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Abstract: In this paper, we devised an analytical technique to efficiently evaluate the improper
integrals of oscillating and slowly decaying functions arising from the application of the method
of analytical preconditioning (MAP) to a spectral-domain integral equation. The reasoning behind
the method’s application may consistently remain the same, but such a procedure can significantly
differ from problem to problem. An exhaustive and understandable description of such a technique
is provided in this paper, where we applied MAP for the first time to analysis of electromagnetic
scattering from a zero-thickness perfectly electrically conducting (PEC) disk in a planarly layered
medium. Our problem was formulated in the vector Hankel transform domain and discretized
via the Galerkin method, with expansion functions reconstructing the physical behavior of the
surface current density. This ensured fast convergence in terms of the truncation order, but involved
numerical evaluation of slowly converging integrals to fill in the coefficient matrix. To overcome
this problem, appropriate contributions were pulled out of the kernels of the integrals, which
led to integrands transforming into exponentially decaying functions. Subsequently, integrals of
the extracted contributions were expressed as linear combinations of fast-converging integrals via
the Cauchy integral theorem. As shown in the numerical results section, the proposed technique
drastically outperformed the classical analytical asymptotic-acceleration technique.

Keywords: analytical technique; method of analytical preconditioning; spectral-domain
integral equation

1. Introduction

The classical statement of a general electromagnetic propagation, radiation, and scattering problem
requires that fields, being solutions of Maxwell equations, satisfy boundary, edge (i.e., local power
boundedness conditions), and radiation conditions [1]. Among the techniques devised to search for
solutions to these kinds of problems, a special place is occupied by integral-equation approaches, i.e.,
integral-equation formulations associated with discretization techniques. First, this is because the
radiation condition can be automatically satisfied through a suitable choice of the kernel of the integral
equation; second, because integral equations and unknowns to be discretized can usually be defined
on finite supports [2].

Electronics 2019, 8, 1500; doi:10.3390/electronics8121500 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8661-5601
https://orcid.org/0000-0001-9325-2933
https://orcid.org/0000-0002-3446-8168
https://orcid.org/0000-0002-6615-6425
http://dx.doi.org/10.3390/electronics8121500
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/12/1500?type=check_update&version=3


Electronics 2019, 8, 1500 2 of 14

It is well known that the existence of a solution of an arbitrary integral equation cannot be
mathematically stated and, if such a solution exists, that there are no theorems proving the convergence
of an arbitrary discretization scheme [3,4]. This is what happens when dealing, for example, with open
surfaces or nonsmooth boundaries for which problem formulation can lead to weakly singular integral
equations of the first kind or integral equations of the second kind with strongly singular kernels.

Conversely, Fredholm theory [5,6] can be applied to an integral equation if the operator is the
superposition of a continuously invertible operator and a completely continuous operator [7], meaning
that, for these kinds of integral equations, the existence of an exact solution and the convergence of
a general discretization scheme can be proven. For this reason, the scientific community has been
seriously engaged in formulating integral equations of the mentioned type and discretization schemes
generating well-conditioned matrix equations [8–10].

Methods of analytical regularization are aimed at converting first-kind integral equations and
strongly singular second-kind integral equations to integral or matrix equations, for which the Fredholm
theory is valid [11]. We achieved this by analytically inverting the most singular part of the integral
operator and obtaining a Fredholm second-kind integral equation that could be solved via any direct
discretization that keeps Fredholm’s nature [12,13]. On the other hand, an analytically regularized
matrix equation can be obtained in a single step through the suitable choice of a discretization
scheme [14–17]. This is what happened when we used a complete set of orthogonal eigenfunctions of
a suitable operator containing the most singular part of the original integral operator as the expansion
basis of a Galerkin scheme. Such a method is called analytical preconditioning, as the Galerkin
projection technique acts as a perfect analytical preconditioner for the considered integral equation.

We observed that the operator containing the most singular part of the integral operator to be
diagonalized could be selected in different ways; hence, the rate of convergence could be different from
scheme to scheme. In any case, the achievable numerical convergence of the method was limited at
best by machine precision, or at least by the accuracy of the approximation in the numerical evaluation
of matrix coefficients. Thus, if performed poorly, the latter point compromised the results and was
generally an important factor to consider when building an efficient algorithm.

In the literature devoted to applications of the method of analytical preconditioning (MAP) to
integral equation formulations, it has been widely shown that the choice of expansion functions
reconstructing the physical behavior of unknowns guarantees fast convergence, i.e., fewer expansion
functions are needed to achieve highly accurate results provided that a suitable accurate evaluation
of matrix coefficients has been made [14–24]. Moreover, spectral-domain formulations were
preferred in the quoted papers, as convolution integrals resulting from the Galerkin projection
technique could be reduced to algebraic products by selecting expansion functions with closed-form
spectral-domain counterparts.

The bottleneck of such a technique is that the obtained matrix coefficients are improper integrals
of oscillating and, in the worst cases, slowly decaying functions to be numerically evaluated. A
classical way to accelerate the convergence of these kinds of integrals consists of extracting asymptotic
behavior from the kernels while expressing slowly converging integrals of the extracted parts in
closed form [25–27]. Unfortunately, the integrands of the accelerated integrals are asymptotically
oscillating functions with an algebraic decay, meaning that the choice of integration limits strongly
affects the accuracy of that integration. Paradoxically, despite guaranteed convergence with respect to
the matrix-truncation number, the algorithm becomes increasingly less efficient in terms of computation
time as the required accuracy for a solution increases.

In a series of papers, the problem of the accurate and efficient numerical evaluation of these kinds
of integrals was addressed under a different perspective [28–36]: (1) If needed, suitable contributions
were pulled out of the kernels, making the integrands exponentially decaying functions; (2) an
analytical technique was devised on the basis of the Cauchy integral theorem to express the integrals of
extracted contributions as a linear combination of fast-converging integrals, or series. In this way, this
method drastically outperformed the classical analytical asymptotic acceleration technique (CAAAT).
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Interestingly enough, despite using the same line of reasoning, the procedures devised in all the
relevant papers were, in general, different from problem to problem.

In this paper, the technique detailed above is successfully applied for the first time to the
electromagnetic scattering from a zero-thickness perfectly electrically conducting (PEC) disk in a
planarly layered medium. The revolution symmetry of the problem allowed us to expand all the
involved functions in terms of their series of orthogonal cylindrical harmonics. Hence, the problem
was conveniently cast to a set of integral equations in the vector Hankel transform domain. In order to
achieve preconditioning and, hence, fast convergence, each of the obtained integral equations was
discretized via the Galerkin method, with the expansion functions reconstructing the physical behavior
of the corresponding cylindrical harmonic of surface current density, and forming a set of orthogonal
eigenfunctions on the basis of static parts of the associated operators. The obtained matrix coefficients,
which are improper integrals of oscillating and slowly decaying functions, were rewritten as linear
combinations of fast-converging integrals via the technique detailed above.

This paper is organized as follows. In Section 2, for the sake of brevity, we only provide a brief
description of the problem formulation and the discretization of the general integral equation, referring
the reader to the quoted papers for more details. An exhaustive and understandable description
of the devised analytical technique for the accurate and efficient evaluation of the scattering matrix
coefficients is presented in Section 3. Section 4 illustrates how the proposed technique drastically
outperformed the CAAAT. Our conclusions are summarized in Section 5.

2. Problem Formulation and Solution

2.1. Spectral-Domain Integral Equation

In Figure 1, a zero-thickness PEC disk was located at the q-th interface of a planarly layered
medium of L + 1 lossless, homogeneous, and isotropic layers of dielectric permittivity εp = ε0εrp and
magnetic permeability µp = µ0µrp with p ∈ {1, . . . , L + 1}, where ε0 and µ0 are the dielectric permittivity
and the magnetic permeability of the vacuum. Moreover, ω is angular frequency, such that the wave
number of the p-th layer was kp = ω

√
εpµp. A cylindrical coordinate system (ρ,φ, z) was introduced,

with the origin at the center of the disk and the z axis orthogonal to it, such that the planar interface
between the p-th and p + 1-th media was located at abscissa z = zp. An incident field

(
Einc(r), Hinc(r)

)
,

where r = xx̂ + yŷ + zẑ, induced a surface current density J(ρ,φ) = Jρ(ρ,φ)ρ̂+ Jφ(ρ,φ)φ̂ on the disk
that, in turn, generated a scattered field (Esc(r), Hsc(r)).

The revolution symmetry of the problem allowed to expand all involved functions in series of
orthogonal cylindrical harmonics

f (ρ,φ, z) =
+∞∑

n=−∞
f (n)(ρ, z)e jnφ. (1)

Therefore, the problem could be equivalently reduced to an infinite set of independent
one-dimensional equations, obtained by imposing the n-th harmonic of the total electric field to
be vanishing on the disk surface. In the vector Hankel transform domain, the integral equation for
arbitrary index n was written as [37–39]

+∞∫
0

H(n)(wρ)G̃
q
(w)̃J

(n)
(w)wdw = −Einc(n)(ρ, 0) (2)
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for ρ ≤ a, where w is the Hankel mate of ρ,

J̃
(n)

(w) =

 J̃(n)C (w)

− j̃J(n)D (w)

 =
+∞∫
0

H(n)(wρ)J(n)(ρ)ρdρ, (3a)

J(n)(ρ) =

 J(n)ρ (ρ)

− jJ(n)
φ

(ρ)

, (3b)

Einc(n)(ρ, 0) =

 Einc(n)
ρ (ρ, 0)

− jEinc(n)
φ

(ρ, 0)

, (3c)

H(n)(wρ) =
(

J′n(wρ) nJn(wρ)/(wρ)
nJn(wρ)/(wρ) J′n(wρ)

)
, (3d)

where Jn(·) and J′n(·) are the Bessel function of the first kind, and order n and its first derivative with
respect to the argument [40]. The spectral domain Green function was given by [41,42]

G̃
q
(w) =

 G̃q,C(w) 0
0 G̃q,D(w)

, (4a)

G̃q,C,D(w) = −
ZTM,TE

q

(
1∓ e2

qR̃TM,TE
q,−

)(
1∓ R̃TM,TE

q,+

)
2
(
1− R̃TM,TE

q,+ R̃TM,TE
q,− e2

q

) , (4b)

ZTE
q =

ωµq

kq,z
, (4c)

ZTM
q =

kq,z

ωεq
, (4d)

R̃TE,TM
1,− = R̃TE,TM

L+1,+ = 0, (4e)

R̃TE,TM
q,± =

RTE,TM
q,± + R̃TE,TM

q±1,± e2
q±1

1 + RTE,TM
q,± R̃TE,TM

q±1,± e2
q±1

, (4f)

RTE,TM
1,− = RTE,TM

L+1,+ = 0, (4g)

RTE
q,± =

µq±1kq,z − µqkq±1,z

µq±1kq,z + µqkq±1,z
, (4h)

RTM
q,± =

εq±1kq,z − εqkq±1,z

εq±1kq,z + εqkq±1,z
, (4i)

eq = e− jkq,z |zq−zq−1 |, (4j)

and
kq,z =

√
k2

q −w2 = − j
√
−k2

q + w2. (4k)
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Figure 1. Cross-sectional and top views of problem geometry.

2.2. Discretization Procedure

In order to discretize the obtained integral equations, the Galerkin method was used. Unknown
functions J̃(n)T (w) for T ∈ {C, D}were expanded in a complete series of Bessel functions [43]:

J̃(n)T (w) =
+∞∑

h=−1+δn,0

γ
(n)
T,hβ

(n)
T,h

J|n|+2h+pT+1(aw)

wpT
, (5)

where γ(n)T,h denoted expansion coefficients

β
(n)
T,h =

√
2(|n|+ 2h + pT + 1), (6)

pC = 3/2, and pD = 1/2. Following the line of reasoning in [39], it was possible to demonstrate that:
(1) the obtained matrix equation was a Fredholm second-kind equation for which convergence of
the approximate solution of the truncated matrix equation to the exact solution of the problem as
the truncation order tends to infinity can be stated; (2) the behavior of the n-th harmonic of surface
current density at the edge and around the center of the disk was correctly reconstructed, leading to
fast convergence; (3) convolution integrals that resulted from the Galerkin projection technique being
applied were automatically reduced to algebraic products, i.e., the matrix coefficients were expressed
as linear combinations of one-dimensional integrals of the kind

I(n)q,Tk,h
=

+∞∫
0

G̃q,T(w)

w2pT−1
J|n|+2k+pT+1(aw)J|n|+2h+pT+1(aw)dw (7)

to be numerically evaluated.
Unfortunately, the integrands of the integrals in Formula (7) were asymptotically oscillating

and slowly decaying functions. Hence, the numerical evaluation of these kinds of integrals becomes
increasingly less efficient in terms of computation time as the required accuracy for the solution increases.
In order to accelerate the asymptotic decay of the integrands in Formula (7), suitable asymptotic
contributions could be pulled out of the kernels so that the integrals of the extracted contributions
could be expressed as linear combinations of Weber–Schafheitlin discontinuous integrals [25–27,44]:
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I(n)q,Tk,h
=

+∞∫
0

 G̃q,T(w)

w2pT−1 −

P∑
p=1

gq,T,p

w2p−1

J|n|+2k+pT+1(aw)J|n|+2h+pT+1(aw)dw+

+
P∑

p=1
gq,T,p

a2p−2(2p−1)!Γ(|n|+k+h+pT−p+2)
22p−1Γ(−k+h+p)Γ(|n|+k+h+pT+p+1)Γ(k−h+p)

(8)

where 1 ≤ P < |n|+ k + h + pT + 2 and gq,T,p are asymptotic expansion coefficients.
However, the convergence rate was still strongly related to the accuracy required for the solution

due to the asymptotic oscillating nature and algebraic decay of the integrands of the accelerated
integrals. This problem was completely overcome through the application of the analytical technique
presented in the next section.

3. Analytical Technique for Accurate and Efficient Evaluation of Scattering Matrix Coefficients

By taking
(
εp,µp

)
=

(
εq,µq

)
for p ∈

{
1, . . . , q− 1

}
and

(
εp,µp

)
=

(
εq+1,µq+1

)
for p ∈

{
q + 2, . . . , L + 1

}
in Equation (4), the Green function of two half-spaces was simply obtained:

G̃
′

q
(w) =

 G̃′q,C(w) 0

0 G̃′q,D(w)

 (9a)

and

G̃′q,C,D(w) = −
ZTM,TE

q

(
1∓RTM,TE

q,+

)
2

. (9b)

Starting from Equation (4j,k), it was simple to verify that

G̃′′q,C,D(w) = G̃q,C,D(w) − G̃′q,C,D(w) = e2
qSTM,TE

q,− + e2
q+1STM,TE

q,+ , (10)

where

STM,TE
q,− = ±

ZTM,TE
q R̃TM,TE

q,−

(
1∓ 2R̃TM,TE

q,+ + RTM,TE
q,+ R̃TM,TE

q,+

)
2
(
1− R̃TM,TE

q,+ R̃TM,TE
q,− e2

q

) (11a)

and

STM,TE
q,+ = ±

ZTM,TE
q R̃TM,TE

q+1,+

(
1−RTM,TE

q,+ R̃TM,TE
q,+

)
2
(
1− R̃TM,TE

q,+ R̃TM,TE
q,− e2

q

) (11b)

were exponentially decaying functions.
Hence, the integrals in Formulas (7) could be rewritten as the summation of two contributions

I(n)q,Tk,h
= I′(n)q,Tk,h

+ I′′ (n)q,Tk,h
, (12)

where

I′(n)q,Tk,h
=

+∞∫
0

G̃′q,T(w)

w2pT−1
J|n|+2k+pT+1(aw)J|n|+2h+pT+1(aw)dw (13a)

and

I′′ (n)q,Tk,h
=

+∞∫
0

G̃′′q,T(w)

w2pT−1
J|n|+2k+pT+1(aw)J|n|+2h+pT+1(aw)dw. (13b)

Formula (10) allows us to conclude that the integrals in Formula (13b) were fast convergent.
On the other hand, the integrands of integrals in Formula (13a) were still asymptotically oscillating
functions with an algebraic asymptotic decay. An analytical technique to fast evaluate these kinds of
integrals, taking advantage of the nonoscillating nature of the kernels, is shown in the following.
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Utilizing algebraic manipulations and the recurrence formula for Bessel functions [40]

2νJν(z) = z[Jν−1(z) + Jν+1(z)], (14)

it was simple to obtain

I′(n)q,Ck,h
= −

ωεqµqa2
(
I
(n)
q,Ck−1/2,h−1/2

+ I
(n)
q,Ck−1/2,h+1/2

+ I
(n)
q,Ck+1/2,h−1/2

+ I
(n)
q,Ck+1/2,h+1/2

)
(
β
(n)
C,k

)2(
β
(n)
C,h

)2 +
I
(n)
q,Ck,h

ω
, (15a)

I′(n)q,Dk,h
= −ωµqµq+1I

(n)
q,Dk,h

, (15b)

where

I
(n)
q,Tk,h

=

+∞∫
0

Gq,T(w)J|n|+2k+pT+1(aw)J|n|+2h+pT+1(aw)dw, (16a)

Gq,C(w) =
kq+1,z

kq,z
(
εq+1kq,z + εqkq+1,z

) , (16b)

Gq,D(w) =
1

µq+1kq,z + µqkq+1,z
, (16c)

and the integration path in complex plane z = w + jw for integrals in Formula (16a) was the one in
Figure 2 due to the choice of the square root sheet in Formula (4k).
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Let us suppose without loss of generality that kq+1 > kq, and let us consider case |n|+ 2k+ pT + 1 ≥
|n|+ 2h+ pT + 1 > 0 (analogous considerations can be done for |n|+ 2h+ pT + 1 > |n|+ 2k+ pT + 1 > 0).
Hence, functions

F(n,l)
q,Tk,h

(z) = Gq,T(w)J|n|+2k+pT+1(az)H(l)
|n|+2h+pT+1(az) (17)

with l ∈ {1, 2}, where H(l)
ν (·) = Jν(·) + j(−1)ν+1Yν(·) was the Hankel function of the l-th kind and order

ν and Yν(·) was the Bessel function of the second kind and order ν, were analytical in the regions of
complex plane z = w + jw delimited by contours Cl sketched in Figure 3.
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( ) ( ) ( ) ( ) ( ) { }
0 2 ln for 0

1
2 for 0

zl l
z

j H z
z νν

ν
π

ν ν

→ =− ∼ 
− Γ ℜ >

, (19b)

( ) 2 cos
2 4

z

J z z
zν

π πν
π

→+∞  ∼ − − 
 

 for ( )arg zπ π− < < , (19c)

( ) ( ) ( ) ( )11 2 42 lz
l j zH z e

z
ν π π

ν π
−→+∞

− − −∼  for ( )arg zπ π− < < , (19d)

it was simple to conclude that functions in Formula (17) were bounded around 0z =  and decayed 
asymptotically as 21 z  for 1l =  and ( )0 arg z π≤ < , and for 2l =  and ( )arg 0zπ− < ≤ . 

Therefore, Jordan lemma [45] allowed us to rewrite Formula (18) for 1l =  and 2l = , 
respectively, as follows: 

( ) ( ) ( ) ( )
, ,

,1 ,1
, ,

0 0

0
k h k h

n n
q T q TF w dw j F jw dw

+∞ +∞

− =  , (20a)

Figure 3. Integration contours in complex plane.

Utilizing the Cauchy integral theorem [45], it was possible to write
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lim
R→ +∞

rq, rq+1 → 0

∮
Cl

F(n,l)
q,Tk,h

(z)dz = 0. (18)

Starting from the behavior for the small and large argument of the Bessel functions of the first
kind and Hankel functions [40]

Jν(z)
z→0
∼ (z/2)ν/Γ(ν+ 1) for ν , −q with q integer, (19a)

jπ(−1)lH(l)
ν (z) z→0

∼

2 ln z for ν = 0

−(2/z)νΓ(ν) for<{ν} > 0
, (19b)

Jν(z)
|z|→+∞
∼

√
2
πz

cos
(
z− ν

π
2
−
π
4

)
for −π < arg(z) < π, (19c)

H(l)
ν (z) |z|→+∞

∼

√
2
πz

e(−1)l−1 j(z−νπ/2−π/4) for −π < arg(z) < π, (19d)

it was simple to conclude that functions in Formula (17) were bounded around z = 0 and decayed
asymptotically as 1/z2 for l = 1 and 0 ≤ arg(z) < π, and for l = 2 and −π < arg(z) ≤ 0.

Therefore, Jordan lemma [45] allowed us to rewrite Formula (18) for l = 1 and l = 2, respectively,
as follows:

+∞∫
0

F(n,1)
q,Tk,h

(w)dw− j

+∞∫
0

F(n,1)
q,Tk,h

( jw)dw = 0, (20a)

+∞∫
0

[
F(n,1)

q,Tk,h
(w)

]∗
dw + j

+∞∫
0

F(n,2)
q,Tk,h

(− jw)dw = 0, (20b)

where, due to relations [40]

Jν
(
ze j(q+1/2)π

)
= e jqνπ Jν

(
ze jπ/2

)
= e j(q+1/2)νπIν(z), (21a)

H(2)
ν

(
ze− jπ/2

)
= −e jνπH(1)

ν

(
ze jπ/2

)
= j

2
π

e jνπ/2Kν(z) (21b)

for −π < arg(z) ≤ π/2, the following expression could be established:

F(n,1)
q,Tk,h

( jw) =
[
F(n,2)

q,Tk,h
(− jw)

]∗
=

= − j 2
π (−1)h−kGq,T( jw)I|n|+2k+pT+1(aw)K|n|+2k+pT+1(aw)

. (22)

Hence, by taking the difference between Formulas (20a) and (20b), we obtained

j

+∞∫
0

=

{
F(n,1)

q,Tk,h
(w)

}
dw = 0, (23)

where ={·} denotes the imaginary part of a complex number.
By summing and subtracting integrals

kq+1∫
0

Gq,T(w)J|n|+2k+pT+1(aw)J|n|+2h+pT+1(aw)dw (24)
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at the left-hand side of Formula (23) and remembering Formula (16a), it was possible to conclude that

I
(n)
q,Tk,h

=

kq+1∫
0

<

{
Gq,T(w)

}
J|n|+2k+pT+1(aw)H(2)

|n|+2h+pT+1(aw)dw, (25)

where <{·} denotes the real part of a complex number, which are proper integrals of bounded
continuous functions.

4. Results and Discussion

In order to show the effectiveness of the presented technique, comparisons with the CAAAT
are provided in terms of computation time. Integrals were evaluated via application of an adaptive
Gauss–Legendre quadrature routine implemented in a MATLAB environment; these simulations were
performed on a laptop equipped with an Intel Core 2 Duo T9600 2.8 GHz CPU with 3 GB RAM, running
Windows 10.

We observed that Formula (8) could be simply rewritten as Formula (12) by summing and
subtracting the Green function of two half-spaces in Formula (9) with the Green function of the problem,
i.e., I(n)q,Tk,h

= I′(n)q,Tk,h
+ I′′ (n)q,Tk,h

, where fast-converging integrals I′′ (n)q,Tk,h
(integrals of exponentially decaying

functions) coincided with the ones defined in Formula (13b), while

I′(n)q,Tk,h
=

+∞∫
0

 G̃′q,T(w)

w2pT−1 −

P∑
p=1

gq,T,p

w2p−1

J|n|+2k+pT+1(aw)J|n|+2h+pT+1(aw)dw+

+
P∑

p=1
gq,T,p

a2p−2(2p−1)!Γ(|n|+k+h+pT−p+2)
22p−1Γ(−k+h+p)Γ(|n|+k+h+pT+p+1)Γ(k−h+p)

. (26)

According to this different perspective, the CAAAT and our proposed technique substantially
diverged in the provided expressions for slowly converging integrals I′(n)q,Tk,h

, i.e., integrals related to
the Green function of two half-spaces in Formula (9). Therefore, as we observed that the numerical
evaluation of integrals I′′ (n)q,Tk,h

did not significantly affect overall computation time, it was reasonable to

compare these two techniques by neglecting the contribution of integrals I′′ (n)q,Tk,h
, i.e., by considering

the case in which the disk was located at the interface between two half-spaces.
For the sake of completeness, Table 1 shows the fast convergence of the presented technique.

The value of the radial component of the surface current density on a disk of normalized radius
k1a = π located at the interface between two half-spaces, with εr1 = µr1 = µr2 = 1 and εr2 = 1.5
was reconstructed at positions ρ = a/3 and φ = 0deg. for the different numbers of used expansion
functions (N). M = 15 cylindrical harmonics were used according to the estimation formula reported
in [46]. A transverse-magnetic (TM) polarized plane wave travelling through the upper half-space
with magnetic-field amplitude

∣∣∣Hi

∣∣∣ = (
1/2 + 3

√
15/20

)
A/m and incidence direction identified by

angles θi = 30deg. with the z axis, and φi = 0deg. with the x axis in the xy plane, impinged onto the
scatterer surface. As clearly shown, convergence was exponential. We observed that: (1) values in
Table 1 were independent of the required accuracy in the numerical evaluation of the integrals due to
the smoothness of the integrands and (2) only 8 seconds were needed to reconstruct the solution with
machine precision.

For the same example, values of Jρ(a/3, 0), calculated by using ten expansion functions via the
CAAAT, can be seen in Table 2 for different values of the relative accuracy in the numerical evaluation
of the integrals (RA). The extraction of only the first-order asymptotic behavior of the kernels of
the integrals to be numerically evaluated was unthinkable in terms of computation time. For this
reason, the first- and, whenever possible, second-order asymptotic behaviors were extracted from the
kernels. It was clear that: (1) different results were obtained by changing the RA and (2) these values
tended to be the convergent value obtained by means of the proposed technique as RA decreased.
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This last behavior could be better appreciated as shown in Figure 4: assuming the convergence value
of Jρ(a/3, 0), obtained by applying the proposed method as reference value, the relative error in
reconstructing the solution using the CAAAT can be seen plotted as a function of RA (err(RA)).

Table 1. Jρ(a/3, 0) obtained with presented technique for different numbers of used expansion
functions (N), for an impinging transverse-magnetic (TM) polarized plane wave travelling through
the upper half-space with

∣∣∣Hi

∣∣∣ =
(
1/2 + 3

√
15/20

)
A/m, θi = 30deg. and φi = 0deg., k1a = π,

εr1 = µr1 = µr2 = 1, εr2 = 1.5, and M = 15.

N Jρ (a/3,0)

1 1.0232944830856130 + j1.615929348538852
2 0.9402175664195258 + j2.040051164392425
3 0.9299416666965759 + j2.082591420310117
4 0.9295821767452994 + j2.084315713323187
5 0.9295769410471458 + j2.084336809685750
6 0.9295769115416499 + j2.084336239685073
7 0.9295769115444337 + j2.084336215109854
8 0.9295769115443534 + j2.084336214722596
9 0.9295769115443640 + j2.084336214719673

10 0.9295769115443642 + j2.084336214719671
11 0.9295769115443642 + j2.084336214719671

In summary, the accuracy of the solution obtained using the CAAAT increased as RA decreased.
As outlined in the Introduction, this behavior was due to the algebraic decay and oscillating nature of
the integrands of the accelerated integrals. Indeed, for these kinds of integrals, the choice of integration
limits strongly affects integration accuracy.

A comparison between the computation times needed to reconstruct the solution, i.e., to fill in
the coefficient matrix, via the CAAAT by extracting the first- and, whenever possible, second-order
asymptotic behavior of the kernels of the integrals to be numerically evaluated, and by using the
presented technique can be seen in Figure 5a for the same case as examined above. The CPU time
ratio was plotted for different values of N and for three different values of RA. As expected, the CPU
time ratio rapidly increased if higher accuracy was required for the solution, i.e., if a larger number of
expansion functions were used, and if higher relative accuracy was required in the numerical evaluation
of the integral coefficient matrix. In order to better emphasize the effectiveness of the proposed method,
as can be seen in Figure 5b,c, the CPU time ratio obtained for two other cases, i.e., for θi = 15deg.,
k1a = 2π, εr2 = 3, M = 19, and θi = 45deg., k1a = π/2, εr2 = 4.5, M = 17, respectively, was plotted.
No noteworthy changes were observed by comparing Figure 5b,c with Figure 5a. Indeed, even in such
cases, CPU time ratio rapidly increased as the required accuracy for the solution also increased.

Table 2. Jρ(a/3, 0) obtained with classical analytical asymptotic acceleration technique (CAAAT) by
extracting first- and, whenever possible, second-order asymptotic behavior of kernels of integrals
to be numerically evaluated for different values of relative accuracy in numerical evaluation of said
integrals (RA), for an impinging TM-polarized plane wave travelling through the upper half-space with∣∣∣Hi

∣∣∣ = (
1/2 + 3

√
15/20

)
A/m, θi = 30deg. and φi = 0deg., k1a = π, εr1 = µr1 = µr2 = 1, εr2 = 1.5,

N = 10 and M = 15.

RA Jρ (a/3,0)

10−4 0.9295672270564749 + j2.084324032066043
10−6 0.9295768771544162 + j2.084336241777618
10−8 0.9295769129970962 + j2.084336214286492
10−10 0.9295769115654842 + j2.084336214725778
10−12 0.9295769115442899 + j2.084336214717872
10−14 0.9295769115443696 + j2.084336214719659

Presented Technique 0.9295769115443642 + j2.084336214719671
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to be numerically evaluated with respect to presented technique as a function of number of used
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5. Conclusions

In this paper, we presented an analytical technique for the efficient evaluation of improper integrals
of oscillating and slowly decaying functions arising from MAP application to a spectral-domain integral
equation. This is the first time this technique was applied to analysis of electromagnetic scattering from
a zero-thickness PEC disk in a planarly layered medium. The proposed technique, which showed the
numerical evaluation of improper integrals of exponentially decaying functions and proper integrals of
bounded continuous functions, was very effective. Indeed, it drastically outperformed the analytical
asymptotic acceleration technique, which is widely used to compute improper integrals of oscillating
and slowly decaying functions, independent of characteristics of the involved media and disk size.
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