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Abstract: The traditional oil well monitoring method relies on manual acquisition and various
high-precision sensors. Using the indicator diagram to judge the working condition of the well is
not only difficult to establish but also consumes huge manpower and financial resources. This paper
proposes the use of computer vision in the detection of working conditions in oil extraction.
Combined with the advantages of an unmanned aerial vehicle (UAV), UAV aerial photography
images are used to realize real-time detection of on-site working conditions by real-time tracking of
the working status of the head working and other related parts of the pumping unit. Considering the
real-time performance of working condition detection, this paper proposes a framework that combines
You only look once version 3 (YOLOv3) and a sort algorithm to complete multi-target tracking in
the form of tracking by detection. The quality of the target detection in the framework is the key
factor affecting the tracking effect. The experimental results show that a good detector makes the
tracking speed achieve the real-time effect and provides help for the real-time detection of the working
condition, which has a strong practical application.

Keywords: computer vision; oil well working condition; real-time detection; sort; unmanned aerial
vehicle (UAV); YOLOv3

1. Introduction

The fault diagnosis technology and working condition monitoring technology of the pumping unit
have always been the focus of the oilfield. At present, the commonly used fault diagnosis methods are
mainly manual analysis and indicator diagram diagnosis. However, the dependence of a large number
of high-precision sensors and high-sensitive devices not only increases the original cost of working
condition detection but also gradually increases the requirements of staff [1]. The whole process
takes a lot of time, and even real-time working conditions cannot be obtained. This has posed a great
challenge to the detection of field working conditions of oil field pumping wells [2]. In recent years,
with the gradual maturity of UAV technology, more and more projects have been launched around
UAV, and it has been widely used in the inspection of power, highway, agriculture, communication,
oil, and other fields [3]. By making use of the flexible mobility and powerful timeliness of the UAV,
the difficulty of traditional condition detection can be overcome by using the UAV patrol mode [4,5].

The subject of this paper is the fine inspection research of pumping-well working conditions based
on UAV. Unmanned UAVs equipped with high-definition cameras can hover in the air for a long time
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to monitor the ground over a wide range and obtain real-time images. Therefore, through the pumping
unit’s real-time images acquired by the UAV, the deep learning detection [6,7] and the tracking method
are used to detect the working condition of the oil-well pumping unit in operation. The specific
detection precision is to the extent of the pumping unit’s key parts [8]. At the same time of the whole
pumping unit detection, the head working part of the pumping unit also undergo detailed detection
and tracking, so as to achieve more refined inspection and get a more detailed pumping condition.
Tracking the working state of the pumping unit and key components provides real-time position and
movement information of the specified target [9]. By analyzing the state of the pumping unit and the
real-time working state of the key components, the purpose of the drone’s refined detection of the
oil-well pumping unit is achieved [10].

Because there are multiple targets on the oil field, such as vehicles and workers, the purpose of this
paper is to track multiple specified targets in the UAV image, which becomes a problem of multi-target
tracking [11]. Multi-target tracking lacks artificial markers, and there are multiple targets, so it is
necessary to use a target detector to detect the position of the target in the image at each moment [12].
Therefore, this paper adopts the tracking method based on detection and matching. Firstly, the detector
is used to detect the static image of the oil-well pumping unit and the important parts, such as head
working. Then, the static problem is extended to the dynamic problem, and the detection results of the
two frames before and after are matched one by one to realize the tracking of the key working parts of
the oil-well pumping unit and the pumping unit.

In this article, the main contributions are as follows. 1) A multi-target tracking framework (YLTS)
for real-time tracking is proposed. It uses YOLOv3 as the detector and the sort algorithm as the tracker.
In this paper, different algorithms are used as detectors to make multi-target tracking experiments
for oilfield pumping units and their related components, and their accuracy and real-time tracking
effects are compared. It is concluded that the use of YOLOv3 as the detector in this framework is most
suitable; 2) different from the traditional method of detecting pumping unit working conditions with
indicator diagrams, this paper applies the fine inspection project of UAV to the study of pumping unit
working condition detection in oil production. By detecting and tracking the pumping unit and the
head working part in the oil field, the position and movement information of the key components such
as the head working are obtained, which provides a reliable basis for the next semantic analysis and
the judgment of the working condition.so as to obtain the real-time working condition of the oil-well
pumping unit.

The rest of this article is arranged as follows. Section 2 briefly reviews the research status
of pumping unit working condition detection and the application status of UAV inspection.
Then the related work of the model is introduced. The proposed method is described in Section 3,
and experimental results and comparisons are explained in detail in Section 4. Finally, we summarize
the paper and illustrate the future work in Section 5.

2. Related Works

The pumping unit has many major components, and the common faults are also complicated.
In order to meet different fault inspections, the current pumping inspection methods generally involve
manual collection. High-precision sensors and high-sensitivity devices are used to detect the load
and displacement, current, voltage, stroke, and stroke parameters of the pumping unit. Then display
the parameter values and the indicator diagram on the LCD screen. Although this method basically
satisfies the basic needs of oilfields for pumping-unit monitoring, as the scale of oilfield mining is
getting larger and larger, the establishment of this system is more and more difficult and expensive.

In recent years, UAVs have been widely used in the field of inspection. However, so far, the more
mature inspection application of UAVs only stays in the inspection of pipelines and routes, such as
highways, high-voltage power lines, and oil and natural gas pipelines. The UAV flies along the pipeline
to be inspected. In the automatic flight mode, the built-in high-definition camera is used to point at
the pipeline to be inspected to collect the image of pipeline details, which is then transmitted to the
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ground station through wireless remote real-time transmission. In this paper, the application of UAV
inspection is extended to the fine inspection of the working condition of the oil field pumping unit,
so as to obtain the position of the pumping unit and the motion information of key parts in the video
sequence in the middle and low altitude flight, providing a basis for further semantic layer analysis
(motion state recognition, scene recognition, etc.) [13]. In this way, the real-time working condition of
the oil-well pumping unit can be further judged according to the obtained information.

In order to achieve the work status tracking for pumping units key component, based on the
requirement of real-time and multi-target, the technology adopted in this paper is the target tracking
algorithm based on detection and matching. The detection quality in this method largely affects the
tracking effect, so the key technology of this algorithm lies in the image target detection algorithm of
deep learning. This chapter mainly introduces the main algorithms and related concepts used in this
paper, including the principle of convolutional neural networks (CNN) in deep learning and the most
advanced algorithms in the field of image detection, and time series prediction algorithms.

2.1. The Basics of Convolutional Neural Networks (CNNs)

The convolutional neural network (CNN) is a deep learning algorithm, which is an application of
deep learning algorithms in the field of image processing and has excellent performance for large-scale
image processing [14]. Inspired by the biological neural network, the perception layer was used to
simulate the process of obtaining image information in biological vision, the hidden layer was used
to simulate the neurons in the biological neural network, and the convolutional layer and excitation
function were used to simulate the process of information transmission between neurons in the
biological neural network. CNN uses a large number of hidden nodes to store the data of the original
image. This method can obtain a better representation than the original image, and the tile processing
method of hidden layer nodes makes the CNN have translation invariance. The schematic diagram of
a CNN is shown in Figure 1:
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Figure 1. The basic construction of a convolutional neural network (CNN). 
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a fully connected layer. Multiple convolutional layers are accompanied by a pooling layer. After 
repeated cycles, a fully connected layer is added to form a CNN. The convolution layer is the layer 
responsible for the transformation from the real domain to the feature domain, and it is also the most 
critical layer. The purpose of the pooling layer is to subsample the convolution result [16], extract the 
important part of the feature, reduce the number of network parameters, prevent the emergence of 
an over-fitting image, and improve the robustness of the network. The fully connected layer is mainly 
used to make some local features have global characteristics. All neuron nodes in this layer will be 
connected with the output of all neurons in the convolution layer of the previous Layer. Therefore, 
the calculation amount of the fully connected layer is relatively large. The output result of the fully 
connected layer will be taken as the input of the classifier [17]. 

2.2. Object Detection 

Object detection refers to detecting the location of objects in an image while classifying images. 
The deep convolutional neural network (DCNN) has made great achievements in image object 
detection after face recognition. In recent years, a large number of efficient object detection algorithms 
based on deep learning have emerged successively, such as the region-convolutional neural network 
(R-CNN), fast region-convolutional neural network (Fast R-CNN), faster region-convolutional neural 

Figure 1. The basic construction of a convolutional neural network (CNN).

As shown in Figure 1, a CNN is made up of several convolution layers [15], a pooling layer,
and a fully connected layer. Multiple convolutional layers are accompanied by a pooling layer.
After repeated cycles, a fully connected layer is added to form a CNN. The convolution layer is the
layer responsible for the transformation from the real domain to the feature domain, and it is also
the most critical layer. The purpose of the pooling layer is to subsample the convolution result [16],
extract the important part of the feature, reduce the number of network parameters, prevent the
emergence of an over-fitting image, and improve the robustness of the network. The fully connected
layer is mainly used to make some local features have global characteristics. All neuron nodes in this
layer will be connected with the output of all neurons in the convolution layer of the previous Layer.
Therefore, the calculation amount of the fully connected layer is relatively large. The output result of
the fully connected layer will be taken as the input of the classifier [17].

2.2. Object Detection

Object detection refers to detecting the location of objects in an image while classifying images.
The deep convolutional neural network (DCNN) has made great achievements in image object
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detection after face recognition. In recent years, a large number of efficient object detection algorithms
based on deep learning have emerged successively, such as the region-convolutional neural network
(R-CNN), fast region-convolutional neural network (Fast R-CNN), faster region-convolutional neural
network (Faster R-CNN), You only look once (YOLO), and Single Shot Multi-Box Detector (SSD) [18].
These algorithms are divided into two categories according to whether there is a region proposal.

2.2.1. Faster R-CNN

Faster R-CNN is the most advanced algorithm for object detection in R-CNN series images based
on deep learning. It introduced the region proposal network (RPN) to directly generate candidate
regions, which can be seen as a combination of the RPN and Fast R-CNN model [19].

For the RPN, a CNN model (commonly known as a feature extractor) is used to receive the whole
picture and extract the feature graph. An N × N sliding window is then used on the feature graph to
map a low-dimensional feature (e.g., 256–d) for each sliding window position. This feature is then
fed into two fully connected layers, one for classification prediction and one for regression. For each
window position is a set k different size or scale of a priori box (anchors, default bounding boxes), which
means that each location has a prediction k candidate region (region proposals). For the classification
layer, its output size is 2k, which represents the probability value that each candidate region contains
object or background, while the regression layer outputs 4k coordinate values, which represents the
position of each candidate region (relative to each prior box). The two full connection layers are shared
for each sliding window location. Therefore, RPN can be realized by convolution layer: firstly, an n × n
convolution to obtain low-dimensional features, and then two 1 × 1 convolutions for classification and
regression, respectively. The network architecture of RPN is shown in Figure 2.
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The region proposal network uses dichotomies to distinguish only the background and objects
but does not predict the categories of objects, namely class-agnostic. This method solves the regional
recommendation and time-consuming problems in Fast R-CNN and greatly improves the detection
speed. The detection of the mean average precision (mAP) value of PASCAL VOC 2007 increased from
70% to 73.2%.

2.2.2. YOLO

The YOLO neural network is based on the regression method to complete the target detection
instead of the regional recommendation. It was proposed by Ross et al. in 2015 [20], which mainly
transforms the multi-classification problem into a regression problem to solve the image detection.
The classification and localization problems are solved by the same regression algorithm, which greatly
improves the detection speed and achieves real-time effects in the field of general image target detection.
YOLO first divides the whole picture into S × S grids. Each grid is responsible for predicting the
position of the target point where the center point falls in this grid area. The predicted value is
compared with the real value to calculate the predicted loss. The core idea is to directly operate on the
entire picture, input a picture, and directly derive the position of the prediction frame and the category



Electronics 2019, 8, 1504 5 of 21

to which the prediction frame belongs in the output layer. Each grid into which YOLO is divided is
responsible for predicting some detection frames. Each detection frame needs to have a confidence
value of a specific target in addition to its own position information.

By means of direct regression of the whole graph, YOLO can greatly improve the detection speed,
reduce the error rate of background prediction, and learn highly generalized features, which is better
than Fast RCNN in migration learning. However, the disadvantage is that the detection accuracy
is low, object positioning errors easily occur, and the detection effect on small objects is not good
enough. A series of YOLO algorithms have appeared (e.g., YOLOv2, YOLOv3) in recent years and
have improved and strengthened the shortcomings of the original version. Based on the research of
this paper focusing on real-time and multi-objective features, the detection part used in this paper
is the latest YOLOv3 neural network in this series. The use of YOLOv3 neural network algorithm
modeling to implement the detector portion of this article will be described in detail in Section 3.

2.2.3. SSD

The Single Shot Multi-Box Detector (SSD) belongs to the multi-box prediction of a one-stage
method. The main idea is to carry out dense sampling uniformly on the feature graph of multiple layers
in the image [21]. Different scales and aspect ratios can be adopted in sampling, and then features can
be extracted by CNN for classification and regression. The whole process only takes one step, so it has
the advantage of fast speed. However, an important disadvantage of uniform dense sampling is that
training is difficult, mainly because the positive sample and the negative sample (background) are
extremely unbalanced, resulting in slightly lower accuracy of the model [22].

Given the advantages and disadvantages of the RCNN series and the YOLO series, the SSD
algorithm borrows many of these ideas and has many ideological improvements. Respectively, they are:

1. Multi-scale feature graph is adopted for detection—pyramid feature.
2. Set Default boxes.
3. Determination of Default boxes size.
4. Convolution was used for detection.

The above improvements made the detection speed faster than YOLOv1 and the accuracy
faster than Faster R-CNN. However, the initial size and aspect ratio of the default boxes need to
be set manually, and the size and shape of the default box used by the feature of each layer in the
network are just different, which makes the debugging process very dependent on experience [23].
Moreover, the recognition of small-size objects is still poor, which cannot reach the level of Faster
R-CNN. In contrast, the YOLOv3 used in this paper has obvious advantages in small object detection
after absorbing the advantages and disadvantages of the first two versions and is much faster than
SSD. This is one of the reasons why this article uses YOLOv3 instead of SSD as a detector.

3. Using the YLTS Framework to Realize the Pumping Unit Working Condition Detection of the
Aerial Image of the UAV

This paper uses the proposed YLTS framework to achieve multi-target tracking [24,25]. Before the
tracking, YOLOv3 was used to complete the detection of all the pumping units and the head working
parts in the video to realize feature modeling, and then, the sorting tracking algorithm to complete the
multi-target tracking was used. The whole process was to achieve multi-target tracking by detecting
and then using prediction and matching. The framework proposed in this paper achieves real-time
tracking, but mainly depends on the performance of the detector in the framework. YOLOv3, as a target
detector, was a relatively good model in recent years. After experimental comparison, it is concluded
that the use of YOLOv3 as a detector enables the framework to achieve faster real-time effects in
tracking speed. Because the state of the UAV is in cruise, the main purpose of this article concerns
the low altitude cruise in the detection of the oil pumping unit and the head working, and mainly
discusses the work condition of the head working (work cycle, movement speed, movement direction)
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for real-time tracking, access to the above information can be used according to its working status for
further analysis of the pumping unit working condition.

3.1. Using YOLOv3 as a Detector of the YLTS Framework to Detect the Pumping Unit and the Head Working

In order to learn more about YOLOv3, the first two versions of YOLO (v1, v2) must be understood
first. Since many of YOLOv3’s ideas are inherited from v1 and v2, this section first introduces YOLOv1,
and then introduces YOLOv3 in detail.

The earliest version of the YOLO series is YOLOv1, which is a detection model that converts
multiple classification problems into regression problems for solution. The classification and location
problems in the detection of a pumping unit and head working are solved by the same regression
algorithm, which greatly improves the detection speed. It uses a separate CNN model to realize
end-to-end target detection, divides the input images into 7 × 7 grids, and then each cell is responsible
for predicting the targets in which the center points fall in the grid; when the pumping unit or head
working fall in some grid, this grid is responsible for predicting them, compares the predicted value
with the real value, and calculates the predicted loss. The core idea is to directly manipulate the whole
picture by inputting a figure directly in the output layer for each grid to predict the B bounding box
location information and the confidence score of the bounding box [26].

The predicted value of each bounding box contains five elements: (x,y,w,h,c), where (x,y) represents
the center coordinate of the boundary box, and the predicted value (x,y) of the center coordinate is the
offset value relative to the coordinate point in the upper left corner of each cell; w and h are the width
and height of the bounding box, and the predicted values of w and h of the bounding box are the ratio
of the width and height relative to the entire image, and the value c is confidence score. The confidence
score includes two aspects: on the one hand, the probability of the boundary box containing the target
is denoted as Pr(object); if the pumping unit or the head working part in the picture falls in the grid cell,
it is set as 1, otherwise, it is 0. On the other hand, the accuracy of the boundary box can be represented
by the intersection ratio (IOU) of the prediction box and ground truth, denoted as IOUtruth

pred , so the

confidence is defined as Pr(object) ∗ IOUtruth
pred . The multiplication of confidence scores and conditional

probability is the solution of the classification problem, such as Formula (1):

Pr(classi|object) ∗ Pr(object) ∗ IOUtruth
pred = Pr(classi) ∗ IOUtruth

pred . (1)

As shown in Formula (1), it represents the confidence of the category. In the classification problem,
each grid unit also predicts C conditional category probabilities Pr(Class

∣∣∣Object) that are conditional
on the inclusion of the target grid unit. Each grid cell predicts only one set of category probabilities,
regardless of the number of bounding boxes B. This paper aims to detect the pumping unit and head
working parts in the field with complicated environmental conditions, so C here is set as 2, which
also reduces the workload of the algorithm. In the test, the conditional class probability is multiplied
by the predicted confidence value of each box, so as to calculate the class-specific confidence scores
of each boundary box, what it represents is the probability that the target belongs to a pumping
unit or head working in the boundary box and the quality that the boundary box matches the target.
Prediction boxes of the network are generally filtered according to category confidence. In general,
each cell needs to predict (B × 5 + C) values. If the input image is divided into an S × S grid, the final
predicted value is a tensor of S × S × (B × 5 + C) size.

The structure of the YOLO network can be seen from Figure 3 [27], which uses the convolutional
network to extract features and then uses the full connection layer to obtain predicted values. It can be
seen that its network has 24 convolutional layers and two fully connected layers. The fully connected
layer of the last layer outputs a 7 × 7 × 30 tensor; this tensor stores the location information of all the
detection boxes predicted by the YOLO model and the probability values that belong to a set of specific
classes with the detection boxes.
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The training of YOLO is end-to-end, the prediction of the position, size, type, confidence (score),
and other information of the prediction box is trained by a loss function [28]. Formula (2) is YOLOv1′s
loss function.
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2+

S2∑
i=0

∑
c∈classes

(pi(c) − p̂i(c))
2.

(2)

The S2 in Formula (2) represents the number of grids, in this case, 7 × 7. B is the number of
prediction boxes per cell, which, in this case, is 2. The value of lobj

i j is 0 or 1, that is, whether there is
a target in the cell. The value of λcoord is 5 and the value of λnoobd is 0.5. Formula (2) is divided into
four parts:

Part 1: The first line is the loss function for position prediction. The total square error (SSE) is used.
Part 2: The second line is the loss function for width and height. The total square error is used.
Part 3: The third and fourth rows of confidence (confidence) are also the total squared error (SSE)

used as a loss function.
Part 4: The fifth line is the loss function for the class probability and also uses the total square

error (SSE) as the loss function.
Finally, several loss functions are added together as a loss function of YOLOv1.
Different oilfields have different environmental conditions. In the complex environment of

oilfields, the pumping unit is connected to the head working. In addition, the head working is relatively
small compared with the pumping unit when the UAV is flying higher. Moreover, the up and down
swing of the head working in the pumping unit may lead to the overlap with the pumping unit itself.
Under such complex and harsh testing conditions, YOLOv1 cannot meet the requirements of the
industrial application level. YOLOv3’s improvements make it an algorithm that meets the industrial
application level requirements. On the surface, the core idea of YOLOv3 is basically the same as that
of YOLOv1, both of which are tested by dividing cells in a square way, but the number of partitions
is different. However, its improvement makes its detection effect become an excellent detector both
for accuracy and speed. For example, batch normalization has been added since v2 as a method of
regularization, accelerating convergence, and avoiding overfitting, connecting the BN layer and leaky
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ReLu layer to the end of each convolutional layer. The use of multilevel prediction makes up for the
shortcomings of the previous version of small target detection. Multi-scale training, which allows
for a trade-off between speed and accuracy, makes YOLOv3 more flexible and suitable for industrial
applications. Figure 4 shows the network structure of YOLOv3.
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Here are three additions to Figure 4:
First of all, DBL is the basic component of YOLOv3, which consists of convolution, BN, and Leaky

Relu. For v3, in addition to the last layer of convolution, the three have been merged to form the
smallest component. Secondly, there are multiple res, which are the big components of YOLOv3.
They draw on ResNet’s residual structure. Using this structure can make the network structure deeper.
Its basic component is also DBL. Finally, splicing the intermediate layer of darknet and the upper
sampling of a later layer. The splicing operation is different from the residual layer add operation.
Splicing expands the dimension of a tensor, whereas add simply adds without changing the dimension
of a tensor.

There is no pooling layer and full connection layer in the entire v3 structure, add an anchor
box to predict the bounding box. This avoids the image that can only recognize the same resolution
as the training image at the time of detection and can have a higher resolution at the output of the
convolutional layer. It is very suitable for the occasion when the UAV is not in the fixed altitude
inspection. Good detection can be maintained when the drone’s flight is very close to a pumping unit
or the flight altitude is high. In the process of forward propagation, the dimensional transformation of
the tensor is realized by changing the step size of the convolution kernel [29]. The following analysis is
carried out layer by layer.

Input layer: images are input with 416 × 416 pixels and 3 channels, and then the BN operation is
carried out on the input. Then, the 32-layer convolution kernel operation is carried out. The size of
each convolution kernel is 3 × 3, and the step is 1. Finally, the 416 × 416 feature map of 32 channels is
produced as the output.

Res layer: the input and output in this layer are generally consistent, and no other operations,
just subtraction. In order to solve the phenomenon of gradient diffusion or gradient explosion in
deep neural network, it is proposed to change layer by layer training to stage by stage training.
The deep neural network is divided into several subsegments, each of which contains a relatively
shallow network layer, and then each segment is directly connected to train the residual. Each segment
learns only a fraction of the total difference, and ends up with a smaller total loss. At the same time,
the propagation of the gradient is well controlled to avoid situations that are not conducive to training,
such as the disappearance or explosion of the gradient.
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Darknet-53: from layer 0 to layer 74, there are 53 convolution layers, and the rest are res layers.
This layer is the main network structure for feature extraction of YOLOv3, and the convolution layer
of 3 × 3 and 1 × 1 is used [30]. A large number of jump layer connections using residuals. In the
previous work, the sampling was generally conducted by max-pooling or average-pooling with the
size of 2 × 2 and stride length of 2. However, in this network structure, convolution with a step size of
2 is used for descending sampling. At the same time, up-sampling and route operation are used in the
network structure, and three times of detection are carried out in a network structure. This ensures
the convergence of training. The effect of classification and detection will also be improved, and the
reduction of parameters will reduce the amount of calculation. This is very good for more complex oil
field sites, different locations of the sparse distribution of pumping units, plus the blocking of the head
working. Better results can be obtained by using a darknet-53 network to train such complex images.

The part of YOLO: this part is divided into three scales from 75 to 105 layers, and local feature
interaction is realized by a convolution kernel, such as in Figure 5.
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The minimum scale YOLO layer inputs 13 × 13 feature maps, a total of 1024 channels, reduces the
channel to 75 by convolution operation, and finally outputs 13 × 13 feature maps and 75 channels,
and on this basis, perform position regression and classification.

The input of the mesoscale YOLO layer is to convolve the feature map of the 13 × 13 and
512 channels of the 79 layer to generate the feature map of 13 × 13 and 256 channels. A 26 × 26,
256-channel feature map is generated after up sampling, and convolution is performed after merging
with the 61 × 26, 512-channel mesoscale feature map of the 61 layer. Finally, an output of a 26 × 26 size
feature map and 75 channels is produced.

The input of the large-scale YOLO layer is to convolve the feature map of the 91-story 26 × 26 and
256-channel and generate the feature map of 26 × 26 and 128 channels and generate the feature map of
52 × 52 and 128 channels after up sampling. At the same time, convolution is performed after merging
with the 52 × 52, 256-channel mesoscale feature map of 36 layers. Finally, a feature map of size 52 × 52
and 75 channels are output. Based on this, position regression and classification are performed [31].

According to the structural pattern of YOLOv3, except for the last layer of the model, which uses
the linear activation function, all other layers use the leaky ReLU below as the activation function:

y =

{
x, x > 0
0.1x, otherwise

. (3)

Compared to ordinary ReLU, leaky does not make the negative number directly 0, but multiplies
it by a small coefficient (constant). Keep negative output, but reduce negative output.
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Compared with YOLOv1, v3 makes some adjustments in the loss function. Except that the loss
function of the width and height of the second part still uses the total square error, the loss function of
other parts uses the binary cross entropy. The next step is to add them together. The loss function
for V1 was explained in Formula (2) in the previous section. The following is the formula for binary
cross entropy:

loss = −
n∑

i=1

ŷi log yi + (1− ŷi), (4)

∂loss
∂y

= −
n∑

i=1

ŷi

yi
−

1− ŷi

1− yi
(5)

This is the loss function between probabilities. Only when yi and ŷi are equal, the loss
will be 0; otherwise, the loss will be a positive number. Moreover, the greater the difference in
probability, the greater the loss will be. This measure of probability distance is called cross entropy.
YOLOv3 changes the loss function so that it can better model complex target categories and data sets
of overlapping labels. It is also suitable for the data set that the head working overlaps or blocks with
the pumping unit in the scene of the oil field in this paper.

Through the above modeling, the work of the detector is first completed. The detection of each
frame of the pumping unit and the head working part is realized. After that, the tracker is used to
complete the tracking of multiple targets.

3.2. Use the Sort Algorithm as a Tracker of the YLTS Framework to Track the Pumping Unit and the Head
Working

In order to ensure the real-time tracking effect, this paper uses the Sort algorithm as a tracker
to track the target based on the detector’s detection of the pumping unit and the head working.
The algorithm is an algorithm based on detection and multi-target tracking, which is updated online
and has good real-time performance. The tracking problem is regarded as a data association problem.
The Kalman filter is used to process the correlation of frame-by-frame data [32,33], and the Hungarian
algorithm is used to correlate metrics. The position and size of the detection box are used to correlate
the motion estimation and data of the target [34]. The following is an object state model that represents
and propagates the target ID to the next frame:

x =
[
u, v, s, r,

.
u,

.
v,

.
s
]T

. (6)

where u and v represent the central coordinate of the target, s represents the size area of the target,
r represents the aspect ratio of the target, which remains unchanged, and the last three quantities
represent the predicted next frame.

The steps of the whole process are as follows:

1. When the first frame comes in, the detected target is initialized and a new tracker is created,
labeled with an id.

2. When the following frame comes in, the state prediction and covariance prediction generated by
the previous frame detection box are obtained first in the Kalman filter. The target state prediction
and the IOU of the frame detection box are respectively obtained, the maximum matching of the
IOU is obtained by the Hungarian assignment algorithm, and the matching pair in which the
matching value is smaller than the IOU threshold is removed.

3. The Kalman tracker is updated using the matched target detection frame in this frame to calculate
the Kalman gain, status update, and covariance update. The status update value is output as
the tracking frame of this frame. The tracker for targets that are not matched in this frame are
reinitialized [35,36].
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After the above steps, the proposed YOLOv3 is used as the detector, and the sort algorithm is
basically completed as the framework of the tracker. First, use YOLOv3 to test the pumping unit and
the head working part, and input the test result to the tracker. As a tracker, the sort algorithm uses
the Kalman filter to process the correlation of frame-by-frame data and the Hungarian algorithm to
correlate metrics to track the pumping unit and the head working. After that, through the analysis of
the results of the tracking, the real-time working condition of the pumping unit can be obtained.

4. Experiment and Analysis

In this paper, the UAV is used for video capture, and the video is processed by frame separation.
The image marking tool is used to mark the pumping unit and the head working, and the training
data set is produced. The Tensorflow-GPU [37] version is used as a framework for deep learning,
implemented under the Linux operating system, using 1080Ti GPU for image training and target
detection and tracking in the video. The detection speed and mAP value are used to analyze the
advantages of the YOLOv3 algorithm as a detector in the framework proposed in this paper, to achieve
a good real-time tracking effect, and make decisions for the detection of the working condition.

4.1. Description of the Training Data

In this paper, UAV aerial photography inspection data provided by China Petroleum Western
Drilling Engineering Co., Ltd., were screened through screening and editing to select 5 videos for
130 min with a resolution of 640 × 480. Four of them are medium and low altitude flight (15–25 m),
and one video is high altitude flight (45–55 m). After the data from three videos were processed
by interval frames, the parts of the data that did not meet the training conditions were removed.
The training set contained about 5400 images, and the data from the remaining two videos were
processed by interval frames as the test set images, with about 2500 images. A part of the data set is
shown in Figure 6.
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After the video data was processed in a frame-by-frame process, the pumping unit and the head
working were manually labeled using an image labeling tool. After each image was annotated, a class
label file was generated, which stores the position of the label box and the category information,
as shown in Table 1:
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Table 1. The examples of annotated data.

Class ID
Normalization of

the Central Point x
Value

Normalization of
the Central Point y

Value

Normalization of
w Value

Normalization of
h Value

0 0.6698369565217391 0.4565916398713826 0.34148550724637683 0.9131832797427653
0 0.3675781250000003 0.6263888888888889 0.20390625 0.4666666666666667
0 0.3583333333333334 0.5857142857142857 0.46 0.5428571428571429
1 0.5083333333333334 0.4768356643356643 0.6266666666666667 0.7159090909090909
1 0.6391666666666667 0.65 0.22166666666666668 0.3666666666666667
1 0.6216666666666667 0.43214285714285716 0.41000000000000003 0.7214285714285715

It can be shown from Table 1 that the class label with ID 0 is the pumping unit, and the class
label with ID 1 belongs to the head working. The center point x,y coordinate value, the width value w,
and the height value h of the detection frame are all normalized according to the image size.

The purpose of frame separation processing is to improve the processing speed of the whole
system without affecting the prediction ability of the Kalman filter. The direct impact of video frame
separation processing is whether the target position change rate can be learned. If the interval is too
long, there will be a phenomenon in which the image information is not extracted when the target
trajectory changes greatly, which will lead to an unstable change of the learned position. In order to
verify the effect of different interval frames on the learning ability of the frame on the target trajectory,
each video in this paper trains the network at intervals of 1, 5, 10, 15, and 25 frames and tests them.
Figure 7 shows the average of the loss results of the three videos of the training set after different
interval frame numbers.
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As can be seen from Figure 7, there is a small gap between different interval frames in the
prediction of the target trajectory in the video total, especially in the case of small intervals, but when
the interval frames are too large, the prediction ability will decline sharply. It can be concluded from
the results that the Kalman filter can learn the target motion rule well. However, when the frame
interval time is larger, the target motion regularity is weaker, and the prediction effect will be worse.
Because the pumping unit is in a working state during the inspection of the drone, the head working is
often obscured or incomplete. Therefore, the data of head working in the obtained data is relatively
poor compared to the overall pumping unit. When the number of interval frames is large, the loss
result will also be worse than that of the pumping unit.
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4.2. Experimental Results and Comparison

The tracking framework used in this article makes the tracking effect dependent on the quality of
the detector; therefore, different detectors are used in this paper to make comparative experiments.
SSD is an algorithm similar to YOLOv3 in performance and core thinking; thus, the comparison of
detectors in the following section is mainly to compare SSD with YOLOv3. Figure 8 shows the detection
and tracking effect of a single target. The blue box is the detection box, and the white one is the
tracking box. The purpose of the detection box is to accurately find the location and size of the target
to be found in each frame and mark it out. The tracking box relies on the detection box to match the
detection box before and after the frame and to predict the motion and similarity of the tracking target.
For the occluded target, the detection box will not appear, because there is no target to be detected in
the image. In this paper, for the occluded target in a short time, the tracking box will continue to track
it according to the prediction in the previous frame.
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It can be shown from Figure 9 that a pumping unit in the lower left corner was not detected,
which also led to the failure of tracking, while the tracking of YOLOv3 as a detector succeeded.
However, neither achieved a tracking effect on targets with long-term obscuration, which is the sacrifice
of the sort algorithm in this framework to achieve a faster tracking speed. However, the flexibility
based on drones can make up for this shortcoming. In terms of speed, YOLOv3 as the detector is faster,
which is also the advantage of the algorithm for the detecting speed. For the shadowing problem, this
paper makes the following test to test the critical value of tracking failure.

As shown in Figure 11, with a test for the critical value of the tracking effect in the case of shielding,
it can be seen that the four images are continuously intercepted while the head working of the left
pumping unit is slowly leaving the video viewing angle. The head working in the first three pictures
is still in the line of sight of the drone, but are slowly decreasing. Still, it can still be tested and
tracked, and the last one shows that when the head working disappears completely in the line of sight,
it immediately loses its detection and tracking effect. Moreover, there is also a pumping unit behind
the pumping unit on the left side of Figures 1–3, but they are not detected and tracked because of the
occlusion. This is because the sort tracking algorithm only uses the position and size of the detection
frame to perform the motion estimation and data association of the target in pursuit of the tracking
speed. When the target is lost, it cannot be found, and the ID can only be re-updated through detection.
Therefore, the critical value in the case of occlusion is that the tracking effect is lost when the occlusion
is completely occluded or the detector does not detect the target due to occlusion. However, this is
when the target disappears in the entire image. In Figures 9 and 10, multiple pumping units are
working side by side, which causes the pumping unit and head working to be obscured by other
pumping units. When the obstacle is detected, the Kalman filter can predict the position of the object
in the detection box at the next moment. However, this prediction is very rough. When the object
appears again, it is tracked through matching. However, the frame proposed in this paper is exactly in
line with the scene of the oil field, and the shielding time is almost zero. Moreover, the UAV is in the
way of patrol inspection, which also increases the probability of avoiding shielding and reduces the
shielding time.



Electronics 2019, 8, 1504 15 of 21

Sustainability 2019, 11, x FOR PEER REVIEW 15 of 20 

in this paper is exactly in line with the scene of the oil field, and the shielding time is almost zero. 
Moreover, the UAV is in the way of patrol inspection, which also increases the probability of avoiding 
shielding and reduces the shielding time. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Masking of the critical value test. (a) Frame 180, (b) frame 185, (c) frame 188, (d) frame 196. 

In the case of the UAV flying at a high altitude, different algorithms are used as detectors to 
detect and track multiple targets, which are shown in Figures 12 and 13. 

 

Figure 12. The tracking effect with SSD as detector. 

 

Figure 13. The tracking effect with YOLOv3 as detector. 

Figure 11. Masking of the critical value test. (a) Frame 180, (b) frame 185, (c) frame 188, (d) frame 196.

In the case of the UAV flying at a high altitude, different algorithms are used as detectors to detect
and track multiple targets, which are shown in Figures 12 and 13.
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It can be seen from Figures 12 and 13 that the detection and tracking effect of the pumping unit
was achieved, but the tracking result with SSD as the detector did not detect and track the head
working position. This is related to the performance of the detector. For YOLOv3, the defects of small
targets that could not be detected in the previous series have been improved, so compared to SSD as
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a detector, YOLOv3 has a better effect on detecting small targets. The tracking effect in this paper also
depends on the quality of the detector, so it can be seen that the tracking effect with SSD as the detector
does not track small targets.

4.3. The Analysis of Experiment

When training in the detector section, the default number of iterations for YOLOv3 training is
500,200. After 500,200 iterations, the training will stop automatically. Training can also be stopped
when the loss is no longer falling or the drop is very slow. The training log should be saved after the
training and the following loss curve drawn using python. In order to make the contrast more vivid,
the training loss curve of the SSD is drawn by taking the iteration times and the same iteration interval
of YOLOv3.

As shown in Figure 14, the training stops at 16,000 iterations, and the loss value finally converges
to 0.05. In this experiment, since the average loss of YOLOv3 is very slow and substantially converged
after less than 0.05, the threshold for stopping the training is set to 0.05 at the time of this training.
When the loss value reaches 0.05, the number of iterations is about 16,000. Therefore, the training
iteration of the SSD is also taken from the log between 6000 and 16,000 to draw Figure 15. The above
two loss graphs show that YOLOv3 basically converges to 0.05, and after 16,000 iterations, the SSD’s
loss curve still fluctuates between 0.25 and 0.1 and does not converge. It can be concluded that YOLOv3
has the advantage of training. The loss curve is not only faster than SSD convergence but also has
a smaller convergence value. Therefore, YOLOv3 is more suitable as a detector in this paper than the
SSD algorithm.
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In the experiment of this paper, the SSD algorithm with similar performance to YOLOv3 is
compared with the algorithm used in this paper to compare the advantages of YOLOv3 as the detector
in this paper. However, a comparison of the Faster R-CNN algorithm [38], the most advanced in object
detection based on deep learning R-CNN series images, is also added. The comparison is mainly
made from two aspects, the detection speed and mAP value. The former directly affects the real-time
detection and tracking of the pumping unit and the head working, while the latter reflects the accuracy
of detection and is the performance evaluation of the detector.

The mean average precision (mAP) is shown in Formula (7):

mAP =

∫ 1

0
P(R)d(R) (7)

where P is the accuracy of the pumping unit and the head working, and R is their recall rate.
The formulas for R and P are shown in Formulas (8) and (9), respectively:

P = Number o f targets detected/The total number o f detected detection f rames (8)

R = The total number o f detected targets/Veri f y the total number o f all marked
pumping units and the head working in the set

(9)

As shown in Table 2, mAP values and the target detection speed of the three algorithms are
respectively displayed.

Table 2. Test results for the three models.

Model mAP(%) Time for Detection(s)

Faster R-CNN 57.6 248
SSD 64.7 39

YOLOv3 64.5 20

It can be shown from Table 2 that YOLOv3 reached 64%; although the mAP of YOLOv3 is 0.02%
less than that of SSD, it is almost the same. However, in terms of time, YOLOv3 only uses 20 s, which is
much shorter than the time of the above two algorithms. It fully meets the requirements of real-time
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performance emphasized in this paper. Therefore, it can be concluded that YOLOv3 is the most suitable
detector for this experiment in terms of both accuracy and speed.

Finally, we compare the advantages and disadvantages of the proposed framework with other
multi-target tracking algorithms, as this paper focuses on industrial applications, especially in this
paper, for the tracking of oil field pumping units and head working. Therefore, the first two methods
with the fastest processing speed of MOT Challenge2016 are selected for comparison. According to the
size of the MOTA scores, the comparison results are shown in Table 3.

Table 3. The quality of evaluation of different methods.

Tracker MOTA MOPI FP FN ID SW HZ

YLTS 57.6 79.6 8698 63,245 1423 60.1
SMMUML 43.3 74.8 8463 93,892 985 187.2

LP2D 35.7 75.5 5084 111,163 1264 49.3

As shown in Table 3, the two algorithms with the fastest processing speed are compared with
the framework proposed in this paper. The fastest algorithm is 182.7 HZ, which is far higher than
all other algorithms. The processing speed of the framework proposed in this paper ranks second,
which is more suitable for industrial applications, thanks to the processing speed of YOLOv3 and
the sort algorithm. However, some other factors are sacrificed. IDSW is relatively high, which is
also used to improve the speed and lead to more ID changes. Generally speaking, this framework
achieves the second level in terms of processing speed on the premise of maintaining a high MOTA
level. In combination with speed and accuracy, it can be seen that the proposed multi-target tracking
framework has achieved good results.

5. Conclusions and Future Works

The Faster R-CNN, SSD, and YOLOv3 algorithms used in the experiments in this paper were used
as detectors in the tracking framework proposed in this paper. The framework uses sort tracking to meet
the real-time nature of the oilfield well conditions, which also puts the focus of this framework on the
detector. The quality of the tracking depends entirely on the quality of the detector. Experiments have
shown that YOLOv3 is the most suitable detector for this article, both in terms of accuracy and speed.
However, the framework also has shortcomings. The detector and tracker used in this paper are
designed to meet real-time performance, so it is faster in speed, but it also sacrifices tracking in special
cases. For example, in the case of a long-term occlusion, the target being tracked will be lost, and the
target ID will be frequently switched, which reduces the tracking effect. However, based on the
background of the drone’s refined inspection, this situation has also been reduced. Therefore, the final
result can be used to track the pumping unit and the key components, such as head working, to obtain
the position and motion information of the target, and to provide a basis for further semantic layer
analysis (motion state recognition, scene recognition, etc.). In this way, the working conditions are
checked in real-time.

According to the current research results, this paper believes that although the tracking target does
not appear to be occluded for too long in the scene of drone inspection, it cannot ignore the existence
of this situation. Considering the problem of target occlusion in the tracker is a concern for future
research. This also reduces the dependence on the detector, reduces the number of ID switching during
the tracking target, and improves the overall tracking performance. After obtaining the information
of the tracking target, further motion analysis of the target working state to obtain clearer working
conditions is also a concern for future research.
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