outperformed in terms of routing efficiency and network lifetime.

In order to enhance the data aggregation efficiency in a multi-hop wireless sensor network,
Sert et al. [46] introduced a two-tier distributed fuzzy logic-based protocol (TTDFP). In tier I, TTDFP
selects the optimum cluster head through an energy-based competition of provisional leaders using a
probabilistic model. In all phases, the inclusion of a central decision-making point does not require in
TTDFP. In the fuzzy clustering phase, TTDFP handles specific events in the clustering phenomena
more efficiently compared with its crisp and other fuzzy counterparts. Moreover, TTDFP utilizes
the optimization framework to tune the two parameters in this tier, which are the threshold and the
maximum competition radius, rather than the use of a trial-and-error approach to find the right blend
of these parameters.
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On the other hand, in the second tier (tier II), fuzziness enhances routing performance in
comparison with its crisp counterpart. In mission-critical sensitive scenarios, TTDFP is an efficient
approach to be used, where utilization context may be updated concerning the application field. In the
clustering phase, TTDFP uses three main inputs: the remaining node energy, distance, and relative
node connectivity. In the routing phase, TTDFP increases the operation architecture of multi-hop
routing methodology with the use of fuzzy logic. TTDFP employs two fuzzy parameters, namely,
distance to the efficient routing path and residual energy. In order to evaluate the performance of the
proposed protocol, several experiments were conducted, proving that TTDFP is an efficient protocol
compared with other related work proposed in the literature.

One big challenge in a wireless sensor node is that it has very little storage space, low computational
capability, and limited battery power. Due to the aforementioned issues, a trade-off should be handled
between power optimization and processing accuracy in WSNs. In a study by Tabatabaei et al. [47],
the authors proposed a novel energy-aware clustering method via algorithm (LPO) and fuzzy logic
in WSNs. Figure 7 depicts a clustering technique, which uses the FLS described in Figure 1, that
has been provided based on two parameters named distance from the sink and remaining energy.
The proposed clustering technique has a direct effect on the routing process as it takes the nodes’
distances from the sink while forming the clusters, which results in a superb performance in terms of
end-to-end delay, energy consumption, input packet, and network lifetime when compared with the
related literature work.Electronics 2019, 8, x FOR PEER REVIEW 13 of 31 
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Typically, data are received by sensor nodes within a limited transmission range. These data have
been extracted from the packet and processed then forwarded to the sink node. This process leads
to high-energy consumption. This issue is considered one of the main challenges in WSNs that have
a direct impact on the lifetime as sensors use batteries. Moreover, sensors that are closer to the sink
consume higher energy than others because they directly forward the packets to the sink. Therefore,
having an adaptive energy transmission based on the nodes’ positions compared to the sink node is
considered as one of the major issues in WSNs.

In [48], Koosheshi and Ebadi proposed optimization energy consumption with multiple mobile
sink nodes using fuzzy logic. In this paper, a technique is suggested that can optimize the energy
consumption of sensor nodes through various mobile stations (MSs) in which fuzzy logic is used in
WSNs. In this technique, instead of using a fixed sink at a predetermined location, an MS is used to



Electronics 2019, 8, 1513 13 of 30

collect sensor information so that it moves smartly within the network and collects sensor information.
The remainder of the nodes are also grouped on the basis of fuzzy logic in order to avoid the issue
of the energy hole. The fuzzy logic concept is centered on the idea of partial set membership, rather
than crisp or discreet set membership. It was initially implemented as an alternative strategy to
information processing that is defined by a set of ”fuzzy parameters” that include components in
which membership level varies within the set. Fuzzy logic differs from standard control techniques by
incorporating simple IF-THEN structure instead of any complicated mathematical model.

Consequently, the lifetime of the network is therefore improved. The purpose behind this study,
however, is to solve the issue of the energy hole, particularly in large networks, by separating the WSN
field into different independent zones and using an MS in each. They also use the fuzzy logic method
in this study to deal with challenges in the estimation of cluster head radius. In the purposeful fuzzy
strategy in this algorithm, the selection of CH happens by selecting three fuzzy descriptors, namely,
residual energy of each node, distance to RN, and node density in order to estimate the radius of
competition for tentative CHs.

Indeed, the introduced multiple mobile sink nodes had a positive impact on the routing process,
as it made the destination node(s) closer to the sensor nodes, thus reducing the needed transmission
energy and improving the network lifetime. In this algorithm, multi-sink nodes’ MSs are employed,
and the positive area defined as the areas that have neighbors or eligible nodes are divided into small
areas. Moreover, the distances between sensors are reduced by proposing a clustering method using
fuzzy logic. This method helps in reducing energy consumption. First node die (FND) and half of the
nodes alive (HNA) metrics have been tested. Simulation results outperformed other algorithms in
terms of energy consumption. As a result, the problem of the energy hole in WSNs was optimized.

WSN suffers from computation power, limited energy, bandwidth, and resource memory. The use
of clustering techniques in the routing protocol is one promising solution that has a direct impact on
energy efficiency in WSNs. In [49], Balaji et al. proposed a hop-by-hop protocol named the development
of a fuzzy-based energy-efficient cluster routing protocol to increase the WSN lifetime. The algorithm
has several phases. In the setup phase, clustering techniques in routing protocols are used to identify
and select the CH. Next, the data are forwarded from sender CH to another CH towards the sink
node. In the second phase, the proposed protocol uses fuzzy logic with three parameters that were
weight, energy, and distance, to forward the data from the source node towards the sink. The use of
the fuzzy logic helps in identifying the node that has the highest trust factor and closer to the sink,
thus improving the routing process. Then, CHs are selected on the basis of these factors. Simulation
results showed that the proposed protocol improved the network lifetime and reduced the network
overhead; therefore, the network lifetime and overhead were improved.

To sum up, comparison tables for the surveyed papers that highlight the most common routing
protocols/techniques in WSNs that use fuzzy logic algorithms are presented in Table 3. In this table,
the comparison between various fuzzy logic routing protocols in WSNs is summarized. As shown
in this table, energy consumption is considered to be the main problem in routing algorithms. Each
sensor node is equipped with batteries with limited energy. The energy of each sensor node should
be balanced in order to improve the network lifetime. Most algorithms in the literature focus on
energy-efficiency with different modeling parameters. Residual energy has been used as main input
for the fuzzy system. Other parameters have been utilized such as link quality, distance, and number
of hops, and some algorithms have utilized cluster head selection in order to balance the energy and
avoid the void region. Different fuzzy logic strategies have been utilized by the survey algorithms.
FEARM [43] utilized different parameters such as link quality, energy consumption, physical distance,
and available buffer, whereas FLGR [44] did not employ physical distance parameter. On the other
hand, new and colony optimization routing [45], TTDFP [46], and LPO [47] focused on identifying
cluster head based on different parameters. The main forwarding strategies in most algorithms have
been designed to select the efficient sensor node that is closer to the sink node with minimum route cost.
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Table 3. Main features of fuzzy-based WSN routing protocols.

Protocol Objectives Modeling Parameters Fuzzy Logic Strategy Forwarder Selection Strategy

[43] Reliability, delay aware, and
energy-efficiency

Residual energy, link quality,
distance information

Fuzzy logic system with input
parameters (link quality, residual

energy, physical distance, and
available buffer)

The maximum value of the chance of
becoming the next node

FLGR [44] Reliability, routing overhead,
and communication void

Number of hops, packet
delivery ratio, parameters of
assessments, candidate node

region (for void nodes)

Fuzzy logic location region using
parameters of assessments, and
without location information of

destination node

1. Avoiding the void nodes.
2. Fuzzification, fuzzy reasoning, and

de-fuzzification.

New ant colony optimization
routing approach-based fuzzy

clustering [45]
Network lifetime

Residual energy, number of
neighbors, received signals, and

centrality

Fuzzy logic system to identify the
cluster head

Finding the best candidate on the basis
of ant colony optimization (i.e., each
cluster head selects the best cluster

head candidate)

TTDFP [46] Energy efficacy, data
aggregation

In tier I: threshold, maximum
competition radius

In tier II: residual energy,
distance, and node connectivity

1. Fuzzy clustering system with two
parameters to identify cluster head

2. Fuzziness system with three
parameters in the routing phase

1. Selecting the best cluster head on the
basis of the output of the first phase

fuzzy system
2. Selecting the best path on the basis of
the output of the second fuzzy system

LPO [47]
Network lifetime, energy

efficacy, and computational
capability

Distance from the sink and
remaining energy

Identifying cluster head using the
lion pride optimizer (LPO) algorithm

The higher residual energy and closer
to the sink

MOFCA [48] Energy efficacy, and network
lifetime

Residual energy, distance to the
closest relay node, and

calculated density

Fuzzy logic system utilizing the
modeling parameters as inputs to the

fuzzy system

Competition radius of each tentative
cluster head

EET2FL [49] Energy-efficient and lifetime Weight, residual energy, and
distance

Fuzzy logic during the routing phase
with three modeling parameters as

inputs to the fuzzy system

The cluster head with the highest trust
factor and closer to the sink



Electronics 2019, 8, 1513 15 of 30

5. Fuzzy Logic-Based WSN Power Management and Optimization

The third essential and determining factor that affects the network lifetime is the power
management and optimization technique used in turning ON/OFF the sensor nodes, thus prolonging
their batteries and extending the network lifetime. Figure 8 depicts the different phases that a sensor
node goes through. In a normal situation, it should operate in a sleep mode, where it consumes
the minimum amount of energy by shutting down its main functioning peripherals, sensors, and
communication modules. These nodes will wake up after a specific time that is normally specified by
the application. In this phase, the senor node awakes its peripherals and sensors to capture the data of
interest, and then either go back to the sleep phase or transmit the captured data by waking up the
communication modules. In what follows, a comprehensive literature review for the recent and most
prominent works that utilize fuzzy logic in sensor nodes’ power management is presented.
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Colletta et al. [50] focused on the IEEE 802.15.4-based industrial WSN protocol and proposed a
new mechanism to control the uptime of the nodes using a fuzzy logic algorithm. WSNs in industry
communications undertake high reliability and low power consumption. The basic function of
industrial WSN is to generate a highly reliable and self-healing industrial system. Therefore, in order
to increase the lifetime of the nodes and network, the authors proposed a new energy management
mechanism that is capable of prolonging the network lifetime through a sleep/wakeup policy using
a fuzzy logic algorithm. The objective of the mechanism was to build a time-driven approach that
woke up the nodes only when they were needed by the application under consideration. The goal
of the proposed mechanism was to show how to use a fuzzy logic controller in industrial WSN, and
how to increase the lifetime of the batteries of the individual nodes by continuously controlling the
individual nodes’ energy consumption. The proposed mechanism studies the correlation between the
sampled data, and if a high correlation is found, the sampling period is decreased, thus increasing
the sleeping time and saving energy. The proposed algorithm called dynamic sampling algorithm
(DSA) utilizes four input variables coming from the sensors, namely, the deadline miss ratio, deadline
miss ratio desired, old sampling time, and remaining battery capacity, which help the network to
manage the energy resources of its nodes. The main goal of DSA is to awaken the nodes only when
it is needed for the application that manages and controls their operation. DSA is built on the basis
of a fuzzy logic controller, it is linked with the sink node, and in case of large WSN, it is linked with
router nodes. Figure 9 depicts the fuzzy controller in the DSA approach, which uses the FLS described
in Figure 1. Depicted in Figure 9 are the deadline miss ratio (E), deadline miss ratio desired (DE),
remaining battery capacity (RBC), and old sampling time (T) variables, which are the inputs to the
controller as analog–digital shape. The variables are then converted to a "linguistic" shape on the
basis of the membership functions that may be enhanced at the design time. The linguistic values are
positive big, positive small, zero, negative small, and negative big.



Electronics 2019, 8, 1513 16 of 30

Electronics 2019, 8, x FOR PEER REVIEW 14 of 31 

 

information about the network status. This information gives good accuracy, and therefore yields 
superior performance in terms of energy-saving and WSN life cycle.  

 
Figure 9. The fuzzy controller in dynamic sampling algorithm approach. E: deadline miss ratio, DE: 
deadline miss ratio desired, RBC: remaining battery capacity. 

Another work presented by Colletta et al. [51] applied a fuzzy logic algorithm by optimizing the 
sleep/wakeup process in the most common industrial communication protocols for WSNs, namely, 
wireless highway addressable remote transducer(HART) and IEEE 802.15.4 protocols. The authors 
proposed an innovative management algorithm of energy resources in order to minimize the average 
power consumption of each slave node, by activating the nodes only in case of critical events, thus 
prolonging the network lifetime. This algorithm consists of a fuzzy logic algorithm that can manage 
sleep/wakeup messages sent by the network controller to their slaves dynamically on the basis of the 
dynamic power management algorithm (DPMA). The DPMA algorithm wakes up the nodes only 
when they are needed, and the input variables are the sampled data and the sampling time to the 
fuzzification block of its fuzzy controller when the fuzzy logic controller is activated. The controller 
operates two input variables: the current sampling time and the data of interest (the detected 
temperature value, for example), where it utilizes a sampling time membership function and the 
detected data, and then passing the output to the de-fuzzification block, with the output being a new 
sampling time that is produced and used in the sampling process and wakeup/sleep cycle. Figure 10 
depicts the used fuzzy controller scheme of the proposed system. 

 
Figure 10. Fuzzy controller scheme. 

The algorithm uses the temperature as input data with the range of -40 to 75 °C, and the current 
sampling time produces a new sampling time on the basis of a fuzzy controller, as depicted in Figure 
10, which uses the FLS described in Figure 1. The fuzzy system evaluates the temperature variations 
using a specific inference mechanism, and the sampling time is a value varying from 0.1 to 1 seconds. 
The input variables are set in numerical shape. Every input variable has three Mamdani membership 
functions (low, medium, and high), then the values are processed by the fuzzy controller using an 
inference mechanism utilizing a set of IF-THEN statements. The new sampling time, represented by 
a membership function, will be then fuzzified through the centroid algorithm and converted to a 
numerical value readable by the sensors. 

Pau. et al. [52] proposed a power consumption reduction mechanism using fuzzy logic that 
utilizes the battery level and ratio throughput for identifying the sensor sleep time on the basis of the 
IEEE 802.15.4 protocol. Figure 11 depicts the proposed fuzzy logic controller. It calculates the sleep 

Figure 9. The fuzzy controller in dynamic sampling algorithm approach. E: deadline miss ratio, DE:
deadline miss ratio desired, RBC: remaining battery capacity.

These linguistic values are processed using an inference mechanism on the basis of a set of
inference rules using a series of IF-THEN statements, which determine the output linguistic values on
the basis of the input variables. The output linguistic values need to be transferred by a controller
to analog values readable by the sensors. This approach allows the controller to use more input
information about the network status. This information gives good accuracy, and therefore yields
superior performance in terms of energy-saving and WSN life cycle.

Another work presented by Colletta et al. [51] applied a fuzzy logic algorithm by optimizing the
sleep/wakeup process in the most common industrial communication protocols for WSNs, namely,
wireless highway addressable remote transducer(HART) and IEEE 802.15.4 protocols. The authors
proposed an innovative management algorithm of energy resources in order to minimize the average
power consumption of each slave node, by activating the nodes only in case of critical events, thus
prolonging the network lifetime. This algorithm consists of a fuzzy logic algorithm that can manage
sleep/wakeup messages sent by the network controller to their slaves dynamically on the basis of the
dynamic power management algorithm (DPMA). The DPMA algorithm wakes up the nodes only when
they are needed, and the input variables are the sampled data and the sampling time to the fuzzification
block of its fuzzy controller when the fuzzy logic controller is activated. The controller operates two
input variables: the current sampling time and the data of interest (the detected temperature value,
for example), where it utilizes a sampling time membership function and the detected data, and then
passing the output to the de-fuzzification block, with the output being a new sampling time that is
produced and used in the sampling process and wakeup/sleep cycle. Figure 10 depicts the used fuzzy
controller scheme of the proposed system.
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The algorithm uses the temperature as input data with the range of -40 to 75 ◦C, and the current
sampling time produces a new sampling time on the basis of a fuzzy controller, as depicted in Figure 10,
which uses the FLS described in Figure 1. The fuzzy system evaluates the temperature variations
using a specific inference mechanism, and the sampling time is a value varying from 0.1 to 1 seconds.
The input variables are set in numerical shape. Every input variable has three Mamdani membership
functions (low, medium, and high), then the values are processed by the fuzzy controller using an
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inference mechanism utilizing a set of IF-THEN statements. The new sampling time, represented
by a membership function, will be then fuzzified through the centroid algorithm and converted to a
numerical value readable by the sensors.

Pau. et al. [52] proposed a power consumption reduction mechanism using fuzzy logic that
utilizes the battery level and ratio throughput for identifying the sensor sleep time on the basis of the
IEEE 802.15.4 protocol. Figure 11 depicts the proposed fuzzy logic controller. It calculates the sleep
time on an IEEE 802.15.4 network using a centralized mechanism. The aim of sleep time calculation is
to prolong the WSN lifetime for monitoring purposes. The fuzzy logic controller is used to calculate
sleep time on reduced function device (RFD). After that, RFD will notify the first pan coordinator (FPC)
when the sleep time is finished. The proposed mechanism uses three membership values, namely,
sleeping time is the output variable, whereas the ratio of throughput to workload (TH/WL) and battery
level are the input variables.
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The FLC defines the sleeping time of the RFD on the basis of the battery-level and the ratio of
throughput to workload. The throughput is the aggregate for periodic and aperiodic packets sent
by each node. The workload is the total number of packets that each node has sent. Each input and
output variable has three Mamdani membership functions (low, medium, and high). These functions
fuzzify the crisp inputs, and the range of throughput-to-workload percentage is 0 to 100%, with the
battery level being 0 to 1024. The output variable has a sleeping time with a range from 0 to 10 s.
The sampling time value is a constant determined at the design time for each node. Gaussian fuzzy
membership functions are used for input and output variables, where the degree of membership is
represented by normalized values between 0 and 1. The output value is determined using fuzzy rules
according to the IF-THEN statement. The FLC converts fuzzy output variables into crisp values by
using the de-fuzzification process, so that the values of the variable are retable by the sensors. The
de-fuzzification method used in this study is the centroid of area method, which is evaluated for each
membership function for each rule. The output is then determined as the average of the individual
centroid weighted by their membership values.

Masdari et al. [53] proposed a distributed fuzzy logic-based sink selection mechanism for one-hop
WSN that manages the nodes’ selection process to the sink nodes. Having multiple sink nodes in
WSNs can improve network throughput and reduce packet loss and energy consumption. In this study,
a fuzzy logic-based algorithm was used to assign a sink node for each node on the basis of the network
congestion status between the sink and ordinary nodes. This one-hop network paradigm not only
reduces the transmission delay but also reduces the packet loss due to the high congestion encountered
in single sink-multiple hop network architecture. The input variables of the fuzzy logic controller
are congestion, energy, and distance between a node and the sink. Figure 12 depicts the proposed
fuzzy sink selection, which uses the FLS described in Figure 1. This algorithm was designed to avoid
congestion at the sink nodes and distribute the nodes’ loads between multiple sink nodes. Each node
uses a fuzzy inference engine, which receives information such as distance to sink, the energy of node,
and the average load on each sink. By using the proposed algorithm, each node can choose the closest
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and uncongested sink to transfer its data to it. The results obtained from simulations indicated that
the proposed mechanism can minimize the congestion in the sink nodes and balance the nodes’ load
on multiple sink nodes. Moreover, the proposed mechanism can minimize the transmission power
consumption and delay by minimizing the number of packet retransmissions to the sink nodes.Electronics 2019, 8, x FOR PEER REVIEW 16 of 31 
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Furthermore, the authors proposed a distributed fuzzy sink selection solution consisting of the
following: a fuzzification module, a knowledge base, an inference engine, and de-fuzzification module.
The input linguistic variable distance is used to represent the distance between a node and its sink. This
variable has three Mamdani membership functions: close, mid, and far, whereas the input linguistic
variable congestion is used to indicate the average congestion of a sink node in previous rounds.
This variable has three Mamdani membership functions: low, medium, and high. Finally, the input
linguistic variable energy is used to represent the remaining energy of nodes. This variable has three
Mamdani membership functions: low, medium and high. As the fuzzification step is performed, the
gained membership values are applied to the IF-THEN rules to define the fuzzy output set. The authors
used the Mamdani method as a fuzzy inference method. In the de-fuzzification step, the crisp value
represents the suitability of the sink node and the sensor node selects the sink, which has the highest
value of the sink output variable. In this scheme, the COA is used in the centroid de-fuzzification.

The authors in [54] proposed a fuzzy logic-based mechanism utilizing the particle swarm
optimization (PSO) algorithm that works with the challenging nature of the energy consumption in
industrial wireless sensor network (IWSN). The proposed mechanism is an extension of the work
done in [52]. The input variables of the fuzzy system are the battery level and the ratio of throughput
to workload, which define the sleeping time of sensor devices in an IWSN on the basis of the IEEE
802.15.4 protocol. The authors added PSO to get the best values concerning the battery life of nodes and
optimizing the membership functions by changing their range parameters. The results of the proposed
mechanism achieved a real power consumption reduction and prolonged the network lifetime. Further,
the algorithm used three input variables: sleeping time, battery level, and the ratio of throughput
to workload. Moreover, the proposed FLC employs three membership functions (low, medium, and
high) for each input and output linguistic variables. The FLC must convert its fuzzy output variables
in crisp values by using de-fuzzification method so that the system can understand them. Several
methods can accomplish the de-fuzzification process. In this study, the COA method was selected. In
this scheme, the COA of each membership function, for each rule, is first estimated. The final output is
then measured as the average of the individual COA weighted by their membership values.

Cao et al. [55] proposed a fuzzy logic-based adaptive energy management mechanism through the
particle swarm optimization algorithm (FLC-PSO) in order to improve the energy efficiency for WSN.
The proposed mechanism considered the most important performance factors of WSN, namely, the
overall remaining energy and the number of dead nodes, which were used as the input variables of the
fuzzy system depicted in Figure 13. The aim of using PSO is to optimize the membership functions, and
the optimization goal is to minimize the number of dead nodes and maximize the remaining energy in
order to reach an optimal fuzzy logic controller. Simulation results proved that the proposed FLC-PSO
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mechanism outperformed its literature counterparts. Therefore, FLC-PSO provides an efficient energy
management mechanism for WSN.

Electronics 2019, 8, x FOR PEER REVIEW 17 of 31 

 

 155 
Figure 13. The FLC model. 156 

Pau et al. [56] proposed a fuzzy logic-based algorithm to overcome the WSN energy 157 
consumption problem in battery device nodes in an IEEE 802.15.4 network for smart home 158 
applications. Considering the duty cycle, the sleeping time of nodes is dynamically set by the FLC. 159 
The proposed mechanism in this work is an extension of the work presented in [54]. The main goal 160 
of this work was to design a system that could be executed using off-the-shelf hardware. In this study, 161 
a different type of membership function was used in the FLC to realize a practical method that 162 
reached the goal while avoiding complicated and computationally costly solutions, such as PSO, 163 
which would decrease the possible applicability of the procedure in real situations. The goal was to 164 
develop a proof-of-principle implementation utilizing off-the-shelf devices, highlighting that the 165 
suggested method does not demand compelling hardware and can be openly realized on low-cost 166 
devices. Similar to the work presented in [54], the proposed mechanism used two input variables to 167 
the FLC: throughput to workload and the device battery level. Further, it had three membership 168 
functions: throughput to workload, the device battery level, and sleeping time. 169 

The proposed method operates as follows: the first pan coordinator node utilizes an FLC to 170 
realize the output values of the sleeping_time of each reduced function device. The FLC fixes the 171 
sleeping_time of the RFD by considering the ratio of throughput to workload and the battery_level. 172 
The FLC has three membership functions (low, medium, and high) for the input variables. These 173 
functions fuzzify the crisp inputs, and the range for input variables are 0 to 100%, with 0 to 1024 for 174 
the TH/WL and battery_level, respectively. Furthermore, the output variable has three membership 175 
functions (low, medium, and high); the range of the crisp values of this output variable is 0 to 10 s. 176 
Trapezoidal membership functions are applied to the TH/WL, battery_level, and sleeping_time, 177 
where the degree of the membership is represented by normalized values from 0 to 1, and the output 178 
value is obtained on the basis of nine IF-THEN fuzzy rules. The FLC converts internal fuzzy output 179 
variables into crisp values through the de-fuzzification method so that the system can understand 180 
these variables. The de-fuzzification used in this study is the COA method.  181 

Moreover, as in most of fuzzy-based power management algorithms for WSNs discussed in the 182 
literature, the metrics such as network lifetime and battery level were used to evaluate the proposed 183 
algorithms in [50–56]. The authors validated the performance of the proposed technique under 184 
different network densities. Table 4 depicts the network lifetime improvement percentages calculated 185 
as follows: 186 
Network lifetime improvement (%) = [(new lifetime - original lifetime)/original lifetime] x 100 % 187 

Finally, Table 5 summarizes the surveyed papers related to the most important power 188 
management and optimization mechanisms in WSNs that utilize fuzzy logic. 189 

Table 4. Lifetime improvement percentages. 190 
Fuzzy-Based Power Management 

Algorithms for WSNs 
Network Lifetime Improvement 

(%) 
DSA [50] 37.5% 

DPMA) [51] 14.0625% 

Figure 13. The FLC model.

Pau et al. [56] proposed a fuzzy logic-based algorithm to overcome the WSN energy consumption
problem in battery device nodes in an IEEE 802.15.4 network for smart home applications. Considering
the duty cycle, the sleeping time of nodes is dynamically set by the FLC. The proposed mechanism
in this work is an extension of the work presented in [54]. The main goal of this work was to design
a system that could be executed using off-the-shelf hardware. In this study, a different type of
membership function was used in the FLC to realize a practical method that reached the goal while
avoiding complicated and computationally costly solutions, such as PSO, which would decrease the
possible applicability of the procedure in real situations. The goal was to develop a proof-of-principle
implementation utilizing off-the-shelf devices, highlighting that the suggested method does not demand
compelling hardware and can be openly realized on low-cost devices. Similar to the work presented
in [54], the proposed mechanism used two input variables to the FLC: throughput to workload and the
device battery level. Further, it had three membership functions: throughput to workload, the device
battery level, and sleeping time.

The proposed method operates as follows: the first pan coordinator node utilizes an FLC to
realize the output values of the sleeping_time of each reduced function device. The FLC fixes the
sleeping_time of the RFD by considering the ratio of throughput to workload and the battery_level.
The FLC has three membership functions (low, medium, and high) for the input variables. These
functions fuzzify the crisp inputs, and the range for input variables are 0 to 100%, with 0 to 1024 for
the TH/WL and battery_level, respectively. Furthermore, the output variable has three membership
functions (low, medium, and high); the range of the crisp values of this output variable is 0 to 10
s. Trapezoidal membership functions are applied to the TH/WL, battery_level, and sleeping_time,
where the degree of the membership is represented by normalized values from 0 to 1, and the output
value is obtained on the basis of nine IF-THEN fuzzy rules. The FLC converts internal fuzzy output
variables into crisp values through the de-fuzzification method so that the system can understand
these variables. The de-fuzzification used in this study is the COA method.

Moreover, as in most of fuzzy-based power management algorithms for WSNs discussed in the
literature, the metrics such as network lifetime and battery level were used to evaluate the proposed
algorithms in [50–56]. The authors validated the performance of the proposed technique under different
network densities. Table 4 depicts the network lifetime improvement percentages calculated as follows:
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Table 4. Lifetime improvement percentages.

Fuzzy-Based Power Management Algorithms for WSNs Network Lifetime Improvement (%)

DSA [50] 37.5%
DPMA) [51] 14.0625%

Power consumption reduction mechanism using fuzzy logic [52] 30.76%
Distributed fuzzy logic-based sink selection algorithm [53] 20%

Fuzzy logic-based mechanism utilizing particle swarm
optimization algorithm [54] 54.545%

FLC-PSO [55] 6.666%
A fuzzy logic-based algorithm for smart homes [56] 41.666%

Network lifetime improvement (%) = [(new lifetime − original lifetime)/original lifetime] × 100 %
Finally, Table 5 summarizes the surveyed papers related to the most important power management

and optimization mechanisms in WSNs that utilize fuzzy logic.
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Table 5. The main features of the surveyed fuzzy-based power management algorithms for WSNs.

Mechanism Objectives Modeling Parameters Fuzzy Logic Input Variables Minimize Power
Consumption Strategy

DSA [50] Increase lifetime of the individual
nodes batteries

Deadline miss ratio, deadline
miss ratio desired and

remaining battery capacity

Fuzzy logic system with input
parameters (deadline miss ratio,
deadline miss ratio desired, old

sampling time, and remaining battery
capacity)

Timing of sleep and wakeup
policy

DPMA [51] Increases the whole network lifecycle Current sampling time and the
temperature value detected

Fuzzy logic system evaluates the
temperature variations. Input

parameters: sampling time and data.

Optimization of the
sleep/wakeup mechanism

Power consumption reduction
mechanism using fuzzy logic [52] Improves the lifetime of WSN nodes Sleeping time, battery level, and

ratio of throughput

Fuzzy logic controller to calculate
sleeping time according to the battery

level and throughput-to-workload

Dynamically changes the
sleeping time to increase the

battery life

Distributed fuzzy logic-based sink
selection algorithm [53]

Reduces the delay and improves the
lifetime of WSN

Distance, energy, and
congestion

Fuzzy logic controller inputs are
neighbor nodes number, remaining

battery energy, and distance between
a node and a sink

Minimizing the number of
packet retransmissions delivery

to the sink by selecting the
proper sink per node

Fuzzy logic-based mechanism
utilizing particle swarm

optimization algorithm [54]

Power consumption reduction and
prolonging the lifetime of node and

network in industrial wireless sensor
networks

Sleeping time, battery level, and
the ratio of throughput

Fuzzy controller input variables are
sleeping time, battery level, and the

ratio of throughput

Optimizing the member
functions (MFs) by varying their

range

FLC-PSO [55] Minimize the number of dead nodes
and maximize the remaining energy

Remaining energy and the
number of dead nodes

Fuzzy logic input variables are
remaining energy and the number of

dead nodes

Optimizing membership
functions and FLC

A fuzzy logic-based algorithm for
smart homes [56]

Overcome energy consumption in
battery nodes in an IEEE 802.15.4

network for smart homes and design a
system that can be executed using

off-the-shelf hardware

Throughput to workload, the
battery level of the device, and

sleeping time

Fuzzy logic controller with
throughput-to-workload and the

node battery

Dynamically sets the sleeping
time to increase the battery

duration
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6. CMR-WSN Mobility Management Utilizing Fuzzy Logic

Mobility is one of the main advantages of CMR-WSN over classical WSN, as mobile nodes (robots
in this case) can move within the AoI to perform extended sensing mechanisms for areas not reachable
by static sensors. However, mobility management protocol is required to maintain the connectivity of
the mobile nodes (the robots in this case) during the nodes’ movement. Therefore, a proper mobility
management protocol must consider all the necessary actions to support the movement of mobile
users without losing connectivity. The major process of a mobility management protocol is called
handoff. The handoff process involves three phases: (a) triggering, (b) decision, and (c) execution. In
the literature, several handoff-triggering techniques have been proposed. Most of them rely on the
following criteria:

• Received signal strength indicator (RSSI) threshold—when the RSSI is below a predefined value,
then the handoff is triggered.

• Link loss—if the link loss of the mobile node is above a predefined value, then the handoff

is initiated.
• RSSI moving average—if the average value of the RSSI over a period is below than a predefined

value, then the handoff is triggered.
• Exponential weighted moving average—if the moving average of the RSSI over a period is below

a predefined value, then the handoff is triggered.

Link loss denotes the ability of the mobile node to successfully communicate directly with the
parent node while also considering any retransmissions at the Medium Access Control (MAC) layer.
Figure 14 shows the behavior of RSSI during a random walk in an industrial environment and,
more specifically, in a refinery [57]. It is obvious that RSSI is used as a single parameter to decide
whether the handoff triggering will produce unnecessary overhead in terms of energy consumption
and computation due to the scanning period for searching new attachment points, and this is due to its
unpredictable behavior. On the other hand, using the link quality as a metric to initiate the handoff

poses another drawback, which is the number of packets needed to achieve reasonable accuracy.
Averaging techniques such as moving average and exponential weighted moving average can provide
solutions to some of the drawbacks of using a single value of RSSI or link loss.
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Single metrics, such as RSSI, are not suitable to trigger the handoff procedure, especially when
considering wireless sensor networks in dynamic environments [58–61]. To solve these performance
issues (increased energy consumption and a large number of unnecessary triggers) introduced by the
usage of solely metrics such as RSSI and link loss, researchers started investigating different techniques
to control the handoff procedure. One such technique is to use fuzzy logic. The reason for using fuzzy
logic resides on the fact that:
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• It can control nonlinear systems based on observable phenomena.
• It is flexible due to the option to easily modify the expert-defined rules and tune the membership

functions so that it can achieve the desired performance.
• It can work without training and learning as other solutions such as neural network do. A

fuzzy-logic system can be built on the basis of the experience of people who already understand
the system.

In what follows, the most related fuzzy logic-based mobility management mechanisms proposed
in the literature are summarized. In [62], the authors introduced MoMoRo, a mobility layer that can
be easily integrated into existing systems enabling the mobility of the nodes. MoMoRo uses a fuzzy
estimator to make link quality estimations and detect route disconnections. MoMoRo was evaluated
both in indoor and outdoor testbeds. The triggering of the handoff is initiated by the link packet losses,
and the selection of the new attachment point is based on the fuzzy logic estimator.

In [63], the authors proposed an effective mechanism to guarantee the performance of handoff,
including a mobility-aware scheme, temporary connection, and quick registration. The main
contribution of this paper is that the proposed mechanism is implemented not only in the proposed
testbed but also in a real industrial environment. The results indicated that the proposed mechanism
not only improved the accuracy of handoff triggering but also solved the problem of the ping-pong
effect during handoff. The authors of [64] presented a fuzzy rule-based simulation system for WSN to
predict the node’s mobility and energy. Mobility prediction provides a stable path for a network and
energy prediction increases the lifetime of the network. Network simulator NS3 is used for simulation
results. In this paper, the handoff decision for heterogeneous networks was identified as a fuzzy
multiple attribute decision-making problem, and fuzzy logic was applied to deal with the imprecise
information. In [65], a handover algorithm was proposed to support vertical handovers between
heterogeneous networks. This was achieved by incorporating the mobile IP principles in combination
with fuzzy logic concepts utilizing different handover parameters. Furthermore, in [66], the authors
deal with a vertical handover decision algorithm based on the fuzzy control theory. The algorithm
takes into consideration the factors of power level, cost, and bandwidth in order to decide about the
vertical handover. In [67], the authors proposed and implemented a fuzzy-based handover system
(FBHS), where they showed that the proposed system had good behavior for handover enforcement,
but in some cases, it could not avoid the ping-pong effect.

In [68], the authors proposed a fuzzy logic mobility controller (FLMC) in order to support
critical applications such as personnel safety and healthcare monitoring. The main idea was to use
a combination of two existing metrics that are locally available at each node with the purpose of
predicting end-to-end losses and supporting the triggering of the handoff procedure. FLMC was
evaluated in a real environment and, more specifically, in a refinery area. As mentioned previously,
FLMC operation relies on two locally available metrics, the RSSI and the link loss. As a first step,
several experiments were run in the refinery area in order to investigate the behavior of the two metrics
and extract information about the relationship of RSSI, link loss, and end-to-end packet loss. Figures 15
and 16 show the relationship between the aforementioned metrics, and the FLMC controller with
the inputs and outputs, respectively. More specifically, on the basis of Figure 15, we can conclude
the following:

1. For link loss above 15% and RSSI less than -78 dBm, the end-to-end packet loss was significant
and clearly not acceptable.

2. For RSSI greater than -60 dBm and the link loss up to 40%, the end-to-end packet loss was
acceptable. This happened because the mobile was not able to retransmit the lost packets

In the proposed fuzzy controller, as shown in Figure 16, the quantities were considered at the
discrete instant kT:

3. T denotes the sampling period.
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4. RSSI (kT) is the received signal strength taken every kT.
5. LL (kT) denotes the rate of link loss measured at kT.
6. Pd (kT) is the calculated decision probability. This probability is taken into account to trigger the

handoff procedure.
7. SGi1,2 (kT) is the input scaling gains.
8. PThreshold is a predefined value that is compared to the Pd(kT) and denotes if the specific Pd(kT)

will trigger the handoff or not.

In order to further improve the performance of the FLMC solution, the authors implemented
an adaptive thresholding solution [69] with the main target to reduce the power consumption and
to increase the on-time triggering. Furthermore, in [70], the authors extend their solution to support
adaptive fuzzy logic operation to produce a successful handoff. The evaluation results clearly show
that the adaptive fuzzy logic mobility controller outperformed the non-adaptive fuzzy logic controller
in terms of all evaluation metrics (packet loss, power consumption, and on-time triggering).
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Table 6 depicts the latest proposed solutions to support mobility in wireless sensor networks.
The table summarizes the objectives of each protocol, the metrics used as input to the fuzzy logic
controller, and, finally, the evaluation environment. The two out of four protocols were evaluated in a
real industrial environments [57,63] and under harsh conditions, which makes them applicable for
unpredictable CMRS environments. The FLMC [57] had the least overhead among all the fuzzy-based
mobility management solutions and used only two metrics (RSSI, link loss) that were locally available to
all nodes. Processing only two available metrics will help with the design of an optimal controller that
can optimize the performance of the system. There are many challenges for cooperative multi-robotic
wireless sensor network systems, especially when the mobility of the robots is considered. The mobility
management solutions provided should be intelligent enough to improve the overall performance
of the system. Therefore, any proposed mobility protocol should provide controlled performance
considering the following main characteristics of mobile robots:
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1. High number of mobile robot systems with embedded wireless sensors.
2. Dynamic topology.
3. Limited resources (e.g., power, computation).

All of these characteristics must be addressed in order to achieve a controlled system that supports
an efficient and effective communication protocol between mobile robots. In addition, on the basis
of the evaluation presented in the aforementioned papers, we can only compare the results from
three of them [57,63,69] in terms of packet losses, number of handoffs, and power consumption. Due
to the different evaluation parameters and testbed field, it is not possible to directly compare the
solutions; therefore, we decided to compare the performance of the proposed solutions with the
RSSI-based solution.

Figure 17 shows the comparison of ireless controller area network (Wireless CAN) [63], FLMC [57],
and adaptive-FLMC [69] in terms of packet losses. It is obvious that all the proposed solutions decrease
the packet losses compared to the RSSI-based solution. More specifically, Wireless CAN reduces packet
loss by 73.8%, FLMC by 69.8%, and adaptive-FLMC by 74.7%.

Table 6. A summary of fuzzy logic-based WSN mobility management protocols.

Protocol Objectives Fuzzy Logic Metrics Evaluation Environment

FLMC [57] Triggering the handoff RSSI, link loss
Real industrial environment
(refinery), simulation Cooja

[71]

MoMoRo [62] Extra layer to enable
mobility of the nodes

Expected number of
transmissions (ETX), received

signal strength (RSS), and
symbol error rate (SER) variance

Indoor and outdoor

Wireless CAN [63] Triggering the handoff
Moving state, channel condition,

and packet delivery Real industrial environment

Mobility management
incorporating fuzzy logic

for a heterogeneous IP
environment [66]

Predict the node’s
mobility and energy

Remaining energy
mobility Simulation (NS3)
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Furthermore, Figure 18 shows the number of handoffs per solution. Again, there is a comparison
with the RSSI-based solution. This type of comparison shows how each solution effectively avoids the
ping-pong effect. Based on the evaluation, Wireless CAN reduced the number of handoffs by 54.8%,
FMLC by 87%, and, finally, adaptive-FLMC by 92.6%.
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Finally, Table 7 depicts the percentage of power reduction of each proposed solution with an
RSSI-based solution.

Table 7. Power consumption comparison with an RSSI-based solution.

Solution Reduction Percentage

Wireless CAN 3.41%
FLMC 8.62%

Adaptive-FLMC 60.34%

7. Conclusions and Future Work

In this paper, a literature survey was presented for the most relevant related work that utilizes
fuzzy logic to solve the main WSN challenges associated with the cooperative multi-robotic wireless
sensor networks, namely, clustering, routing, power, and mobility management. To solve the cluster
and cluster head selection process, most of proposed work presented a de-centralized approach to
select the cluster head and form the clusters, where each node collects several parameters such as
its residual energy, distance to the sink node, and the node’s centrality, and runs fuzzy logic rules to
decide whether it can be a cluster head or not. Then, on the basis of an election process, the cluster and
cluster head are formulated. To solve the routing problem, the related work proposes that each node
will collect certain information such as neighbouring nodes’ residual energy, link quality, and distance
to the sink node, and input them into the fuzzy logic system to find out the optimal route, which
maximizes the packet delivery ratio, minimizes the end-to-end delay, and minimizes the nodes’ energy
consumption. Further, in order to optimize the nodes’ energy consumption, several fuzzy-based power
management and energy-saving algorithms were presented that aim at optimizing the sleep/wake cycle
for the nodes and optimize the nodes’ transmission efficiency by increasing the number of sink nodes
and optimizing their locations concerning the other nodes. Finally, to address the mobility challenges
associated with multi-robotic systems, fuzzy logic is utilized to maintain the nodes’ connectivity during
mobility. To address the aforementioned challenges, several input parameters were used in the fuzzy
logic system such as the data, its sampling time, node remaining energy, throughput-to-workload,
the number of dead nodes in the network, and the received signal strength, among others, in order
to find optimal clustering, routing, and power-saving strategies, and maintain the mobile nodes’
connectivity. In future work, the potential of fuzzy logic in mitigating other WSNs challenges such
as interference and spectrum sharing will be investigated. Furthermore, the various approaches for
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solving CMR-WSN challenges will be compared with each other, focusing on the nodes’ computational
and memory resources, as well as implementation complexity and the practicality of each approach.
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29. Maksimović, M.; Vujović, V.; Milošević, V. Fuzzy logic and wireless sensor networks—A survey. J. Intell.

Fuzzy Syst. 2014, 27, 877–890. [CrossRef]
30. Mizutani, E.; Sun, C.; Jang, R.; Roger, J. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning

and Machine Intelligence; Prentice Hall: Upper Saddle River, NJ, USA, 1997.
31. Kim, J.; Park, S.; Han, Y.; Chung, T. CHEF: Cluster head election mechanism using fuzzy logic in wireless

sensor networks. In Proceedings of the 2008 10th IEEE International Conference on Advanced Communication
Technology, Gangwon-Do, Korea, 17–20 February 2008; Volume 1, pp. 654–659.

32. Handy, M.; Haase, M.; Timmermann, D. Low energy adaptive clustering hierarchy with deterministic
cluster-head selection. In Proceedings of the 4th IEEE International Workshop on Mobile And Wireless
Communications Network, Stockholm, Sweden, 9–11 September 2002; pp. 368–372.

33. Hamzah, A.; Al-Jarrah, M.S.O.; Taqieddin, E. Energy-efficient fuzzy-logic-based clustering technique for
hierarchical routing protocols in wireless sensor networks. Sensors 2019, 19, 561. [CrossRef]

34. Thangaramya, K.; Kulothungan, K.; Logambigai, R.; Selvi, M.; Ganapathy, S.; Kannan, A. Energy aware
cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Comput. Netw. 2019,
151, 211–223. [CrossRef]

35. Nguyen, T.T.; Pan, J.; Chu, S.; Dao, T.; Do, V. Improved performance of wireless sensor network based
on fuzzy logic for clustering scheme. In Proceedings of the International Conference on Smart Vehicular
Technology, Transportation, Communication and Applications, Mount Emei, China, 25–28 October 2018;
pp. 104–113.

http://dx.doi.org/10.3390/s150923376
http://dx.doi.org/10.1016/j.asoc.2019.03.025
http://dx.doi.org/10.1504/IJSNET.2016.074696
http://dx.doi.org/10.1016/j.comcom.2012.05.006
http://dx.doi.org/10.1109/TSMCC.2010.2049649
http://dx.doi.org/10.1016/S0016-7061(97)00017-7
http://dx.doi.org/10.1155/2015/348967
http://dx.doi.org/10.3233/IFS-131046
http://dx.doi.org/10.3390/s19030561
http://dx.doi.org/10.1016/j.comnet.2019.01.024


Electronics 2019, 8, 1513 29 of 30

36. Nayak, P.; Devulapalli, A. A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime.
IEEE Sens. J. 2015, 16, 137–144. [CrossRef]

37. Vajdi, A.; Zhang, G.; Wang, Y.; Wang, T. A new self-management model for large-scale event-driven wireless
sensor networks. IEEE Sens. J. 2016, 16, 7537–7544. [CrossRef]

38. Toloueiashtian, M.; Motameni, H. A new clustering approach in wireless sensor networks using fuzzy system.
J. Supercomput. 2018, 74, 717–737. [CrossRef]

39. Qin, J.; Fu, W.; Gao, H.; Zheng, W.X. Distributed K-means algorithm and fuzzy C-means algorithm for sensor
networks based on multi-agent consensus theory. IEEE Trans. Cyber. 2016, 47, 772–783. [CrossRef]

40. Faramondi, L.; Oliva, G.; Setola, R.; Hadjicostis, C.N. Distributed C-Means clustering via broadcast-only
token-passing. IEEE Trans. Control Netw. Syst. 2019. [CrossRef]

41. Gasparri, A.; Oliva, G. Fuzzy Opinion Dynamics. In Proceedings of the American Control Conference 2012
(ACC2012), Montreal, QC, Canada, 27–29 June 2012; pp. 5640–5645.

42. Oliva, G.; la Manna, D.; Fagiolini, A.; Setola, R. Distributed data clustering via opinion dynamics. Int. J.
Distrib. Sens. Netw. 2015, 11, 753102. [CrossRef]

43. Mothku, S.; Rout, R. Adaptive fuzzy-based energy and delay-aware routing protocol for a heterogeneous
sensor network. J. Comput. Netw. Commun. 2019. [CrossRef]

44. Hu, X.; Ma, L.; Ding, Y.; Xu, J.; Li, Y.; Ma, S. Fuzzy logic-based geographic routing protocol for dynamic
wireless sensor networks. Sensors 2019, 19, 196. [CrossRef] [PubMed]

45. Gholipour, M. A new ant colony optimization routing approach based fuzzy clustering in wireless sensor
network. Rev. Pub. 2019, 5, 469–479.

46. Sert, S.; Alchihabi, A.; Yazici, A. A Two-tier distributed fuzzy logic based protocol for efficient data aggregation
in multi-hop wireless sensor networks. IEEE Trans. Fuzzy Syst. 2018, 26, 3615–3629. [CrossRef]

47. Tabatabaei, S.; Rajaei, A.; Rigi, A.M. A novel energy-aware clustering method via Lion Pride Optimizer
Algorithm (LPO) and fuzzy logic in wireless sensor networks (WSNs). Wirel. Pers. Commun. 2019, 108, 1–23.
[CrossRef]

48. Koosheshi, K.; Ebadi, S. Optimization energy consumption with multiple mobile sinks using fuzzy logic in
wireless sensor networks. Wirel. Netw. 2019, 25, 1215–1234. [CrossRef]

49. Balaji, S.; Julie, E.G.; Robinson, Y.H. Development of fuzzy based energy efficient cluster routing protocol to
increase the lifetime of wireless sensor networks. Mob. Netw. Appl. 2019, 24, 394–406. [CrossRef]

50. Collotta, M.; Pau, G.; Salerno, V.M.; Scatà, G. A fuzzy based algorithm to manage power consumption in
industrial Wireless Sensor Networks. In Proceedings of the 2011 9th IEEE International Conference on
Industrial Informatics, Lisbon, Portugal, 26–29 July 2011; pp. 151–156.

51. Collotta, M.; Pau, G.; Scatá, G. A fuzzy system to reduce power consumption in wireless sensor networks:
A comparison between WirelessHART and IEEE 802.15. 4. In Proceedings of the 2014 IEEE International
Energy Conference (ENERGYCON), Dubrovnik, Croatia, 13–16 May 2014; pp. 766–771.

52. Pau, G. Power consumption reduction for wireless sensor networks using a fuzzy approach. Int. J. Eng.
Technol. Innov. 2016, 6, 55–67.

53. Masdari, M.; Naghiloo, F. Fuzzy logic-based sink selection and load balancing in multi-sink wireless sensor
networks. Wirel. Pers. Commun. 2017, 97, 2713–2739. [CrossRef]

54. Collotta, M.; Pau, G.; Maniscalco, V. A fuzzy logic approach by using particle swarm optimization for
effective energy management in IWSNs. IEEE Trans. Ind. Electron. 2017, 64, 9496–9506. [CrossRef]

55. Cao, C.; Zhu, X. Energy management using optimal fuzzy logic control in wireless sensor network. Int. J.
Online Eng. 2018, 14, 35–52. [CrossRef]

56. Pau, G.; Salerno, V.M. Wireless Sensor Networks for Smart Homes: A Fuzzy-based solution for an
energy-effective duty cycle. Electronics 2019, 8, 131. [CrossRef]

57. Zinonos, Z.; Chrysostomou, C.; Vassiliou, V. Wireless sensor networks mobility management using fuzzy
logic. Ad Hoc Networks 2014, 16, 70–87. [CrossRef]

58. Silva, R.; Zinonos, Z.; Silva, J.S.A.; Vassiliou, V. Mobility in WSNs for critical applications. In Proceedings of
the 2011 IEEE Symposium on Computers and Communications (lSCC), Kerkyra, Greece, 28 June–1 July 2011;
pp. 451–456.

59. Zinonos, Z.; Chrysostomou, C.; Vassiliou, V. Controlling the handoff procedure in an oil refinery environment
using fuzzy logic. In Proceedings of the 2012 IEEE 15th International Conference on Computational Science
and Engineering, Nicosia, Cyprus, 5–7 December 2012; pp. 477–483.

http://dx.doi.org/10.1109/JSEN.2015.2472970
http://dx.doi.org/10.1109/JSEN.2016.2598832
http://dx.doi.org/10.1007/s11227-017-2153-0
http://dx.doi.org/10.1109/TCYB.2016.2526683
http://dx.doi.org/10.1109/TCNS.2019.2910472
http://dx.doi.org/10.1155/2015/753102
http://dx.doi.org/10.1155/2019/3237623
http://dx.doi.org/10.3390/s19010196
http://www.ncbi.nlm.nih.gov/pubmed/30621104
http://dx.doi.org/10.1109/TFUZZ.2018.2841369
http://dx.doi.org/10.1007/s11277-019-06497-6
http://dx.doi.org/10.1007/s11276-018-1715-2
http://dx.doi.org/10.1007/s11036-017-0913-y
http://dx.doi.org/10.1007/s11277-017-4631-3
http://dx.doi.org/10.1109/TIE.2017.2711548
http://dx.doi.org/10.3991/ijoe.v14i09.8896
http://dx.doi.org/10.3390/electronics8020131
http://dx.doi.org/10.1016/j.adhoc.2013.12.003


Electronics 2019, 8, 1513 30 of 30

60. Zinonos, Z.; Silva, R.; Vassiliou, V.; Silva, J. Mobility solutions for wireless sensor and actuator networks with
performance guarantees. In Proceedings of the 18th International Conference on Telecommunications, Ayia
Napa, Cyprus, 8–11 May 2011; pp. 406–411.

61. Zinonos, Z.; Vasilios, V. S-GinMob: Soft-handoff solution for mo-bile users in industrial environments.
In Proceedings of the 2011 International Conference on Distributed Computing in Sensor Systems and
Workshops (DCOSS), Barcelona, Spain, 27–29 June 2011; pp. 1–6.

62. Ko, J.; Chang, M. MoMoRo: Providing mobility support for low-power wireless applications. IEEE Syst. J.
2015, 9, 585–594. [CrossRef]

63. Ma, J.; Yang, D.; Zhang, H.; Gidlund, M. A reliable handoff mechanism for mobile industrial wireless sensor
networks. Sensors 2017, 17, 1797. [CrossRef]

64. Katkar, P.S.; Ghorpade, V.R. Fuzzy approach to predict mobility and energy to prolong the life of Wireless
sensor network. In Proceedings of the 2016 IEEE International WIE Conference on Electrical and Computer
Engineering (WIECON-ECE), Pune, India, 19–21 December 2016; pp. 12–15.

65. Zhang, W. Handover decision using fuzzy MADM in heterogeneous networks. In Proceedings of the 2004
IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733), Atlanta, GA, USA,
21–25 March 2004; pp. 653–658.

66. Chan, M.L.; Sheriff, R.E.; Hu, Y.F.; Conforto, P.; Tocci, C. Mobility management incorporating fuzzy logic for
heterogeneous a IP environment. IEEE Commun. Mag. December 2001, 39, 42–51. [CrossRef]

67. Liao, H.; Tie, L.; Du, Z. A vertical handover decision algorithm based on fuzzy control theory. In Proceedings
of the First International Multi-Symposiums on Computer and Computational Sciences, Hangzhou, China,
20–24 June 2006; Volume 2, pp. 309–313.

68. Barolli, L.; Durresi, A.; Xhafa, F.; Koyama, A. A Fuzzy-based handover system for wireless cellular networks:
A case study for handover enforcement. In International Conference on Network-Based Information Systems;
Takizawa, M., Barolli, L., Enokido, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2008.

69. Zinonos, Z.; Vassiliou, V.; Christodoulou, K. Reliable Mobility Support for e-Health Monitoring: A
Performance Evaluation. In Proceedings of the 2018 Innovations in Intelligent Systems and Applications
(INISTA), Thessaloniki, Greece, 3–5 July 2018; pp. 1–6.

70. Zinonos, Z.; Vassiliou, V.; Chrysostomou, C. Adaptive fuzzy logic mobility management for WSN. In
Proceedings of the 2014 IEEE International Conference on Distributed Computing in Sensor Systems, Marina
Del Rey, Marina Del Rey, CA, USA, 26–28 May 2014; pp. 302–307.

71. Zinonos, Z.; Vassiliou, V.; Christofides, T. Radio propagation in industrial wireless sensor network
environments: From testbed to simulation evaluation. In Proceedings of the 7th ACM Workshop on
Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, Paphos,
Cyprus, 21 October 2012; pp. 125–132.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSYST.2014.2299592
http://dx.doi.org/10.3390/s17081797
http://dx.doi.org/10.1109/35.968811
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Fuzzy Logic Overview 
	Fuzzy Logic-Based WSN Clustering 
	Fuzzy Logic-Based Routing Algorithms 
	Fuzzy Logic-Based WSN Power Management and Optimization 
	CMR-WSN Mobility Management Utilizing Fuzzy Logic 
	Conclusions and Future Work 
	References

