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Abstract: Electrostatic discharge (ESD) events are the main factors impacting the reliability of 
Integrated circuits (ICs); therefore, the ESD immunity level of these ICs is an important index. This 
paper focuses on comprehensive drift-region engineering for ultra-high-voltage (UHV) circular n-
channel lateral diffusion metal-oxide-semiconductor transistor (nLDMOS) devices used to 
investigate impacts on ESD ability. Under the condition of fixed layout area, there are four kinds of 
modulation in the drift region. First, by floating a polysilicon stripe above the drift region, the 
breakdown voltage and secondary breakdown current of this modulation can be increased. Second, 
adjusting the width of the field-oxide layer in the drift region when the width of the field-oxide 
layer is 5.8 μm will result in the minimum breakdown voltage (105 V) but the best secondary 
breakdown current (6.84 A). Third, by adjusting the discrete unit cell and its spacing, the 
corresponding improved trigger voltage, holding voltage, and secondary breakdown current can 
be obtained. According to the experimental results, the holding voltage of all devices under test 
(DUTs) is greater than that of the reference group, so the discrete HV N-Well (HVNW) layer can 
effectively improve its latch-up immunity. Finally, by embedding different P-Well lengths, the 
findings suggest that when the embedded P-Well length is 9 μm, it will have the highest ESD ability 
and latch-up immunity. 

Keywords: drift region; electrostatic discharge (ESD); holding voltage (Vh); lateral diffusion MOS 
(LDMOS); transmission-line pulse system (TLP system) 

 

1. Introduction 

In recent years, the UHV LDMOS has been implemented in power electronics, 
Microelectromechanical systems (MEMS) domains, power management circuits, and internet of 
things (IoT) applications [1–16]. The power management circuit is also an indispensable project of the 
internet of things. The internet of things is facing the tricky problem of battery endurance, but it can 
be improved through the power management circuit [14]. However, high-voltage ICs pose serious 
risks to electrostatic discharge (ESD), and according to the statistics, the ratio of component failure is 
nearly half due to ESD damage, so ESD protection for the silicon chips is needed to reduce the number 
of ESD failures. To achieve effective ESD protection, according to the ESD design window shown in 
Figure 1, there are three important parameters: trigger voltage (Vt1), holding voltage (Vh), and 
secondary breakdown current (It2). The trigger voltage must be lower than the core circuit breakdown 
voltage. However, if a high-voltage transient is injected into a circuit, the protection device should be 
turned on to bypass the heavy current in order to avoid core circuit destruction. Additionally, these 
protection devices need to be turned on quickly and can sustain a heavy current. The Float Cum Boost 
Charger (FCBC) architecture [17] itself is susceptible to large current damage, so a contactor is 
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commonly used to discharge its large voltage/current. The ESD protection component in our paper 
is also the same as the contactor role, so the UHV nLDMOS component response time (Vt1 related) is 
a key factor. Therefore, we can find out the Vt1 of the component by using the transmission-line pulse 
(TLP) system to determine whether the protection component can be turned on quickly under a large 
voltage/current bombardment to prevent the circuit from being damaged by the instantaneous large 
voltage and current transient. The holding voltage must be higher than positive supply voltage (VDD), 
otherwise there is a latch-up risk. The secondary breakdown current is as high as possible because it 
is defined as a device of ESD ability. Additionally, the whole-chip ESD protection design has been 
proposed to suggest where the chip should be protected to reduce the ESD risk [18]. The protect 
method is divided into two types—the first is to design ESD protection circuits, which protect chips 
by using the gate-couple technique [19,20] and the substrate-trigger technique [20,21]; the second is 
to design ESD protection devices, which use silicon controlled rectifier (SCR) [22,23], Grounded-gate 
nMOS (GGnMOS) [24], stacked field-oxide device (FOD) [25], and diodes [26] to protect a chip. 

The current crowding effect can often reduce the reliability level of UHV LDMOS [27–29]. For 
example, when the n-type heavily doped (N+) junction edge of the drain side is adjacent to the field 
oxide, as shown in Figure 2a, a large ESD spike will inject into the N+ junction and then crowd at the 
edge of the field oxide when an ESD event occurs. If the ESD current is too large because the power 
is equal to the voltage multiplied by the current, the power dissipation will increase when the current 
is increased. This causes heat generation at the current gathering location and a current crowding 
effect can occur, which causes device damage. 

In this paper, four kinds of novel modulations are proposed for drift-region engineering in order 
to strengthen the ESD ability of UHV nLDMOSs. (1) By using a floating polysilicon stripe above the 
field-oxide layer; (2) shortening the width of the field-oxide layer; (3) discrete HV N-Well layer; and 
(4) the embedded P-Well, the ESD protection ability can be effectively improved. 

 

Figure 1. Electrostatic discharge (ESD) protection window of a LDMOS. 

2. Layout of UHV Circular nLDMOS Devices under Test (DUTs)  

2.1. UHV Circular nLDMOS Reference Group 

The cross-sectional view and layout top view of an UHV circular nLDMOS are shown in Figure 
2a,b, respectively. Due to the process specifications, a field-oxide layer (FOX) is fabricated above the 
drift region to enhance the breakdown of the electric field. Due to the operational voltage of UHV 
applications, the n-type lightly doped HVNW layer is used in the drift region. The PBody and the 
deep P-Well (DPW) form a RESURF structure, which causes the drift region to be completely depleted 
and increases the breakdown voltage of the device without increasing the length of the drift region 
[30]. The polysilicon-stripe (poly2) above the drift region is used to reduce the peak value of the 
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electric field. The traditional UHV ESD protection device adopts the elliptical layout type, but the 
layout area is huge. In this paper, a circular layout type is adopted, which reduces the layout area 
and makes the voltage distribution more uniform [31,32]. In order to ensure the normal operation of 
the device characteristics, a semiconductor curve tracer is used to measure the current-voltage (I-V) 
curve and the breakdown voltage to assure that the DUTs have the correct output characteristics and 
the correct breakdown voltage value. When the UHV nLDMOS transistor acts as an ESD protection 
device, its device configuration forms a GGnMOS structure by grounding the gate electrode, which 
can discharge the ESD current beneath the parasitic Bipolar junction transistor (BJT). In this paper, 
all the DUTs are fabricated via a TSMC 0.5 μm BCD process. The channel length (L) is 4 μm, the 
channel width (W) is 394.4 μm, and the drift region length is 29 μm. 

 

(a) 

 
(b) 

Figure 2. (a) Cross-sectional view and (b) layout top view of a circular lateral diffusion MOS 
(nLDMOS). 

2.2. UHV Circular nLDMOS—Polysilicon-Stripe Modulation above the Drift Region 

In this structure, the layout of the polysilicon-stripe varies from spiral type to concentric circle 
type, as shown in Figure 3. The spiral poly2 starts from the drain-side edge, then passes above the 
field-oxide layer in the drift region, and finally connects to the source electrode. Initially, when an 
ESD event occurs, the poly2 contact is damaged due to the excessive current density, which reduces 
the ESD capability. The concentric poly2 type has multiple concentric circles that float above the drift 
region. The concentric poly2 type reduces the peak value of the electric field below the FOX and 
increases the breakdown voltage. Additionally, the floating concentric circle poly2 has no contacts, 
so it avoids the risk of contact damage. 
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Figure 3. Layout top view of a circular nLDMOS with concentric polysilicon-stripe (poly2) circles. 

2.3. UHV Circular nLDMOS—Field-Oxide Width Modulation in the Drift Region 

A cross-sectional view and layout top view of the field-oxide width modulation in the drift 
region are shown in Figure 4a,b, respectively. By shortening the width of the field-oxide layer in the 
drift region, the equivalent series resistance of this device decreases. The purpose of this is to reduce 
the device impedance, so the breakdown voltage is also reduced. Due to a strong correlation between 
the breakdown voltage and the trigger voltage, these devices can be applied for the desired operating 
voltage applications and are fabricated by the same process. The cell names of the modulation 
parameter are shown in Table 1. 

 

(a) 

 
(b)  

Figure 4. (a) Cross-sectional view and (b) layout top view of a circular nLDMOS with a field-oxide 
width modulation in the drift region. 
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Table 1. Cell names of the field-oxide width modulation. 

Samples Name Field-Oxide Width (μm) 

Ref. 29 

FOX_1 23.2 

FOX_2 17.4 

FOX_3 11.6 

FOX_4 5.8 

2.4. UHV Circular nLDMOS—Discrete HV N-Well (HVNW) Layer Modulation in the Drift Region 

The cross-sectional view and the layout top view of the discrete HVNW layer modulation in the 
drift region are shown in Figure 5a,b, respectively. In this architecture, the drift region is designed to 
be discrete and independent by using layout skills. Furthermore, the poly2 layer is changed to a 
concentric circle form to evaluate the influence of poly2 concentric circles on the discrete HVNW 
layer. Due to the fact that the parasitic resistance of n-epi is larger than the HVNW layer, the discrete 
HVNW layer can upgrade the equivalent resistance of the drift region. The DUTs are divided into 
two modulation types: a unit cell-size modulation (three cell sizes: 1, 2, and 3 μm) and a unit-cell 
spacing modulation (cell spacings: 1.34, 2.68, and 4.02 μm). Cell names of the discrete HVNW layer 
modulation are shown in Table 2. 

 

(a) 

 
(b) 

Figure 5. (a) Cross-sectional view and (b) layout top view of a circular nLDMOS with discrete HV N-
Well (HVNW) layer modulation. 
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Table 2. Cell names of the discrete HVNW layer modulation. 

Size 

Space 

1 μm 2 μm 3 μm 

1.34 μm dis10 dis20 dis30 

2.68 μm dis11 dis21 dis31 

4.02 μm dis12 dis22 dis32 

2.5. UHV Circular nLDMOS—Embedded P-Well Length Modulation in the Drift Region 

The cross-sectional and layout top views of the embedded P-Well length modulation in the drift 
region are shown in Figure 6a,b, respectively. Starting from the drain side, the N+ junction edge 
extends into the local oxidation of silicon (LOCOS) region with an embedded P-Well layer, and the 
lengths of the extended P-Well (K) are 5, 7, 9, and 11μm. Since the P-Well and N+ regions form a 
reverse bias junction, when an ESD event occurs, the ESD current flows into the deeper path via the 
HVNW and BNW layers to avoid device failure due to the current crowding effect at the drain-side 
LOCOS/N+ edge. The cell names of the embedded P-Well length modulation are shown in Table 3. 

 
(a) 

 
(b) 

Figure 6. (a) Cross-sectional view and (b) layout top view of a circular nLDMOS with an embedded 
P-Well length modulation in the drift region. 
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Table 3. Cell names of the embedded P-Well length modulation. 

Samples Name P-Well Length (μm) 

Ref. 0 

PW_5 5 

PW_7 7 

PW_9 9 

PW_11 11 

3. Testing Machine 

The related electronic instruments in a TLP testing system achieve an automated measurement 
process via the LabVIEW interface. This TLP machine provides a continuous rising square wave to 
get the I-V curve data of the DUTs. This testing system uses a square wave with 100 ns pulse width 
and has a short rising/falling time of <10 ns to obtain the voltage and current responses through the 
DUTs. This short transient pulse is used to simulate the human body model (HBM) waveform of an 
ESD event. Eventually, the I-V characteristics of the DUTs, such as the trigger voltage, holding 
voltage, and secondary breakdown current, can be measured. 

4. Test Results and Discussion 

4.1. UHV Circular nLDMOS—Polysilicon-Stripe Modulation above the Drift Region 

The experimental results of the UHV nLDMOS-related DUTs with polysilicon-stripe modulation 
above the drift region obtained from the breakdown voltage measurement and TLP testing are shown 
in Table 4. These experiment results demonstrate that the floating poly2 improves the electric field 
distribution under the field-oxide layer, smoothing the electric field distribution and reducing the 
peak value of the electric field to enhance the breakdown voltage of a device. The secondary 
breakdown current is strongly related to the breakdown voltage that a device can withstand. 
Therefore, in the same device geometries, we find that as the breakdown voltage increases, the 
secondary breakdown current also increases.  

Table 4. Snapback parameters of ultra-high-voltage (UHV) nLDMOS-related devices under test 
(DUTs). 

Samples Vt1(V) Vh(V) It2(A) VBK(V) 

Spiral type 375.13 58.69 3.20 395.12 
Concentric 
circle type 375.71 41.66 5.09 411.20 

4.2. UHV Circular nLDMOS—Field-Oxide Width Modulation in the Drift Region 

The experimental results of the UHV nLDMOS-related DUTs with the field-oxide width 
modulation in the drift region obtained from the breakdown voltage measurement and TLP testing 
are shown in Figures 7–9. As the field-oxide width decreases, the the equivalent series resistance, the 
breakdown voltage, and the trigger voltage are significantly reduced, and the holding voltage also 
lowers. Interestingly, the secondary breakdown currents of the ESD capability were higher than that 
of the reference group. It appears that the higher the operation voltage is, the lower It2 value it has. 
The test results of the UHV nLDMOS with field-oxide width modulation in the drift region are shown 
in Table 5. 
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Figure 7. Breakdown voltage trend chart of nLDMOSs with the field-oxide width modulation in the 
drift region. 

 
Figure 8. Secondary breakdown current trend chart of nLDMOSs with the field-oxide width 
modulation in the drift region. 

 
Figure 9. Trigger voltage and holding voltage trend charts of nLDMOSs with the field-oxide width 
modulation in the drift region. 

Table 5. Snapback parameters of field-oxide width modulation in the drift region. 

Samples Vt1(V) Vh(V) It2(A) VBK(V) 

Ref. nLDMOS 364.44 60.49 2.46 389.59 

FOX width 

 

FOX_1 311.40 52.97 3.65 269.85 

FOX_2 213.88 37.34 2.99 142.25 

FOX_3 160.61 29.74 2.43 130.34 

FOX_4 104.89 31.09 6.84 105.43 
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4.3. UHV Circular nLDMOS—Discrete HVNW Layer Modulation in the Drift Region 

Similarly, the experimental results of the UHV nLDMOS-related DUTs with discrete HVNW 
layer modulation in the drift region obtained from using the breakdown voltage measurement and 
TLP testing are shown in Figures 10–12. In Figure 10, the breakdown voltage decreases when the 
HVNW layer is discrete (or experiences an increase in unit cell spacing). Due to the continuous 
depletion region formed by HVNW/PBody/DPW in the reference device, it can withstand a 
breakdown voltage of more than 400 V. However, when the HVNW layer was discrete, the 
breakdown voltage decreased due to the discontinuous depletion layer, which cause the maximum 
electric breakdown decreased.  Figures 11 and 12 demonstrate that since the concentration of the n-
epi layer is lower than the HVNW layer, the holding voltages of these HVNW discrete devices are 
higher than the reference group voltages, because the concentration is inversely proportional to 
resistivity, which means that the equivalent resistance of the n-epi is indeed higher than that of the 
HVNW layer. The test results of the UHV nLDMOS with discrete HVNW layer modulation in the 
drift region are shown in Table 6. 

 
Figure 10. Breakdown voltage trend chart of nLDMOSs with the discrete HVNW layer modulation in 
the drift region. 

 
Figure 11. Secondary breakdown current trend chart of nLDMOSs with the discrete HVNW layer 
modulation in the drift region. 

 

Figure 12. Trigger voltage and holding voltage trend charts of nLDMOSs with the discrete HVNW 
layer modulation in the drift region. 
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Table 6. Snapback parameters of discrete HVNW layer modulation in the drift region. 

Samples. Vt1(V) Vh(V) It2(A) VBK(V) 

Ref. nLDMOS 375.71 41.66 5.09 411.20 

HVNW 

discrete 

dis 10 341.94 52.52 3.43 212.32 

dis 11 324.67 46.48 3.72 193.79 

dis 12 318.69 47.31 4.15 190.29 

dis 20 364.15 49.65 3.20 255.48 

dis 21 344.48 47.72 4.17 215.27 

dis 22 333.98 48.52 3.57 196.76 

dis 30 380.50 54.60 2.22 289.29 

dis 31 351.92 51.99 3.20 222.75 

dis 32 342.27 50.95 4.12 197.62 

4.4. UHV Circular nLDMOS—Embedded P-Well Length Modulation in the Drift Region 

Finally, the experimental results of the UHV nLDMOS-related DUTs with embedded P-Well 
length modulation in the drift region obtained from the breakdown voltage measurement and TLP 
testing are shown in Figures 13–15. The trigger voltage and the holding voltage increase when the 
current flow path is blocked by the P-Well, due to the N+/P-Well reverse bias junction, which results 
in an increase in the turn-on resistance. Nevertheless, even when the trigger voltage slightly decreases, 
the holding voltage increases related to the increase in P-Well length. When the P-Well length is 9 
μm, the trigger voltage is the lowest and the holding voltage (65.5 V) is the highest. Meanwhile, its 
secondary breakdown current can be reached at 2.47 A, which is the best among the modulation 
samples. The test results of the modulations of UHV nLDMOS with embedded P-Well in the drift 
region are shown in Table 7.  

 

Figure 13. Breakdown voltage trend chart of nLDMOSs with the embedded P-Well length modulation 
in the drift region. 
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Figure 14. Secondary breakdown current trend chart of nLDMOSs with the embedded P-Well length 
modulation in the drift region. 

 

Figure 15. Trigger voltage and holding voltage trend chart of nLDMOSs with the embedded P-Well 
length modulation in the drift region. 

Table 7. Snapback parameters of embedded P-Well length modulation in the drift region. 

Samples Vt1(V) Vh(V) It2(A) VBK(V) 

Ref. nLDMOS 364.44 60.49 1.72 389.59 

P-Well 

PW_5 377.42 62.39 1.73 391.56 

PW_7 376.195 63.39 1.73 392.10 

PW_9 374.92 65.46 2.47 391.00 

 PW_11 377.19 59.72 1.73 391.25 

5. TCAD Simulation 

To verify the differences, the impact generation rate profiles of the UHV nLDMOS transistors 
with (a) a reference device and (b) an embedded 9 μm P-Well in the drift region structures under the 
VG = VS= VBulk = 0 V and VD = 310 V conditions are shown in Figure 16a,b. According to these three-
dimensional (3-D) TCAD simulations, the general impact ionization process is described by Equation 
(1) [33]. Here, G represents the generation rate of the electron-hole pairs, and a device will fail if the 
G value is too high as in the reference DUT in Figure 16a The ionization coefficients for electrons and 
holes are αn,p, and these coefficients describe the number of electron-hole pairs generated per unit 
distance traveled by a solitary carrier between two collisions. Their current densities are represented 
by Jn,p. The impact generation rate profile of the reference device is higher than that of the embedded 
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P-Well modulation. The minority carriers contribute to the drain current, and the majority of carriers 
are attracted and collected by the bulk electrode, thereby generating the bulk current. As the bulk 
current continues to increase, the additional carriers increase the forward currents in the transistors. 
Increasing the currents leads to massive growth heat generation that can lead to a device failure. 
Therefore, for ESD, latch-up immunities, and breakdown voltage performance, the embedded 9μm 
P-Well in the drift region is the most suitable structure for drain-end modulated engineering.  

n pn p
G = α J +α J   (1) 

 
 

(a) (b) 

Figure 16. Impact generation rate diagrams of (a) reference device and (b) embedded 9 μm P-Well in 
the drift region (full scale: 1 × 10−7 A/cm2) as the VG = VS= Vbulk = 0 V, VD = 310 V bias condition. 

6. Conclusion 

Four kinds of modulations are used in circular UHV nLDMOS drift-region engineering: (1) 
changing the layout of the poly2 layer, (2) field-oxide width modulation, (3) discrete HVNW layer, 
and (4) embedded P-Well in the drift region. In the first type of modulation, the breakdown voltage 
increased more than 400 V due to the reduction of the peak electric field and an increase in the 
secondary breakdown current up to 5 A also occurred. In the second modulation, the breakdown 
voltage of the drain region reached 105 V, which meant that the operating voltage of the high-voltage 
circuits could be adjusted by the modulation length of the drift region. For the third modulation, the 
trigger voltage, holding voltage, and breakdown voltage were adjusted for different application 
voltages by adjusting the discrete unit cell size and spacing. Finally, for the embedded P-Well of 
different lengths in the drift region, when the embedded P-Well length was 9 μm, it had the best ESD 
ability due to the reduction of the impact ionization. 
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