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Abstract: The original multi-target multi-Bernoulli (MeMBer) filter for multi-target tracking (MTT)
is shown analytically to have a significant bias in its cardinality estimation. A novel cardinality
balance multi-Bernoulli (CBMeMBer) filter reduces the cardinality bias by calculating the exact
cardinality of the posterior probability generating functional (PGFl) without the second assumption
of the original MeMBer filter. However, the CBMeMBer filter can only have a good performance
under a high detection probability, and retains the first assumption of the MeMBer filter, which
requires measurements that are well separated in the surveillance region. An improved MeMBer filter
proposed by Baser et al. alleviates the cardinality bias by modifying the legacy tracks. Although the
cardinality is balanced, the improved algorithm employs a low clutter density approximation. In this
paper, we propose a novel structure for a multi-Bernoulli filter without a cardinality bias, termed
as a novel multi-Bernoulli (N-MB) filter. We remove the approximations employed in the original
MeMBer filter, and consequently, the N-MB filter performs well in a high clutter intensity and low
signal-to-noise environment. Numerical simulations highlight the improved tracking performance of
the proposed filter.

Keywords: multi-target tracking; finite set statistics; multi-Bernoulli distribution; point process

1. Introduction

Considering the multi-target tracking (MTT) environments, the unknown number of targets
changes with time because of the presence of target deaths and births. Moreover, the ambiguities
in track-to-measurement association, which involves the missed detection and clutters, increase the
difficulty of the joint estimation of the target cardinality and target states [1–3]. Based on the finite
set statistics (FISST) theory, Mahler proposed a rigorous formulation of random finite set (RFS)-type
filters. The RFS-based algorithms model the targets and the measurements as RFSs [3]. Compared
with the conventional multiple hypothesis tracker (MHT) and joint probability data association (JPDA)
algorithms [4–6], they avoid data association, which has a high computation burden. In the past
few years, several RFS-based methods, such as the well-known probability hypothesis density (PHD)
filter [7–9], cardinality PHD (CPHD) filter [10–12], and MeMBer filter [3] have been created. For example,
the PHD filter models both targets and measurements as Poisson RFSs, and sequentially propagates
the first moment of the multi-target density (PHD intensity) over time. The CPHD filter improves the
cardinality-estimating performance of the PHD filter by propagating the cardinality distribution with
the PHD of the multi-target density. The MeMBer filter parameterizes the multi-target distribution that
models each potential target as a single Bernoulli RFS [3], which is characterized by the probability of
existence and the probability density function (pdf). Accordingly, the multi-Bernoulli (MB) RFS is a
union of multiple independent Bernoulli components. Since the Gaussian mixture implementations are
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proposed for the RFS-based filters, various extensions are found in many papers [3,13]. However, some
inherent problems brought about by the assumptions made in these filters limit their applications.

Recently, the conjugate distributions in the framework of Bayesian probability theory has generated
substantial interest. A conjugate distribution means that the Bayesian recursion is closed. Those filters
based on conjugate priors derived under the labeled RFS [14–16] and unlabeled RFS theory [17–20]
can approximate the exact multi-target distributions accurately and were compared in Vo et al. [21].
The Poisson multi-Bernoulli mixture (PMBM) filter is derived based on the unlabeled distributions,
where the filter models multi-target using a hybrid form of Poisson and MB mixture (MBM) RFSs.
The prior multi-target distribution is the same with the posterior multi-target distribution in the
PMBM filter [17,18]. Another Bayes-closed filter is derived based on the well-known generalized
labeled multi-Bernoulli distribution (GLMB) [14–16], along with a relatively efficient version, the
well-known δ-GLMB filter, which propagates the whole data association history together with track
sets; consequently, it is computationally expensive. The LMB filter was proposed in Williams [16]
based on approximating the GLMB density. However, the prediction step in the standard form of the
δ-GLMB and the LMB filter involves truncating prediction density by a K-shortest path algorithm,
which brings in additional computational burden and influences the efficiency of performance. Thus,
combining the prediction and update step of these filters is necessary for practical application [22,23].

However, the RFS formulation using the FISST theory is free of the huge computational burden
due to the data association in MTT [3,24]. Some approximations made in the MeMBer filter may bring
in a significant performance degradation. For example, the MeMBer filter has a positive cardinality
bias due to the approximations made in the derivation of the MeMBer corrector to obtain a posterior
multi-Bernoulli density (second approximation). The CBMeMBer filter achieves the cardinality balance
by preserving the PHD of each Bernoulli component [25]; however, this approximation has destroyed
the posterior density, especially in low-detection (low signal-to-noise) environments. An improved form
of the MeMBer (I-MeMBer) filter models the spurious targets in the legacy tracks and removes them
after the update step [26]. Consequently, the cardinality is balanced. However, both CBMeMBer and
I-MeMBer filters retain the first approximation of the MeMBer filter [3], which requires measurements
that are well-separated in surveillance region. Thus, they cannot perform well in a surveillance region
with proximity targets and/or high clutter density environments. The measurement-driven MeMBer
filter removes the cardinality bias by modifying the legacy parameters, but it is not an analytical
solution [27].

In this paper, an analytical solution to the Bayesian multi-target filter is proposed. The targets
are modeled as an MB RFS, where each target is modeled as a Bernoulli RFS with an individual
existence probability and pdf. The prior multi-Bernoulli distribution shifts the combinatorial problem
to that of associating measurements to a corresponding Bernoulli component. Thus, the approximation
employed in the original MeMBer filter is relaxed. The proposed novel structure of the multi-Bernoulli
(N-MB) filter employs a Gibbs sampler [28] to solve the data association problem, i.e., it finds a finite
number of best global hypothesis.

The remainder of this paper is organized as follows. In Section 2, we review the background
information on RFS theory. In Section 3, we derive our N-MB filter. In Section 4, we present the
implementation details for the N-MB filter. In Section 5, we show the performance of our proposed
N-MB filter. Conclusions are given in Section 6.

2. Random Finite Set Statistics

The RFS is a finite-set-valued random variable, and throughout this paper, we model the
multi-target as the union of a Poisson RFS and a MB RFS. An RFS includes a random number and
unordered targets and represents individual states as random vectors. A finite set of state vectors X is
used to denote multi-target states, where X = {x1, . . . , xn}. The cardinality of a finite set is |X|. Denote
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the probability density of the RFS with π(X) and the set of all finite subsets of the state space X with
F (X), then for a function f : F (X)→ R , the set integral is given as:∫

f (X)δX =
∞∑

i=0

1
i!

∫
Xi

f ({x1, . . . , xi})d(x1, . . . , xi) (1)

Defining a multi-target exponential notation hX ,
∏
x∈X

h(x), where h is a real-valued function with

hO = 1. The PGFl is given as:

G[h] =
∫

hXπ(X)δX. (2)

A Bernoulli RFS with an existence probability r and pdf p(·) has a multi-target density and PGFl:

f (X) =


1− r, X = O

r · p(x), X = {xi}

0, otherwise
, (3)

G[h] = 1− r + r ·
〈
p, h

〉
, (4)

where 〈a, b〉 ,
∫

a(x)b(x)dx denotes the inner product of two functions a(·) and b(·). An MB density is
the union of multiple independent Bernoulli densities:

π({X1, . . . , Xn}) = π(O)
∑

1≤i1,···,in≤N

n∏
j=1

ri jpi j

(
X j

)
1− ri j

, (5)

where N is the number of single Bernoulli components in an MB andπ(O) =
∏N

j=1

(
1− r j

)
. Furthermore,

its PGFl is given as:

GY[h] =
N∏

i=1

(
1− r(i) + r(i)

〈
p(i), h

〉)
, (6)

Throughout this paper, an MB distribution is abbreviated as:

π(X) =
{(

r j, p j
)}N

j=1
. (7)

Given a Dirac delta density δx, we define the functional derivative of F[h] in the direction of δx as
δF
δx [h] ,

∂F
∂δx

[h] and given as:
δF
δx

[h] = lim
ε↘0

F[h + εδx] − F[h]
ε

. (8)

If the functional F[h] is of the form F[h] =
∫

h(x)g(x)dx, then we have δF
δx [h] = g(x).

The first-order moment, i.e., the PHD function D(·) of a multi-target density π(·), is given as:

D(x) =
δG
δx

[h]
∣∣∣∣∣
h(x)=1,∀x

. (9)

The PHD function of an MB is given as [3]:

DMB(x) =
N∑

i=1

r(i) · p(i)(x). (10)
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A key result of the functional derivative utilized in our derivation process is the product rule [3]:

δF
δZ

(F0[h] . . . Fn[h]) =
∑

W0]...]Wn=Z

δF0

δW0
[h] . . .

δFn

δWn
[h], (11)

where ] indicates the sum is over all disjoint sets W0, . . . , Wn and W0,∪ . . .∪Wn = Z, which permits
the calculation of the derivative of a product of an MB PGFl.

3. Novel Structure of an MB Filter

In this section, the derivation process of the proposed algorithm is presented. Before we commence,
the following assumptions are presented, which are used in the derivation of the algorithm.

Assumptions:

a. Birth target distribution is denoted by πb
k =

{(
r(i)b,k, p(i)b,k

)}Nb
k

i
.

b. The survival probability conditioned on the target state is pS(x). The transition pdf is fk|k−1(x|ζ),
where ζ denotes the previous target state.

c. The clutter distribution is modeled as a Poisson distribution with a clutter rate λC.
d. A single target may generate at most one measurement, where the detection probability is pD(x)

and the measurement likelihood is g(z|x).

3.1. Derivation of the Predictor

At each time k− 1, the PGFl Gk−1|k−1[h] of the posterior MB density and the PGFl Gb
k[h] of the birth

density take the form of Equation (6). The predicted multi-target distribution fk|k−1

(
X
∣∣∣Zk−1

)
is also a

multi-target multi-Bernoulli process [3]:

Gk|k−1[h] = Gb
k[h] ·

Np
k|k−1∏

i=1

(
1− r(i)p,k|k−1 + r(i)p,k|k−1 ·

〈
p(i)p,k|k−1, h

〉)
. (12)

Here, Gb
k[h] is the PGFl of the birth process, which follows Assumption 1:

Gb
k[h] =

Nb
k∏

i=1

(
1− r(i)b,k + r(i)b,k ·

〈
p(i)b,k, h

〉)
. (13)

Also, the predicted parameters of the surviving targets are given as:

r(i)p,k|k−1 = r(i)p,k−1|k−1 ·

〈
pS, p(i)p,k−1|k−1

〉
, (14)

p(i)p,k|k−1(x) =
〈
pS f (x|·), p(i)p,k−1|k−1

〉
. (15)

3.2. Derivation of the Corrector

For notational simplicity, in the following derivation, we omit the time index. As given in the
above subsection, the PGFl of the predicted distribution is the MB process:

Gk|k−1[h] =
Nk|k−1∏

i=1

(
1− r(i)k|k−1 + r(i)k|k−1 ·

〈
p(i)k|k−1, h

〉)
, (16)

where Nk|k−1 = Nb
k + Np

k|k−1.
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Denoting the multi-target measurement likelihood function conditioned on the target state set X
as Lk(Z|X), the PGFl of the likelihood Lk(Z|X) is:

G[g
∣∣∣X] =

∫
gZLk(Z|X)δZ = exp

{〈
v f a, g− 1

〉}∏
x∈X

{
1− pD(x) + pD(x)pg(x)

}
(17)

where pg(x) ,
∫

g(z)lk(z|x)dz. Thus, the functional F[g, h] is defined as:

F[g, h] =
∫

hXG[g
∣∣∣X]πk|k−1(X)δX

= exp
{〈

v f a, g− 1
〉}∫ {

h
(
1− pD + pDpg

)}X
fk|k−1(X)δX

= exp
{〈

v f a, g− 1
〉}

Gk|k−1

[
h
(
1− pD + pDpg

)] (18)

The PGFl of the updated density πk|k(X) (updated by Zk) is given as [3]:

Gk|k[h] =
δF
δZk

[0, h]
δF
δZk

[0, 1]
∝
δF
δZk

[0, h], (19)

where δF
δZk

[0, h] is the functional derivative of F in g = 0 WRT the set Zk.
Using the product rule given in Equation (11), we rewrite Equation (19) as:

δF
δZk

[0, h] =
∑

W0]...]Wn=Zk

δF0

δW0
[0, h] . . .

δFn

δWn
[0, h], (20)

where
F0[g, h] = exp

{〈
v f a, g− 1

〉}
(21)

Fi[g, h] =G(i)
k|k−1

[
h ·

(
1− pD(x) + pD(x)pgi(x)

)]
(22)

where n ≥ i > 0.
The notation W0 denotes the set of clutters, i.e., the measurements not associated with any

targets. The set can have any cardinality |W0| (the number of clutter alarms) that meets the constraint
W0 ]W1 ] . . .]Wn = Zk. For n ≥ i > 0, the set Wi denotes the set of measurements associated with the
corresponding target (represented by the Bernoulli component). The cardinality of the set is |Wi| ≤ 1,
where |Wi| = 0 means the target is not detected. The set Wi is given as:

Wi =

 O, σi = 0{
z j

k

}
, σi = j

, (23)

where σi = 0 if the ith target is not detected, and σi = j if the ith target is associated with measurement
z j

k. The number of measurements is Nz. Defining an N − tuple θ = (σ1:N) ∈ {0 : Nz
}
N to denote a

choice of a one-to-one mapping, i.e., there are no distinct i > 0, i′ > 0 with σi = σi′ > 0. The set of all
assignment vectors θ is denoted as Θ.

The functional derivative of F0 in g = 0 WRT the set W0 is given as:

δF0

δW0
[0, h] = e−λC

(
λCV−1

)|W0 |, (24)

where V denotes the “volume” of the surveillance region. For n ≥ i > 0, the functional derivative of Fi
in g WRT the set Wi =

{
zσi

}
is given as:

δFi
δWi

[g, h] =
δ
δzσi

[
1− r(i) + r(i)

〈
p(i), h

(
1− pD + pDpg

)〉]
. (25)
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Furthermore, set g = 0:

δFi
δzσi

[0, h] =

 r(i)
〈
p(i), hpDl

(
zσi

∣∣∣·)〉, σi > 0
1− r(i) + r(i)

〈
p(i), h(1− pD)

〉
, σi = 0

. (26)

Using the association notations and the results of Equations (24) and (26), we rewrite Equation
(20) as:

δF
δZk

[0, h] = e−λ
∑
θ∈Θ

∏
j:@σi= j

λC ×
∏

i:σi=0

(
1− r(i) + r(i)

〈
p(i), h(1− pD)

〉)
×

∏
i:σi>0

r(i)
〈
p(i), hpDl

(
zσi

∣∣∣·)〉. (27)

Note that the PGFl with the same form as Equation (27) is not an MB PGFl because of the additional
sum according to different associations θ. A multi-Bernoulli PGFl is shown in Equation (13), which is
the product of single Bernoulli PGFls.

The original MeMBer filter [3] approximates the derivative of F[g, h] in g WRT the whole
measurement set Zk. Moreover, in the derivation of the corrector for the original MeMBer filter,
the CBMeMBer filter, and the I-MeMBer filter, the approximation that there is no more than one
measurement near a true target is indispensable; a performance degradation occurs when targets in
the surveillance region are too close, or the clutter intensity is very high. In contrast, the form as given
in Equation (27) is exact. However, the combinatorial problem in this formulation is tractable. Thus,
we utilize a Gibbs sampler to find the best associations θ.

3.3. PHD Intensity of the Posterior

Moreover, we approximate the posterior density with an MB distribution by calculating the PHD
intensity (first-order moment). Thus, an MB RFS πk|k(·) is constructed with an identical PHD intensity
to the truncated distribution πk|k(·) (truncated with a finite number of best association θ).

The PHD of the updated posterior is:

Dk|k(x) =
δGk|k[h]
δx

∣∣∣∣∣∣
h=1

=

δ2F
δxδZk

[0, h]
δF
δZk

[0, 1]

∣∣∣∣∣∣∣∣
h=1

. (28)

We define the function:

ϕθ[1] =
∏

j:@σi= j

λCV−1
×

∏
i:σi=0

(
1− r(i) + r(i)

〈
p(i), (1− pD)

〉)
×

∏
i:σi>0

r(i)
〈
p(i), pDl

(
zσi

∣∣∣·)〉. (29)

The derivative of the functional F[0, h] in h = 1 WRT the target state and measurement set Zk is
given as:

δ2F
δxδZk

[0, h]

∣∣∣∣∣∣
h=1

= e−λC
∑
θ∈Θ

ϕθ[1]
N∑

i=1

φθ(i), (30)

where

φθ(i) =


r(i)(1−pD)p(i)

1−r(i)+r(i)
〈
p(i),(1−pD)

〉 , σi = 0

pDp(i)l
(
z j

k

∣∣∣∣·)〈
p(i),pDl

(
z j

k

∣∣∣∣·)〉 , σi = j
. (31)
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Thus, we rewrite Equation (28) as:

Dk|k(x) =

∑
θ∈Θ

ϕθ[1]
N∑

i=1
φθ(i)∑

θ∈Θ
ϕθ[1]

. (32)

Equation (32) shows that the PHD function of the updated posterior has a similar structure to that
of an MB PHD function, which is given in Equation (10). Thus, the Bernoulli components of πk|k(·) can
be calculated from Equation (32) by merging the parameters of the ith Bernoulli component under
different data associations θ. The final MB parameters of πk|k(·) are given as:{(

r(i)k|k, p(i)k|k(·)
)}N

i=1
= ∪

θ∈Θ

{(
r(i)
θ

, p(i)
θ
(·)

)}N

i=1
, (33)

where

r(i)
θ

=


ϕθ[1]∑

θ∈Θ
ϕθ[1]

, σi = j

ϕθ[1]∑
θ∈Θ

ϕθ[1]
×

r(i)(1−pD)

1−r(i)+r(i)
〈
p(i),(1−pD)

〉 , σi = 0
, (34)

and

p(i)
θ

=


pDp(i)l

(
z j

k

∣∣∣∣·)〈
p(i),pDl

(
z j

k

∣∣∣∣·)〉 , σi = j

r(i)(1−pD)p(i)〈
p(i),(1−pD)

〉 , σi = 0

. (35)

From the right-hand side of Equation (33), we can see that there are many choices for the updated
Bernoulli RFSs, but we can merge all the choices of associations for the Bernoulli components.

Compared to the LMB filter, our N-MB filter employs a straightforward prediction step. Thus, a
different cost matrix needs to be designed to find the best data association. Moreover, the derivation
of the LMB filter was based on approximating the GLMB density, which employs the labeled RFS
notation. While our N-MB filter models the targets as an unlabeled multi-Bernoulli distribution, the
Gibbs sampler is employed to get an approximate multi-Bernoulli distribution for the posterior density.
Our N-MB filter was derived by using the theory of probability generating functionals and functional
derivatives, which are very important tools for deriving RFS-based filters, for example, the PHD filter,
CPHD filter, MeMBer filter, and PMBM filter.

4. Gaussian Implementation

In the previous section, we derived the recursion for the N-MB filter. Intuitively, the filter is
intractable; therefore, approximations are necessary. In this section, we propose a closed-form Gaussian
mixture (GM)-based implementation for the derived filter.

We assume that targets follow linear Gaussian dynamics, and measurements follow models with
MB births:

f
(
xi
∣∣∣xi−1

)
= N

(
xi; Fxi−1, Q

)
, (36)

g(z|x) = N(z; Hx, R), (37)

where F denotes the transition matrix, Q denotes the process noise covariance, H denotes the observation
matrix, and R denotes the observation noise covariance. Furthermore, the survival and detection
probability were assumed to be constant, which is given as PS(x) = PS and PD(x) = PD.
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The birth model is also an MB with the parameter set
{(

r(i)b,k, p(i)b,k(·)
)}Nb

k

i=1
and the pdf p(i)b,k(·) is a GM

of the form:

p(i)b,k(x) =

J(i)b,k∑
l=1

w(i,l)
b,k N

(
x; m(i,l)

b,k , P(i,l)
b,k

)
, (38)

where w(i,l)
b,k , m(i,l)

b,k , and P(i,l)
b,k denote the weights, means, and covariances of the lth Gaussian component.

Note that
∑
l

w(i,l)
b,k = 1 and j(i)b,k denotes the number of components.

4.1. Update

The prediction step of the proposed filter is the same with that in Baser et al. [25]. Given

the predicted MB density πk|k−1 =
{(

r(i)k|k−1, p(i)k|k−1

)}Nk|k−1

i=1
and each pdf p(i)k|k−1 is in the form of

Gaussian mixtures:

p(i)k|k−1 =

J(i)k|k−1∑
l=1

w(i,l)
k|k−1N

(
x; m(i,l)

k|k−1, P(i,l)
k|k−1

)
(39)

then, for each association θ, the updated posterior MB density is:

πθ,k|k =
{(

r(i)
θ,k|k

(
zσi

)
, p(i)
θ,k|k

(
·; zσi

))}Nk|k−1

i=1
. (40)

For σi = 0, the updated means and covariances of the posterior MB density stay unchanged.
For σi > 0, the means and covariances of the posterior MB density are updated by the associated
measurement

{
zσi

}
:

w(i,l)
σi,k

= w(i,l)
k|k−1N

(
z; Hkm(i,l)

k|k−1, HkP(i, j)
k|k−1HT

k + Rk

)
(41)

m(i,l)
σi,k

= m(i,l)
k|k−1 + K(i,l)

k

(
zσi −Hkm(i,l)

k|k−1

)
, (42)

P(i,l)
σi,k

=
[
I −K(i,l)

k Hk

]
P(i,l)

k|k−1, (43)

K(i,l)
k = P(i,l)

k|k−1HT
k

[
HkP(i,l)

k|k−1HT
k + Rk

]−1
. (44)

Then, the updated parameters in Equation (40) can be calculated using:

r(i)
θ

=


ϕ′θ[1]∑

θ∈Θ
ϕ′θ[1]

, σi > 0

ϕ′θ[1]∑
θ∈Θ

ϕ′θ[1]
·

r(1−pD)
1−rpD

, σi = 0
, (45)

p(i)
θ

=


∑J(i)k|k−1

l=1 w(i,l)
σi ,k
N

(
x;m(i,l)

σi ,k
,P(i,l)
σi ,k

)
∑J(i)k|k−1

l=1 w(i,l)
σi ,k

, σi > 0

p(i)k|k−1, σi = 0

, (46)

where

ϕ′θ[1] =
∏

i:σi=0

(
1− r(i)k|k−1pD

)
×

∏
i:σi>0

r(i)k|k−1

∑J(i)k|k−1
l=1 pDw(i,l)

k|k−1N

(
x; m(i,l)

σi,k
, P(i,l)
σi,k

)
λCV−1

. (47)
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The derivation of the above steps involves analytically calculating the products of Gaussians and
integrals of Gaussians using the standard results of Gaussian functions [9].

4.2. Gibbs Sampling

We employ the Gibbs sampling algorithm to solve the data association problem, which is an
efficient algorithm for finding the best choices for the assignment of targets to measurements [28]. This
subsection presents the implementation of the integrated Gibbs sampler in detail.

After the prediction step, there are N predicted Bernoulli components (representing N targets),
and the number of measurements is Nz. We define:

ηi( j) =
r(i)

J(i)∑
l=1

w(i,l)
N

(
x; m(i,l)

σi,k
, P(i,l)
σi,k

)
[
1− r(i) + r(i)(1− pD)

]
λCV−1

, (48)

where σi = j ∈ {1 : Nz
} denotes the index of whichever measurement is assigned to the ith target. For

σi = 0, ηi(0) = 1.
Consider a realization of a random variableθ that distributes according to a probability distribution

π on {0 : Nz
}
N. A Gibbs sampler is used to generate positive one-to-one vectors by independently

sampling from π. The distribution π is:

π(θ) ∝ 1Γ(θ)
n∏

i=1

ηi(σi), (49)

where Γ is the set of one-to-one mapping vectors in {0, Nz
}
N.

It is difficult to sample from the distribution in Equation (49) directly. The Markov chain Monte
Carlo (MCMC) method is the well-known algorithm for sampling from a complex distribution [29]. The
Gibbs sampling algorithm is an efficient case of the so-called Metropolis–Hasting MCMC algorithm [30].
The proposed samples in a Gibbs sampler are always adopted; therefore, the Gibbs sampler is considered
to be an efficient tool for generating the best associations [22,28,30,31]. Given results obtained using
Equation (48), the assignment problem can be immediately solved by utilizing a Gibbs sampler.

Finally, the pseudocode for the filter is summarized in Algorithm 1.

Algorithm 1: Pseudocode for the filter

1. Step 1: (prediction)

2. Input birth density
{(

r(i)b,k, p(i)b,k

)}Nb,k

i=1
and posterior density

{(
r(i)k−1, p(i)k−1

)}Nk−1

i=1

3. Output
{(

r(i)k|k−1, p(i)k|k−1

)}Nk|k−1

i=1
4. Step 2: (find best θ)
5. Calculate η according to Equation (48)
6. {θ}θ∈Θ= unique(Gibbs(θ1, T, η))
7. Step 3: (update for each θ)
8. for θ ∈ Θ
9. Calculate r(i)

θ
, p(i)
θ

according to Equations (45) and (46)
10. end
11. Step 4: (reconstruction)
12. Reconstruct the MB density according to Equation (33)

5. Simulation

This section demonstrates the simulation results of the proposed N-MB filter conducted on linear
Gaussian models. We set the simulation environments similar those in Baser et al. [25]. Consider a
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2-D cartesian coordinate system where targets’ births and deaths occurred in a surveillance region of
[−1000, 1000] × [−1000, 1000]m. A sensor was located at (0, 0)m and provided point measurements to
a controller at each time step. The sample interval was ∆ = 1s and both the number and states of the
multi-target at each time step were unknown. Figure 1 shows the true tracks of targets.
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Figure 1. Trajectories in the xy-plane; ◦—locations of target births, ∆—locations of target deaths.

5.1. Targets Model

The kinematic state is given as ζ =
[
px,

.
px, py,

.
py

]T
. The Gaussian target dynamics were modeled

using the constant velocity (CV) model:

FCV
k =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

, Qk = σ2
v


∆4

4
∆3

2 0 0
∆3

2 ∆2 0 0
0 0 ∆4

4
∆3

2
0 0 ∆3

2 ∆2

, (50)

where the standard deviation (std) was set as σv = 5 m/s2.
The survival probability was pS = 0.98 and the detection probability was set as a constant pD.

Consider the surveillance region including four locations where targets may birth from: [0, 0]m,
[400,−600]m, [−800,−200]m, and [−200, 800]m. The birth process was modeled as a Poisson RFS with

intensity vb(x) =
∑4

i=1 wbN

(
x; m(i)

b , Pb

)
, where wb = 0.05, m(1)

b = [0, 0, 0, 0]T, m(2)
b = [400, 0,−600, 0]T,

m(3)
b = [−800, 0,−200, 0]T, and m(4)

b = [−200, 0, 800, 0]T, and the covariance matrix was given by

Pb = diag
(
[10, 10, 10, 10]T

)2
.

Measurements followed the observation function in Equation (37) with parameters:

Hk =

[
1 0 0 0
0 0 1 0

]
, Rk = σ2

ε

[
1 0
0 1

]
, (51)

where σε = 10 m was the std of the measurement noise. Clutters were modeled as a Poisson process
with a clutter rate λC and uniformly distributed according to the spatial probability density 1/V over
the surveillance region, where V = 4× 106 m2 was the “volume” of the surveillance region.

We used a threshold rTH = 0.7 for the target state extraction and we removed those Gaussian
components whose weights were lower than 10−5. Those Gaussian components in a Bernoulli
component whose distances were lower than 4 m were merged.

5.2. Performance Evaluation

Simulations were performed using MTT filters implemented in MATLAB (9.1.0.441655 R2016b,
MathWorks, Beijing, China) on computers with an Intel Core i7-7700K CPU @ 4.20GHz and 16 GB
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RAM. We analyzed the performance in terms of the position estimates obtained by the proposed N-MB
filer and CBMeMBer filter proposed in Baser et al. [25], the CPHD filter proposed in Vo et al. [13], and
the track-oriented marginal MeMBer-Poisson (TOMB/P) filter proposed in García-Fernández et al. [17]
using Monte Carlo simulations. We employed the optimal sub-pattern assignment (OSPA) distance
as the error metric [32] to compare the performance of these filters. The OSPA is a distance metric
for denoting the difference between two sets of points. The generalized OSPA (GOSPA), which was
proposed recently, was also employed to verify the simulation’s performance. GOSPA penalizes
localization errors for detected targets and the errors due to missed and false targets [33], which is not
considered in OSPA. The GOSPA metric with parameter α = 2 is given by

d(c,2)
p (X, Y) ,

 min
γ∈Γ(|X|,|Y|)

 ∑
(i, j)∈γ

d
(
xi, y j

)p
+ cp

2

(
|X|+ |Y| − 2

∣∣∣γ∣∣∣))] 1
p (52)

where Γ(|X|,|Y|) denotes the set of all possible assignments, c is the cut-off value, and p determines the
severity of penalizing the outliers in the localization component. We compared the root mean square
(RMS) OSPA and the RMS GOSPA for the position estimation across all time steps. The Euclidean

metric was used as the base metric and we set p = 2 and c = 300. In this case,
[
d(c,2)

p (·, ·)
]2

could be

decomposed as: c2
l (·, ·) =

∑
(i, j)∈γ

d
(
xi, y j

)p
, which denotes the localization error; c2

m(·, ·) = cp
(
|X| −

∣∣∣γ∣∣∣)/2,

which denotes the miss-detection error; and c2
f (·, ·) = cp

(
|Y| −

∣∣∣γ∣∣∣)/2, which denotes the false-detection
error.

5.3. Simulation Results

In Figure 2, the decomposed x- and y-components of the true tracks, state estimates generated by
the N-MB filter, and measurements across all the time steps are shown versus time. The results showed
that the proposed filter could correctly track the targets with individual motions throughout the targets’
births and deaths. Three targets crossed with each other at time step k = 40, and two targets crossed
with each other at time step k = 60, and the proposed filter had no difficulty handling these situation.
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Figure 2. Measurements, true tracks, and novel multi-Bernoulli (N-MB) filter estimates.

We further showed the performance of our proposed N-MB filter over NMC = 200 Monte
Carlo (MC) runs with a fixed set of target trajectories (shown in Figure 1) but randomly generated
measurement data (the generated measurements over all time steps for one MC run is shown in
Figure 2). Considering an environment with a high clutter intensity (the clutter rate was set to λC = 80
and the detection probability was set as pD = 0.98), the mean and std of the estimated cardinality versus
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time for the CBMeMBer, CPHD, TOMB/P, and N-MB filters are shown in Figure 3. The CBMeMBer
filter suffers from false estimations greatly. This phenomenon is easy to explain because the CBMeMBer
employed the assumption that measurements were well separated [3,25]. In contrast, both TOMB/P
and the proposed N-MB filter performed well in the cardinality estimation, and had a lower variance
than the CPHD filter.Electronics 2019, 8, x FOR PEER REVIEW 13 of 18 
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Figure 3. Statistics for a high clutter rate (λC = 80, pD = 0.98) for filters.

Moreover, the MC average of the RMS OSPA distances are given in Figure 4, where the clutter
rate was set to λC = 20 and the detection probability was set to pD = 0.7 (i.e., a low signal-to-noise
environment). The CBMeMBer filter suffered a great performance degradation when the detection
probability was low. This was because the filter required the approximation of a high detection
probability to correct for the negative term involved in the existence probability of the resulting MB
components [25,34]. In contrast, the proposed N-MB filter performed well in the environment with a low
detection probability. Compared to the TOMB/P filter, the N-MB filter had a better performance in most
of time steps, but the TOMB/P filter outperformed the N-MB filter in terms of removing death targets at
k = 71. The CPHD filter was also not suitable for application in the low-signal-to-noise environment.
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In Figure 5, we give the averages of 200 MC trials for the RMS OSPA distance for the CBMeMBer,
CPHD, TOMB/P, and N-MB filters for various clutter rates from λC = 10 to λC = 80. In Figure 6, we
give the results for various detection probabilities from pD = 0.5 to pD = 0.98. As expected, the OSPA
error increased with the increased clutter rates and a lower detection probability. Overall, these results
showed that the N-MB filter had a better performance compared to the other filters. The performance
of the CBMeMBer filter was greatly influenced by the increased clutter rate
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Although OSPA is a good method for measuring the performance of RFS-based MTT filters, we
do not know whether the difference in performance of OSPA error comes from a better detection
ability, a lower number of false targets, or a lower number of missed targets, which is key information
regarding the analysis of filters. As mentioned in Section 5.2, we employed decomposed GOSPA
components to verify the performance of filters in terms of location estimations, false estimations,
and missed estimations. The RMS OSPA/GOSPA error averaged over all time steps of the filters in
different situations are given in Figures 7 and 8. These results prove that the N-MB filter had a similar
performance to the TOMB/P filter regarding location accuracy, but outperformed the latter in evaluation
of missed targets. The N-MB filter was more sensitive regarding initializing birth tracks; however, this
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feature meant the N-MB filter produced more false estimates. Overall, the N-MB filter outperformed
the TOMB/P filter, especially in the high signal-to-noise environment. Again, the CBMeMBer filter
showed its efficient performance in environment with a high signal-to-noise ratio and low clutter
intensity, but the performance degraded dramatically in challenging environments.
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5.4. Comparison with the LMB Filter

As summarized in Section 3.3, the proposed N-MB filter has a similar structure with the LMB
filter, while it has a straightforward prediction step because the N-MB filter was derived based on the
theory of PGFls and functional derivatives, while the LMB filter is based on approximating the GLMB
density. An efficient implementation method that combines the prediction and update steps of the
LMB filter is proposed in Mahler [23], which avoids the complex calculation burden of the prediction
step. We compared the time-averaged GOSPA error and computation times (seconds) of the proposed
N-MB filter and the LMB filter [23] in different situations, and the results are given in Table 1. Both
filters employ the gating technique, which is widely used in many papers [15,16,22].
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Table 1. Comparison with the LMB filter.

(pD,λC) N-MB LMB

Time (s) GOSPA G-Loc G-Miss G-False Time (s) GOSPA G-Loc G-Miss G-False

(0.98, 10) 11.18 71.32 29.12 45.17 46.89 11.95 72.04 29.06 44.62 48.51
(0.98, 40) 11.91 97.97 30.14 65.81 66.02 11.96 97.35 29.99 65.38 65.59
(0.98, 80) 13.27 115.09 31.38 81.97 74.44 11.99 114.81 31.46 81.31 74.71
(0.7, 10) 21.49 143.99 41.95 111.46 80.94 18.91 154.81 42.57 128.89 74.46
(0.7, 40) 28.60 180.66 51.42 141.56 99.77 20.07 199.82 51.14 168.29 94.81
(0.7, 80) 56.11 293.81 99.86 233.75 147.34 23.43 332.24 91.76 295.15 121.85

Intuitively, the proposed N-MB filter had a similar performance to the LMB filter in high
signal-to-noise environments. However, the N-MB filter had a more stable performance in more
challenging environments (low signal-to-noise environments with a high clutter intensity). In contrast,
a serious leak-tracking problem occurred in the tracking results of the LMB filter when applied in
challenging environments.

6. Conclusions

Although the CBMeMBer filter was cardinality balanced, the derivation of which removes the
second approximation employed in the original MeMBer filter [3]. It employs the first approximation
in Mahler [3], which assumes that measurements are well-separated in the surveillance region. A filter
based on this approximation cannot be applied in an environment with high clutter intensity. Moreover,
the approximation of a high detection probability is required in the derivation of the CBMeMBer filter;
therefore, the filter cannot be applied in the low signal-to-noise environment.

In this paper, we derived a novel-structured MB filter based on PGFl theory and unlabeled
RFSs. The proposed filter removed the assumptions utilized in deriving the MeMBer filter. Thus, the
filter performed well in the low signal-to-noise and high clutter density environments. Compared
to filters based on a GLMB distribution, the proposed filter did not extract explicit tracks for targets.
The theory of tracking based on sets of trajectories [35] was utilized to solve this problem. Various
simulation results showed that the proposed filter outperformed the LMB filter in low signal-to-noise
environments with a little higher computational cost.
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