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Abstract: Autonomous driving promises to be the main trend in the future intelligent transportation
systems due to its potentiality for energy saving, and traffic and safety improvements. However,
traditional autonomous vehicles’ behavioral decisions face consistency issues between behavioral
decision and trajectory planning and shows a strong dependence on the human experience. In this
paper, we present a planning-feature-based deep behavior decision method (PFBD) for autonomous
driving in complex, dynamic traffic. We used a deep reinforcement learning (DRL) learning
framework with the twin delayed deep deterministic policy gradient algorithm (TD3) to exploit the
optimal policy. We took into account the features of topological routes in the decision making of
autonomous vehicles, through which consistency between decision making and path planning layers
can be guaranteed. Specifically, the features of a route extracted from path planning space are shared
as the input states for the behavioral decision. The actor-network learns a near-optimal policy from
the feasible and safe candidate emulated routes. Simulation tests on three typical scenarios have been
performed to demonstrate the performance of the learning policy, including the comparison with
a traditional rule-based expert algorithm and the comparison with the policy considering partial
information of a contour. The results show that the proposed approach can achieve better decisions.
Real-time test on an HQ3 (HongQi the third ) autonomous vehicle also validated the effectiveness
of PFBD.

Keywords: autonomous driving; behavioral decision; planning features; deep reinforcement learning;
trajectory planning

1. Introduction

Autonomous driving (AD) has been vastly investigated in different domains for several decades
and has a wide variety of applications, especially in intelligent transportation systems. AD provides
more economic, comfortable and safer service than human drivers with fewer collision risks.
The behavior decision and trajectory planning system is a key component of AD.

Presently, as a mature, rule-based decision and planning method, finite state machines (FSMs) [1,2]
have been applied in most autonomous vehicles. Nonetheless, FSMs still have problems with
guaranteeing decisions’ accuracy, especially in complex scenarios, due to the difficulty in determining
the boundary condition of different states and going through all states with limited experience. To
make the vehicles more intelligent and more acceptable for human beings, learning methods have
been attractive in recent years to enhance decisions in AD. Among them, neural networks related
approaches [3–5] have been used to navigate autonomous vehicles due to their strong capacity of
mapping inputs to control signals. The raw pixels from cameras [3,4] were used to train neural
networks for keeping a vehicle in a lane, which proves that the task of lane following can be learned
from the only limited training signal (steering) in a supervised manner. Fusing multiple inputs
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(LIDAR (light detection and ranging) raw inputs, global direction and GPS), a full convolutional
neural network [5] generated driving paths in a more explainable output. In fact, both rule-based
and supervised learning based decision policies have the bottleneck of exploring unknown or
complex scenarios.

Reinforcement Learning (RL) focuses on finding a balance between exploration and exploitation,
and learns optimal policy by interacting with environments. Thus, RL promises to learn more complete
decision policy than rule-based or supervised learning based methods. Deep reinforcement learning
(DRL), a combination of (RL) and deep learning (DL), has been the hottest topic in the artificial
intelligence (AI) discipline. Especially after the win of AI in the game Go [6], DRL has been applied in
intelligent transportation systems and automated vehicles.

One class of DRL methods use limited features as inputs, where features are specially selected
with experience. Some researchers have used DRL for autonomous vehicles in subsystems, such as
energy management systems (EMSs) [7], route planning [8], and behavioral decisions (lane changes,
on-ramp merging, etc.) [9–11]. Deep Q learning (DQN) [11] was used to learn the lateral control
policy with only eight states involving information of vehicles and the road. Aradi et al. [9] used the
REINFORCE algorithm to learn the driving policy mapping 16 continuous states as inputs to train
the steer and acceleration demand. These methods can hardly be practical, since modeling a vehicle’s
lane change behavior with limited information is impossible in real traffic. Wolf et al. [10] explored a
compact semantic state model of lane change with more complete information and trained the policy
with DQN. Although the model can adapt to a variety of scenarios, the agent collides with other
vehicles at high probability.

To learn a simple and explainable driving policy, either states or actions or both in the discrete
semantic form were used [11–14]. States can be "close to the front vehicle" and "far to the front vehicle"
and the actions can be overtake, left change, give way and accelerate, respectively. Li et al. [13]
used the hierarchical game theory to train a driving policy from low-level to high-level step by step.
You et al. [14] used a Q-network to learn discrete optimal actions. For common traffic, an artificial
reward function was used. For traffics with little knowledge, the reward function was learned through
inverse reinforcement learning (IRL) with the maximum entropy principle.

Some researchers studied the sub-modules of autonomous vehicles, such as longitudinal following
and lateral control [15–18]. Zhu et al. [15] used DDPG [19] to teach a human-like autonomous
car-following model, which has high trajectory-reproducing accuracy and generalized-capability.
Based on parameterized batch actor-critic learning algorithm, Huang et al. [17] obtained a near-optimal
lateral control policy for vehicles. The policy can automatically adjust the fuel/brake signals to track
target velocity.

Another class of methods focuses on learning driving policy from raw sensor inputs, such as those
from cameras, LIDAR and screen shots of a simulator [3–5,20–22]. Sallab [20] et al. proposed a new
framework of DRL for autonomous vehicles, which combines LSTM and attention networks to capture
the spatial features. The framework was tested on the simulation platform TORCS. Chen [22] proposed
an end-to-end path planner for autonomous vehicles based on a theory called parallel planning. A deep
Q-network was used to strength their motion planner with fewer mistakes. However, the effect of a
deep Q-network was not given in their publication.

As illustrated in Figure 1, the policy does perform better than experts and traditional decision
models do in some situations. However, it can hardly be directly used for behavioral decisions or
control in reality. One concern is the transferability of the policy learned by end-to-end methods.
The screen shots used as input states differ from raw pixels of real cameras. Besides, the same
abstract scenarios, in reality, may have quite abundant images due to different weather, seasons, road
conditions, etc. Thus, it is questionable to use a simulator’s policy trained from images. The other
concern is the inconsistency between behavioral decision and trajectory planning. In the autonomous
driving system, the low-level planner will check whether space is enough to perform a maneuver from
the decision level. Taking a left change command from the behavioral decision system, for example,
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the motion planner, firstly, evaluates whether the gaps are enough for the ego agent to merge in.
If space is wide enough, the maneuver is executed with a path generated; otherwise, the command
will be ignored for safety’s sake. The final conservative strategy must be a compromise between an
optimal policy and a safe one.

Available Policy

Safe Policy

Optimal 

Policy

Rule-based Policy

Learned Policy

Figure 1. Explanation of polices in decision space. The yellow area represents safe policy. The green
area represents the optimal policy. The dotted ellipse is the rule-based or experience-based policy.
The solid ellipse is the learned policy.

A policy with safety ensured can be implemented in autonomous vehicles. Generating a policy
by combining path planning features can be one feasible choice. If given the traffic participants
and environments, a system can provide all possible maneuvers with corresponding reasonable
paths; then, the decision policy can be reinforced with learning methods by selecting the best
maneuver. Proceeding with previous work, the synchronous maneuver searching and trajectory
planning algorithm (SMSTP) [23], we propose a new planning-features-based behavior decision
method whose architecture is shown in Figure 2. SMSTP outputs no-collision trajectories which
represent the safe policy in yellow of Figure 1, while the target of our proposed PFBD approach was to
learn the optimal policy in green.
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Figure 2. The sample and evaluation architecture of decision and planning for autonomous vehicles.
A contour [23] is one transitable spatio-temporal area for autonomous vehicles in the synchronous
maneuver searching and trajectory planning algorithm (SMSTP) algorithm.

In the SMSTP algorithm, three key parameters, the contour to drive, the expected pose and
velocity at predicting horizon in the contour, are selected empirically. To learn an optimal policy,
we creatively propose to use the DRL algorithm to learn the aforementioned three key parameters
instead. The SMSTP algorithm provides a basic policy with a safety guarantee, while PFBD aims at
optimizing the behavioral decision towards the optimum. Once the three key parameters are decided,
a no-collision trajectory can be optimized numerically.

To the authors’ knowledge, the deep combination of trajectory planning and behavioral decisions
for autonomous vehicles is proposed for the first time here. In brief, we summarize the contributions
of the proposed approach in this paper as follows:
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• We came up with a compact semantic framework of the feature representation which includes
planning space’s states, lanes’ states, ego vehicle’s states and task’s states. The states selected
from planning space are necessary and representative for making behavioral decisions in various
traffic scenarios.

• The proposed PFBD method selects a route generated from the planning space with a safety
guarantee. Besides, it learns better policy through exploring the environment instead of struggling
with the rules.

• The proposed method learns a policy through deep reinforcement learning. The semantic training
data can be sampled from both simulations and real traffic. The simulated samples help the
policy generalize the unknown scenarios.

• We applied the method to autonomous driving in situations, such as lane changing, zebra passing
and ramp-merging. Both simulation and real-time tests were performed. The PFBD method
achieved competitive performance compared to rule-based methods.

1.1. Reinforcement Learning Basics

RL originates from the trial-and-error search with delayed rewards, and it is dedicated to learning
the optimal policy, which maximizes a long-term reward in the subsequent decisions. The agent learns
a control policy by continuously interacting with its environment, and the policy maps states to actions
from interactions.

The agent is in a state st ∈ S of itself and its environment at the time t ∈ [0, 1, 2, . . . ], and it
has a possible action at ∈ Ast ⊆ A on state st, where S and A are the sets of all the environment
states and available actions, respectively. An agent in a new state st+1 observes an immediate reward
rt = r(st, at) ∈ R after executing the action at. A new state transition tuple (st, at, rt, st+1) is then
sampled to train for a control strategy, which is defined by a policy π mapping the states to the
actions π : S → P(A). The agent aims at maximizing the long-term discounted return defined
as:Rt = ∑inf

t=1 γt−1rt, where γ ∈ [0, 1] is the discount. On the policy π, the state-action value function:

Qπ(st, at) = Eπ [rt|st, at], (1)

describes how good the policy is after taking an action at in state st.
The policy π is often acquired by recursively solving the Bellman equations:

Qπ(st, at) = Est+1∼S,at∼π [r(st, at) + γ Eπ [Qπ(st+1, at+1)]]. (2)

The driving policy in a realistic traffic situation can be viewed as a deterministic one. The policy
then can be described using a function µ : S← A, and the expectation of action can be avoided:

Qµ(st, at) = Est+1∼S[r(st, at) + γ Eµ[Qπ(st+1, at+1)]]. (3)

Deep Reinforcement Learning

For a value-only based RL algorithm, such as deep Q-learning, it adopts a deep neural network
(DQN) instead of a table to estimate the value to each state-action pair. DQN uses a greedy µ(s) =
arg maxa Q(s, a) in discrete action spaces. Approximated by parameter θQ, one agent optimizes the
function by minimizing the loss:

Loss(θQ) = Eµ[(Q(st, at)− yt)
2], (4)

where the term yt = r(st, at) + γQ(st+1, µ(st+1)|θQ) is called the target, as the loss tries to make the
value function be more like this target. The long-term accumulation of reward leads to high variance.
Besides, DQN only works well with few actions; thus, failing in continuous action spaces.
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DDPG [19], a model-free off-policy algorithm, can be used for environments with continuous
action spaces. DDPG has two pairs of actor-critic networks with the same structure. The critic
network approximates the state-action value function Q(s, a|θ) by parameter θ, which updates by
minimizing (4). The actor network approximates the agent’s policy µ(s|ω) by parameter ω, which
deterministically maps the observed state s to an certain action a. The actor network is updated by the
derivative of (3) respectively to the actor parameters:

∇ωµ ≈ 1
N ∑

i
∇aQ(s, a|θ)|s=si ,a=µ(si)

∇ωµ(s|ω)|s=si , (5)

where N is the number of state transitions.
Two main technologies are employed by DDPG to enable a stable learning process. The first one

is the replay buffer, which is the set E of previous experiences in the form of state transitions (st, at, rt

and st+1). The learning policy may shift towards and even over-fit to training samples. Therefore, old
experiences are indispensable for robustness. To balance the learning process, new experiences are
given a higher probability than older ones of being sampled in a minibatch. The other technology is
the target network originally used in DQN. The target term in (4) depends on the same parameters
to be learned while the network is being trained. This problem makes loss optimization unstable.
The solution is to use another pair of networks Q

′
(s, a|θ′) and µ

′
(s|ω′) with a time delay. A second

network, called the target network, lags behind the first one, which is called the evaluation network.
The target network updates by a smooth average:

θ
′
= τθ + (1− τ)θ

′
(6)

ω
′
= τω + (1− τ)ω

′

where τ � 1.
To address the over-approximation of actor-critic networks, the twin-delayed deep deterministic

policy gradient algorithm (TD3) [24] based on DDPG employs three technologies. The delayed policy
update changes the target networks slowly every d steps, and this makes networks steadier by avoiding
over accumulating the rewards. The policy smoothing supposes similar states should have similar
actions by adding noise to the target actions in target Q networks:

yt = r(st, at) + γQ(st+1, ã|θ′) (7)

ã = (µ(st+1)|ω
′
) + ε (8)

ε ∼ clip(N (0, σ),−c, c),

where σ is a parameter for noise, c is the boundary for clipping. Clipped double Q-Learning uses
two randomly initialized critic networks as estimates and always takes the minimum one to update
the target:

yt = r(st, at) + γ min
i=1,2

Q(st+1, ã|θ′i). (9)
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2. Problem Formulation

2.1. Vehicle Models

The vehicle uses a kinematic bicycle model for forward motion and lateral movement:

xt+1 = xt + vtcos(θt)∇T (10)

yt+1 = yt + vtsin(θt)∇T

vt+1 = vt + at∇T

θt+1 = θt +
tan(δt)

L
vt∇T,

where x and y are the vehicle’s lateral and longitudinal positions; v and a are the velocity and
acceleration; and θ and δ are the vehicle’s heading and steering angles, respectively. L is the wheelbase
and ∇T is the time step size. Since this paper focuses on the decision level, the dynamic of other
traffic vehicles is assumed to be controlled by fixed acceleration speed. To simulate generally, different
behavior modes of traffic vehicles are used; namely: aggressive mode, regular mode and modest
mode. The behavior modes are characterized by different acceleration speeds, safe distances to follow
a front vehicle, safe distances to overtake a front vehicle and safe distances to avoid near back vehicles.
Each participant vehicle emerges randomly around the ego agent with random target speed. These
simulated vehicles are also enabled to change lanes within a random time interval following general
traffic rules in their own behavior modes. These settings enable the vehicle to explore more potential
types of traffic scenarios, which are prerequisites to learn the optimum policy.

2.2. Planning Space

In real traffic flows, an experienced driver not only observes the nearest vehicle in each lane but
also looks far ahead in a defensive manner. Looking far ahead helps drivers notice potential hazards
and drive smoothly. Therefore, the traffic vehicles in front of the ego agent’s planning scope should
be considered.

In previous work [23], the horizon for decision and planning was fixed as Th. The planning scope
in Figure 3 shows the range between the end pose (Xd) of agent decreasing to zero velocity, and the
end pose (Xa) of an agent accelerating to the maximum velocity allowed within Th. Vehicles inside
such a scope influence the agent’s behavior and the states for decision.

t

s

Ego cfcr

X
blue

T
h X

green

X
d

0

X
a

Figure 3. The planning scope (the dotted line with a double arrow) of the ego agent (in white). Two
surrounding vehicles are in dim green and in dim blue at time 0. At time Th, these two vehicles are in
light colors. For the one-lane situation, the only available route is in the green contour. The rear-end
distance crd and the front-end distance c f d are the green vehicle’s and blue vehicle’s distances at time Th
in the future, respectively. The solid lines with double arrows are the planning scopes for three contours.
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3. Methodology

3.1. States

The agent’s behavioral decision depends on all relevant traffic entities. An entity can be a traffic
participant, a pedestrian, a car or a bicycle with pose and velocity information. The lanes and signs,
such as stop signs and speed limit signs with particular instructive information, are also entities.
However, to generate a safe decision based on the topological routes, entities’ information must be
translated into planning features with specific meanings, as summarized in Table 1.

Features representing these entities are crucial for the agent’s decision, which are pre-processed
as following.

Table 1. The feature states for behavioral decision. Five contours exist in each lane. At most three lanes
are considered. The ‘◦’ represents that a feature is scaled to [−1, 1] before it is concatenated into states.

States (of) Features Meaning

Contour(sc)
crd (◦) the planning scope’s rear-end distance
c f d (◦) the planning scope’s front-end distance
c f v (◦) the planning scope’s front-end velocity

Lane(sl)

ll (◦) lane’s effective length
la lane’s attribute(accelerating, decelerating,..)
lc (◦) lane’s curvature
lv (◦) lane’s speed limitation

Ego agent(se)
ev (◦) agent’s absolute velocity
ea agent’s acceleration speed
eh (◦) agent’s heading relative to lane’s direction

Task (discrete,(sc))
tkd the degree of task (mandatory, discretionary)
tkl the lane-error to target lane of task
tkp the right of way in task

Task (continuous,(sc))
tp the position of special task
tv the target velocity to follow at tp
− the preserved states for future use

3.1.1. States of Contours in Planning Space

To make a safe decision, the features for available planning space are extracted from results of
SMSTP algorithm, which guarantee safe topological routes in Figure 3. Each contour corresponding
one route has three features, as shown in Figure 4. Two of them are the rear-end and front-end poses
of a contour, crd and c f d, respectively. One feature is the recommended velocity c f v at the front end.
If the contour is split by a vehicle at the front end, then this feature is related to the velocity of that
vehicle; otherwise, it depends on the maximum velocity that ego agent can reach at time Th.

T
h

0 1 4

t

S
0

Figure 4. Five contour states in a lane’s planning scope. The hollow circles and solid circles represent
distance and velocity states of a contour in corresponding colors, respectively. The colored lines stand
for trajectories of other traffic participants.

As the input sizes of networks are fixed, the upper number of contours in each lane is limited
to five according to a safe following distance, empirically. Besides, two adjacent contours have one
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shared feature: that the front-end distance ci
f d of i’th contour equals the rear-end distance ci+1

r f of
i + 1’th contour (Figure 4). The state for contours in each lane has total 11 features. Therefore, 33
features consist of the state of contours sc when three lanes (left lane, current lane and right lane) are
considered. The features of distance can be quite enormous compared to some states, such as lane ID
[−1, 0, 1]. Hence, the distance d ∈ [0, 334] and velocity v ∈ [0, 33.4] are mapped to [−1, 1]:

out = 2
in− inmin

inmax − inmin
− 1, in ∈ (d, v). (11)

0
1

(a) (b) (c)

LLm

d

0
1
2

0
1
2

Figure 5. Lane states in different lane structures. (a) An in-ramp road. (b) A two-lane roa. (c) An
off-ramp road.

3.1.2. States of Lanes

The state of lanes sl contains all structural constrains that decide where a vehicle can go. One key
feature is the length of a lane ll . Taking scenario (a) in Figure 5 for example, when the agent goes in lane
1, the merging lane’s (lane 2) length is, Lm, from the agent’s position to the right lane’s end. The left
lane does not exist in scenario (b), hence the length is zero. In scenario (c), when the task is going
straight along the arterial road, the rightest detached lane’s length is, Ld, from the agent’s position to
the separation point. However, when the task is leaving the arterial road, the lengths of lane 0 and
lane 1 are both Ld. So that feature ll depends on the global task and lane’s structure simultaneously.

One inherent feature of lanes is the curvature lc which limits the maximum speed. The other two
features are the lane’s attribute la and the speed limit lv of a lane. The rightmost lanes in scenario (a)
and scenario (c) are the accelerating lane and decelerating lane in the on-off ramp area, respectively,
which means vehicles in these lanes should adjust their speeds to the suggested ones as quickly
as possible.

3.1.3. States of the Ego Agent

The state of ego agent se includes absolute velocity ev, acceleration speed ea and the angle between
vehicle’s heading lane’s direction eh. Here, acceleration and velocity are both scaled to [−1, 1]. eh is
restricted between –0.26 rad and 0.26 rad first, which is then scaled to [−1, 1].

3.1.4. States of Tasks

Driving along a road without following traffic rules is relatively simple. However, autonomous
vehicles of this kind are not acceptable in realistic situations. An agent’s capability includes both going
into a target lane and reaching the given position at a specific speed. The former is guided by task
features in a discrete form, while the latter is instructed by target features in a continuous form.

Three separate task-level features are employed here. The task-level tkd means to which degree
the agent should follow a given task. When the agent’s task is to leave the arterial road in scenario (c)
of Figure 5, the mandatory task-level requires the agent to arrive at the rightmost lane before coming to
the separation point. The discretionary task-level means that the agent can select any available lane to
maintain a high cruise speed in scenario (c). The other one, lane-error tkl , is the relative distance to the
target lane. Lane-error represents how many lanes there are between the current lane and the target
lane, which is the main punishment for task requirements. Another key feature is the prioritization tkp.
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When two vehicles’ distances to intersections have no significant difference, a vehicle with the right of
way is encouraged to go in priority. Otherwise, it should go after vehicles in other roads.

Two continuous target features, the target pose tp to reach and the target velocity tv to follow,
guide the agent to arrive at the position with given speed. Taking intersection cross, for example,
a recommended speed can be 25 km/h for the sake of safety and traffic rules, if the agent traverses at
higher speeds, some punishment will be given. These two features also represent speed limits from
traffic signs. Including four preserved ones, the state of task stk has nine features.

The final state for MDP is st =< st
c, st

l, st
e, st

tk > with a total of 57 features.

3.2. Actions

The action at =< at
l , at

d, at
v > uses three sub-actions jointly to decide an agent’s behavior and

optimizing parameters in a select contour. The first discrete action at
l ∈ [−1, 0, 1] selects a lane to go

among the left lane, the current lane and the right lane if they exist. The second continuous action
at

d ∈ [−1, 1] represents the target position to reach Th between Xd and Xa. The third continuous action
at

v ∈ [−1, 1] stands for the target velocity to follow at time Th. The inverse transformation of (11) is
used to get either the predicted distance āt

d ∈ [0, 334] or the velocity āt
v ∈ [0, 33.4] by

out =
in + 1

2
(omax − omin) + omim, in ∈ (ad, av), (12)

where omax and omin are the maximal and minimal expected values of inputs. In fact, due to the values
of action at

d and action, at
v can hardly be 1 or −1 through hyperbolic sine function. We enlarge both

omax and omin a bit and truncate the outputs to expected ranges.
Action at

l selects the target lane, and it has several contours in the corresponding planning scope.
The undetermined contour for the trajectory optimizer depends on āt

d. If āt
d locates inside one contour

of the planning scope in Figure 4, then this contour is selected. Otherwise, either the nearest or the
furthest contour is selected and āt

d is adjusted to either c0
rd or ci

f d (i depends on the number of contours
in the lane). In the trajectory optimizer layer of the SMSTP, the chosen contour, adjusted āt

d and āt
v,

determine the final trajectory in predicted horizon Th.

3.3. Rewards Design

The ego agent employs an action and gets a reward rt at time t, which evaluates the current state
and action. rt guides the policy to learn proper actions for higher rewards and reflects to what degree
the agent drives as we expect.

A well-designed reward represents the desired policy for complex driving tasks. Therefore,
rt is a compromise among agent’s safety, traveling efficiency, and task achievement in linear
combination form:

rt = rt
s + rt

e + rt
t (13)

rt
s =


−10, a collision

−2, a lane change

0, else

(14)

rt
e = min(ev −

∑n
i=1(vi) + lv

n + 1
, 0) (15)

rt
t+ =


max(−5,−2 ∗ tkl), lane-error

max(−5,−|ev − tv), target speed error

. . . , else,

k (16)
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where rt
s is the safety penalty, rt

e is the reward for agent’s driving efficiency, rt
t is the penalty for

deviation from task’s target and vi is the velocity of the i’s traffic participant. As frequent lane changes
can cause danger in traffic flow, a small penalty is set in rt

s of (14) to discourage unnecessary lane
changes. A reasonable agent drives as fast as possible within the speed limit of a lane. However, being
a cooperative member of the traffic flow is much safer. Hence, rt

e in (15) leads the agent to drive at
the average speed of traffic, and to pursue the maximal speed of the lane, whether there are traffic
participants or not. rt

t provides an agent the ability to perform different tasks, which depends on the
requirements. For example, −5tkl in (16) punishes the agent for deviating from the target lane when
the agent should be in the target lane. −|ev − tv| punishes the agent for being unable to follow given
speed limitations. To achieve other tasks, rt

t should adjust the penalty term accordingly. Each term in
rt

t is not less than −5.

3.4. Neural Networks

The actor and critic networks are presented in Figure 6. A state st enters the actor network, which
has five neurons as the output layer in green. A softmax function takes the first three neurons as input
and outputs the discrete action at

l . Two continuous actions at
d and at

v are the last two neurons adding
some noises. The critic network takes a state st as input, and concatenates the first hidden layer with
the output layer of actor network as the input of second hidden layer. A scalar value is output as the
action-value (Q-value).

The actor network has three mutual hidden layers, and each layer has 256, 512 and 128 neurons,
respectively. The private layers connecting discrete and continuous actions both have 64 neurons.
The critic network has three hidden layers, and each has 256, 128 and 64 neurons, individually. Rectified
linear unit (ReLu) activation functions are used in the hidden layers. Meanwhile the output layer of
actor network uses tanh functions to constrain the value of actions.

A
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 N
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w
or
k

C
rit
ic
 N
et
w
or
k

States
Input

States
Input

argmax

Discrete
Action

Continuous
Actions

Hidden
layers

Critic
Value

Out
layerNoise

Figure 6. The structure of actor–critic networks. The actions are sampled from the output layer (in green
color) of the actor network. The output layer is concatenated with the second layer of critic network.
The discrete action is calculated from output layer through a softmax function. The continuous actions
are sampled from the other two unions with small noises

3.5. Algorithm Procedure

The procedure of PFBD method for autonomous vehicle safe decision is Algorithm 1.
The algorithm includes two main parts. The first part is for sampling and evaluation. Experiences of
state transitions are sampled before the policy is trained. Algorithm 1, firstly, initializes the actor-critic
networks and sets a task for agent along with the penalty function for different tasks. After initializing
the state s0 in each episode, action at is generated according to sampling mode among random
sampling and ε-random sampling. at shifts agent to next state st+1, and a reward rt follows. When
the number of state transitions (st, at, rt, st+1) reaches Nmax, the transitions are stored as a group into
“Experience” on the local disk. If a policy has been trained, we set sampling mode to “Evaluation” to
evaluate its performance.
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For the training part, Nenv groups of samples in Experience are loaded from disk. The newer
stored samples are given a higher priority to balance the shifting of policy. Then, the parameters of
evaluation and target networks are updated in sequence.

Algorithm 1 Planning features based behavior decision algorithm (PFBD)

Initialization: Initialize evaluation actor-critic networks’ parameters θ1, θ2, ω randomly
Initialize target actor-critic networks’ parameters θ

′
1 ← θ1, θ

′
2 ← θ2, ω

′ ← ω
1: for task k = 1 to Nk do
2: Set a Task and sampling mode, load the traffic map, reset traffic participants
3: Initialize the agent’s state s0
4: for step t = 0 to T do
5: generate action a0 according to sampling mode
6: switch (sampling mode)
7: case Random sampling: randomize the output layer of the actor network
8: case ε-random sampling: randomize the output layer of actor network with probability ε
9: case Evaluation: use the trained policy (forward through actor network)

10: end switch
11: Employ action at to next state st+1 based on SMSTP algorithm, calculate the reward rt
12: Save transition (st, at, rt, st+1), ++ns
13: if ns == Nmax then
14: Store Nmax transitions as a group into Experience, ns = 0
15: end if
16: end for
17: for epoch ep = 1 to Nepoch do
18: Load Nenv groups of Experience from disk with priority, randomly sample a minibatch of Nminibatch

transitions
19: Update critic in evaluation network by minimizing (4), target is updated by (9)
20: Update actor in evaluation network following (5)
21: Update the target networks following (6)
22: end for
23: end for

4. Simulation and Experiment

Since the proposed approach focuses on behavioral decision and planning with only abstract
entities for autonomous driving, we tested the method with our vehicle simulation platform instead of
real traffic. A schematic view of sampling and evaluation architecture is depicted in Figure 2.

4.1. Simulation Setting

4.1.1. Environment

Experiments included three typical scenarios of different traffics, as shown in Figure 7. The first
one was a straight six-lane road scenario (Scenario A). The second one was a curve road scenario
(Scenario B). Scenario B had seven zebras in the straight part of the road. The last one was a merging
road (Scenario C). The lane’s width was set to four meters. The maximum sensible ranges of the front
and back were set to 200 m and 100 m, respectively.
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Figure 7. Different traffic scenarios used to train and evaluate the performance agent’s policy. (a) A
straight road with six lanes. (b) A curved road with zebras in the straight parts. (c) A merging road.
The red lines represent lane lines. The black lines are roads.

4.1.2. Traffic Participants

The other traffic participants and their behaviors were set as anticipated in Section 2.1.
The participants changed their behavior modes at a probability p = 0.005. (If five traffic participants
exist, the probability of at least one changing its behavior in one second is 0.2217.) The changing of
behavior mode ensures abundant experiences of different scenes. A vehicle was reset when it got out
of the agent’s range.

The participants employ an expert system to make behavioral decisions and to execute
longitudinal control. The expert system considers the distances and velocities of the nearest vehicles in
the surrounding lane. The decision system has been well tested in real traffic experiments [25].

4.1.3. Hyper-Parameters for TD3

A minibatch of 64 state transitions was randomly selected from 32 groups of experiences to train
the policy every two steps. The optimization method for TD3 is the Adam algorithm [26], and the
learning rates for actor and critic networks are 10−2 and 10−4, respectively. The discount for future
reward was set to 0.99. We used deep learning framework, libtorch (Pytorch for C++) [27], to train
the agents.

4.2. Performance Index

To evaluate the capabilities of PFBD method, the following metrics are introduced.

• Collision Rate [%]: the collision rate is defined as

Rc =
CR

V ∗ T ∗ L
, (17)

where CR is the number of crashes that happened, V is the traffic volume in the agent’s sensible
range, T ≥ 1 is the time in hours the agent drives and L is the total distance traveled. This is the
most critical metric for evaluating the agent’s performance.

• Average velocity (m/s): the average velocity represents how fast the agent drives and to what
degree the expected velocity is matched.

• Average distance between collisions (km): the distance between two collisions is to avoid the
influence of agent’s velocity and duration time.

• Rule-violation rate (%): the violation rate indicates the agent’s capability of achieving given tasks,
such as decreasing when a zebra is coming, keeping in specific lanes and leaving the ramp’s
accelerating lane before coming to its end.

4.3. Simulation and Evaluation

In the simulation, we trained four different agents with four corresponding polices. Three
agents’ policies, PA, PB and PC were trained individually on three typical scenarios (see Section 4.1),
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respectively. To validate the versatility of PFBD, one more agent’s policy PT was trained on all three
scenarios. Besides, we compared the performance of PFBD method with the rule-based expert system
and an untrained random policy.

An episode is reached in the following three cases:

• Case 1: the agent is made to unavoidably collide with a vehicle in 1.5 s.
• Case 2: the agent has successfully made more than 20 decisions.
• Case 1: the agent updates for 600 steps without collisions.

The last two rules prevent an episode with too many running steps.
To generate the desired behavior, the reward function for scenarios B and C was modified

accordingly. For scenario B with zebras on the road, rt
t in (16) is added with a new term:

rt
t(zebra) = max(−5.,−0.5 ∗ verror

1 + sqrt(min(dzebra, 100))
) (18)

verror =
√

max(10−4, v− vzebra),

where vzebra is the recommended velocity to pass a zebra area and dzebra is the distance to a zebra.
For task entering the main road in scenario C, rt

t in (16) is added with:

rt
t(ramp) = −0.5 ∗

√
−min(100, dramp) + 100, (19)

where dramp is the distance to ramp’s end.
At the first stage, we sampled more than one million state transitions in each scenario randomly.

Then, the agents, PA, PB and PC were trained from samples in each scenario according to Algorithm 1,
respectively. PT was trained on samples from all three scenarios. Then, we used the trained agents to
sample with a probability ε randomly selecting the actions. The agents did not stop being trained until
the loss stopped decreasing for 10 epochs.

4.3.1. Performance of PFBD on Different Scenarios

Figure 8 shows the decision and planning result of trained agents in the simulation environment.
Figure 8a,b illustrates that the agent takes over the front vehicle (ID = 9) and follows a relatively
quicker vehicle (ID = 13). Figure 8c–e shows that the agent merges into the middle lane timely before
the ramp(right lane) ends.

The statistical results for four agents are listed in Table 2. Generally, the trained agents achieved
the designed maneuvers. The collision rate and average distance without collision show that the agent
can learn proper policy to avoid collisions. Scenario A is easier for the agent to drive in since the agent
achieves the highest average velocity and lowest collision rate. For scenarios B and C, the agent has to
slow down for the zebra or limit its speed in the ramp. PT can also learn proper behaviors on all three
scenarios without an evident decrease in performance.

Table 2. The evaluation results of training-acquired policy in different scenarios. - represents
no consideration.

PA PB PC PT (Scenario A) PT (Scenario B) PT (Scenario C)

Collision Rate 0.23% 0.39% 1.17% 1.3% 1.6% 1.68%
Average Velocity (m/s) 18.1 15.1 14.5 14.9 12.0 11.8

Av. Dist No Col (ks) 18.2 13.6 14.9 11.5 10.8 9.1
Rule Violation - 3.15% 2.4% - 5.33% 3.68%

Note that the average distance without collision is relatively short in the simulation. The main
cause is that a traffic participant sometimes emerges too close to the agent since it is randomly reset.
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For the abundance of sample distribution, the nearest distance to the agent is 20 m. When the agent
is much quicker than the simulated vehicle in the front, a collision can be hard to avoid. The rule
violation is also difficult to define clearly. In our simulation, for a successful result in the zebra scenario,
the duration of the agent’s velocity being smaller than the recommended velocity has to be kept up for
at least two seconds.

(a) (b) (c) (d) (e)

Figure 8. Two typical maneuvers. (a,b) An overtaking maneuver in a six-lane road with heavy traffic.
(c–e) show a lane merging maneuver at ramp. Each simulated vehicle is labeled with ID and speed
(km/h) information. The red points are the lane lines. The big green points and small purple ones
represent the planned trajectory and the historical trajectory, respectively.

4.3.2. Comparison with the Expert’s Policy

DRL-based PFBD method can explore optimal policy via interacting with environments.
Nevertheless, the rule-based expert’ policy often struggles in dynamic situations with heavy traffic.
Therefore, the performance of the trained policy was compared to the expert’s policy. The agents PA,
PB and PC ran for at least 105 iterations and at least 2500 maneuvers executed. The expert’s policy
described in Section 4.1.2 and a random policy (untrained) were both evaluated.

One critical concern is that the reward of lane-keeping must be recorded in a balanced manner.
We did not record a reward in every iteration. On the contrary, either the agent kept in a lane for every
40 steps or a non-lane-keeping maneuver was selected; the reward of lane-keeping was recorded at
one time.

Figure 9 depicts the collision times after the agents ran for 105 iterations in three testing scenarios.
It shows that the learned agents for all three scenarios significantly decreased the collision times
after training. Besides, the learned agents achieved competitive performance, as did the conservative
traditional expert. In fact, a large number of the collisions derived from a too-close-in-front vehicle
after resetting. Although the low-level SMSTP algorithm can plan all non-collision topological paths,
whether the trajectory can be well executed is undetermined (the agent cannot decelerate quickly
enough). Therefore, collision times depend on the performance of a policy. The simulation results
verify that the agents can learn proper policy after training.

For the rewards of the learned agents, as shown in Figure 10, most immediate rewards (in blue
points) achieved zero punishments in scenario A and B, while the expert’s immediate rewards (in red
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points) seldom got no punishment. A statistical distribution of immediate rewards is listed in Figure 11.
Both agent PA and agent PB, more than 40% of the time, received zero punishments. This implies that
the agents successfully found an optimal policy in the corresponding states. In contrast, the expert’s
policy mostly had a small immediate reward, as the expert behaved conservatively and got trapped in
dynamic traffic at a relatively low speed most of the time. In the ramp merging scenario, the agent and
expert both had a scattered distribution of immediate rewards, which reflected the difficulty in the
ramp-merging task. Both policies had to compromise for a successful merging maneuver.
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Figure 9. The collision times after 105 iterations for three different traffic scenarios. E∗, R∗ and P∗
represent the policies for expert, random and learned agents, respectively. (a) The collision times in
scenario A. (b)The collision times in scenario B. (c) The collision times in scenario C
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Figure 10. The rewards of reinforcement learning (RL) policy compared to expert’s policy and a random
policy for 2500 maneuvers. (a) Rewards in Scenario A. (b) Rewards in Scenario B. (c) Rewards in
Scenario C. The blue and red points represent the immediate rewards of the trained agent and the
expert, respectively. Only one eighth of the points for IR are illustrated for clarity. AR: accumulated
rewards, BD: behavioral decisions, IR: immediate rewards.

Figure 11. The distribution of immediate rewards for both learned agents and the expert in three
testing scenarios.
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4.3.3. Comparison with standard DRL

To validate whether the states of contours help to make a better decision, we compared the
proposed PBFD with a standard DRL where all the parameters were selected as the same as those in
the PBFD except for the dynamic features from the planning layer being not concerned in the standard
DRL. To achieve this, we specifically set, in the DRL, the planning scope’s front-end distance c f d to zero
with small noise. With the above design, we trained a new agent CA in scenario A, whose behaviors
are displayed together with those of the PBFD and the expert in Figure 12.

The results show that agent CA had almost the same collision times as PA in 105 running steps.
It can also be seen in Figure 12a,c that agent CA had about a 6% chance of achieving zero punishment,
which is better than expert’s policy (in Figure 11), which could hardly get any zero punishment
outcomes. However, agent CA behaved worse than agent PA, as 40% of immediate rewards of agent
PA were zero. This means that agent PA with full knowledge of contour states has larger probabilities
of making optimal behavioral decisions. Thus, the creative design of contour is vital to learn better
behavior decisions.
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Figure 12. The comparison results of states with or without the profile’s information. (a) Rewards
in Scenario A. The blue • and magenta × are the immediate rewards of agent PA and agent CA,
respectively. (b) The collision times in Scenario A. (c) The distribution of immediate rewards of agent
PA and agent CA.

4.4. Real-time Experiment On HQ3 Autonomous Vehicle

To validate the capacity of the proposed PFBD algorithm for autonomous vehicle decision making,
the real-time experiment on HQ3 autonomous vehicle was conducted in the suburbs with regular
traffic. HQ3 [25] was equipped with necessary sensors, including cameras, LIDAR, radars, inertial
measurement unit (IMU), etc.

To use the learned agents in real-time test, we kept the same states in both simulation and the
real test, and we ignored those states that did not exist in simulations, such as an intersection with
turn commands. The two main tests in the suburbs were keeping in the target lane near a zebra
(corresponding to Scenario A and B) and merging onto the main road from a side road (corresponding
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to Scenario C). The agent’s maximum speed was limited to 60 km/h. The road network avoided
untrained tasks, such left turning or right turning that did not exist in simulation.

Figure 13 shows the agent’s behavioral decision and trajectory planning results for the two
separate maneuvers. The blue short lines indicate the speeds and directions of the detected surrounding
vehicles on the road. In the first test, HQ3 successfully merged to the middle lane. Besides, as the zebra
area was coming (see Figure 13c, the planned trajectory led HQ3 to slow down (see green trajectory
of Figure 13i). In the second test, our agent tried to merge into the left main road (see Figure 13d–f).
HQ3 changed to the left curve lane before the road network of the side road coming to end. As in the
real-time test shown, the trajectory planner based on the learned agent can successfully generate a
smooth and safe trajectory for HQ3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 13. Snaps of two real-time maneuvers in the suburbs. (a–c and d–f) are the front views of (g–i
and j–l), respectively. The red dotted lines are the lane lines. The green points are the planned trajectory.
The gray areas are obstacles.

5. Conclusions

In this paper, a novel planning features-based, deep behavior decision method trained with TD3
was proposed to select an optimal maneuver for autonomous vehicles in dynamic traffic. The PFBD
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uses rule-based topological trajectories as basic guarantees and learns optimal policy with DRL, which
helps to bring learning methods to the autonomous vehicle’s core module, behavioral decisions and
trajectory planning. The behavioral decision problem was modeled as an MDP process, and the training
algorithm was proposed. Due to the creative design of input states and actions, the behavior decision
is inherently associated with drivable routes in the topological planning space. Thus, the policy’s
decision is consistent with trajectory planning, and the path is a safer one. The evaluation results
have demonstrated that the proposed method can learn proper behaviors. Besides, comparisons to the
expert’s policy and the standard DRL validate the effectiveness of PFBD and show its capability to
find optimal strategies with larger possibilities. The real-time test also validated the effectiveness of
the proposed PFBD.

Since the agent’s performance is competitive compared to the rule-based expert’s policy, the future
work will extend the current discrete behavioral decisions to consecutive ones, which shall evaluate
the present behaviors and potential behaviors in every time step. Therefore, some emergent situations
could be tackled immediately rather than executing the ongoing behavior to the end. In the meanwhile,
more traffic scenarios can be used to test the generalization performance of the proposed method.
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