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Abstract: Imperceptibility and robustness are the two complementary, but fundamental requirements
of any digital image watermarking method. To improve the invisibility and robustness of
multiplicative image watermarking, a complex wavelet based watermarking algorithm is proposed
by using the human visual texture masking and visual saliency model. First, image blocks
with high entropy are selected as the watermark embedding space to achieve imperceptibility.
Then, an adaptive multiplicative watermark embedding strength factor is designed by utilizing
texture masking and visual saliency to enhance robustness. Furthermore, the complex wavelet
coefficients of the low frequency sub-band are modeled by a Gaussian distribution, and a watermark
decoding method is proposed based on the maximum likelihood criterion. Finally, the effectiveness
of the watermarking is validated by using the peak signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM) through experiments. Simulation results demonstrate the invisibility
of the proposed method and its strong robustness against various attacks, including additive noise,
image filtering, JPEG compression, amplitude scaling, rotation attack, and combinational attack.

Keywords: image watermarking; visual saliency; image entropy; dual tree complex wavelet
transform; structural similarity

1. Introduction

With the growing popularity of big data and multimedia applications, a large number of digital
multimedia data are generated, transmitted, and distributed over the Internet every day. The security
of these digital data is a relevant problem. An efficient solution is watermarking technology, which is
mainly used for copyright protection, authentication, fingerprinting, etc. [1–3]. In general, the main
idea of digital watermarking is to embed useful information in a host signal without affecting the
perceptual quality of the host signal. For a watermarking method, the three indispensable, but
conflicting requirements are robustness, invisibility, and capacity [1]. These requirements are mutually
reinforcing and have to be solved together. For instance, when the imperceptibility of watermarking is
improved, the robustness of watermarking will be reduced. Therefore, an ideal digital watermarking
should achieve good balance among these three requirements.

To achieve the above goal, extensive watermarking methods have been proposed in recent
years. These methods can be classified in different ways, e.g., spatial domain methods [4] and
frequency domain methods [5–9], based on watermark embedding space. Depending on the manner
of embedding, the method can be further categorized into additive [10], multiplicative [11,12],
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and quantization based methods [13,14]. In addition, the watermarking methods can be categorized as
blind [11] and non-blind [15] ones based on watermark decoding.

In terms of embedding region, most current watermarking methods focus on the frequency
domain [6,7,16], because frequency domain watermarking algorithms are relatively more robust,
invisible, and stable, especially the wavelet based watermarking [16]. The reason is that wavelet
based watermarking has two obvious advantages. One of the advantages is that the wavelet
transform fits well with the human visual system, which can be exploited in the design of an invisible
watermarking [17–21]. The other advantage is that the wavelet transform has good multi-scale analytic
characteristics, which can be used to develop a robust watermarking method [21–24]. Subsequently,
many watermarking methods that use wavelets have been proposed in the past two decades. In terms
of embedding method, the multiplicative watermarking methods are reportedly more robust, and they
provide higher imperceptibility than the additive ones [25,26]. The multiplicative watermarking
approaches are dependent on image content [25], and more importantly, they have strong robustness.
Therefore, multiplicative watermarking methods are preferred for copyright protection [26]. For this
reason, the multiplicative embedding approach is adopted in our study.

The wavelet transform has the advantages of the localization of the time frequency and multi-scale
analysis, and it is suitable for describing the characteristics of 1D signals. However, when the signal
dimension increases, the wavelet transform cannot sufficiently describe the singularity of the signal [27].
Therefore, to capture the direction information of 2D signals, multi-scale geometric analytic techniques
for obtaining the intrinsic geometric structure information of images, such as contours and smooth
curves, have emerged in recent years. These technologies include the ridgelets [15,28], wave atoms [29],
contourlets [27,30], framelets [31], and dual tree-complex wavelet transform (DT-CWT) [32,33].

Current watermarking algorithms, such as the methods in [16,28,30], have achieved satisfying
results; however, some problems need to be solved. Akhaee et al. [16] proposed a robust scaling based
watermarking with the multi-objective optimization approach. Although the balance of invisibility
and robustness of watermarking has been elaborately addressed by the method [16], the cost of
multi-objective optimization is high, which hinders its extension to real applications. Despite the
success of the multi-scale geometric analysis technology in various image watermarking-like
methods [9,30], the time cost of these methods is also high. As a result, designing a simple and
effective digital watermarking method to balance robustness and imperceptibility is necessary.

In addressing the above issues, the quantization watermarking approach with the L1 norm
function was proposed in our previous work [33]. This work achieved good imperceptibility,
but the robustness of the watermark against some attacks remains insufficient. In the present study,
a watermarking that can be easily implemented is developed, and the robustness of watermarking
is boosted based on the visual perception model. In this manner, the fidelity of the image can be
improved. The developed method can achieve a good balance between invisibility and robustness of
watermarking, which is beneficial to the practical use of watermarking technology.

DT-CWT is regarded as an overcomplete transform, which creates redundant complex wavelet
coefficients that can be utilized to embed watermarks. In general, shift invariance is the main feature
of DT-CWT. We can use this property to produce a watermark that can be decoded even after the
host signal has undergone geometric attacks, such as amplitude scaling and rotation. DT-CWT also
has good directional selectivity. Therefore, we propose an image watermarking by using DT-CWT
in this paper. First, we segment the original image and choose the image blocks with high entropy
in this study. Second, we embed watermark data into the low frequency of the complex wavelet
coefficients by a visual perceptual model, and we extract the watermark data by using the maximum
likelihood estimator (MLE). Finally, we validate the effectiveness of the watermarking algorithm
through experimental simulation.

The contributions of the proposed method are twofold. On the one hand, an adaptive watermark
embedding method in terms of texture masking and the visual saliency model is developed,
which embeds each watermark bit into a set of dual tree complex wavelet coefficients. Using this
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strategy, the robustness and imperceptibility of the watermark can be well balanced. On the other hand,
the low frequency of complex coefficients with high entropy is selected as the watermark embedding
space, which can improve the robustness of watermarking against some geometric attacks, such as
rotation, scaling, and combinational attack.

The rest of the paper is structured as follows. Section 2 provides the basic concept of DT-CWT.
Section 3 introduces the proposed watermarking method, including watermark embedding and
watermark decoding. We test and discuss the performance of the proposed watermarking through
experiments, and the corresponding findings are discussed in Section 4. The conclusion is presented
in Section 5.

2. Dual Tree-Complex Wavelet Transform

DT-CWT, which was initially proposed by Selesnick, Baraniuk, and Kingsbury [32], inherits
the characteristics of wavelets, and it can approximate shift invariances and has good directional
selectivity [32]. A DT-CWT with a wavelet transform can produce six directional sub-bands oriented
at 75◦,15◦, −45◦, −75◦, −15◦, and 45◦ on a decomposition scale. By contrast, a wavelet transform only
has three directional sub-bands oriented at 90◦, 0◦, and 45◦ on a scale. A comparison of the impulse
responses of these two wavelet transforms is shown in Figure 1. As mentioned above, DT-CWT can
effectively approximate shift invariances. This invariance can be used to design watermarking, which
then can be used to counter geometric attacks. For instance, if the image block is re-sampled after
scaling, then DT-CWT can generate a set of coefficients that are roughly the same as the original patch.
This scheme enables the watermarking to counter scaling attacks. Transformations, such as discrete
wavelet transform (DWT), discrete cosine transform (DCT), and Fourier transform, do not have this
property.

(a) DWT

(b) DT-CWT
Figure 1. Impulse responses of the reconstruction filters in two transforms. (a) DWT. (b) DT-complex
wavelet transform (CWT).

For a 1D signal, the wavelet coefficients obtained by using two filter trees are twice those of the
original wavelet transform. Furthermore, the 1D signal can be decomposed by the 1D DT-CWT with
a shifted and dilated mother wavelet function and scaling function [34], i.e.,
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f (x) = ∑
l∈Z

sj0,l ϕj0,l(x) + ∑
j≥j0

∑
l∈Z

cj,lψj,l(x), (1)

where Z denotes the set of natural numbers; J and l refer to the indices of shifts and dilations,
respectively; sj0,l denotes the scaling coefficient; and cj,l is the complex wavelet transform coefficient
with ϕj0,l(x) = ϕr

j0,l(x) +
√
−1ϕi

j0,l(x) and ψj,l(x) = ψr
j,l(x) +

√
−1ψi

j,l(x), where r and i represent
the real and imaginary parts, respectively.

Figure 2 shows the calculation process of the real part and the imaginary part of DT-CWT. For tree
a, filters h0 and h1 are used to compute the real part. For tree b, filters g0 and g1 are utilized to calculate
the imaginary part. As shown in Figure 2, the output of the two trees can be interpreted as the real
part and the imaginary part of the complex wavelet coefficients. For a 2D signal, a 2D image f (x, y)
can be decomposed by 2D DT-CWT [34], i.e.,

f (x, y) = ∑
l∈Z2

sj0,l ϕj0,l (x, y) + ∑
θ∈Θ

∑
j≥j0

∑
l∈Z2

cθ
j,lψ

θ
j,l (x) , (2)

where θ ∈ Θ = {±15◦,±45◦,±75◦} denotes the directionality of DT-CWT. At each scale of
decomposition, the DT-CWT decomposition of f (x, y) results in six complex valued high pass
sub-bands in which each high pass sub-band corresponds to one unique direction θ.

Figure 2. Two-level 1D dual tree complex wavelet transform.

3. Watermark Embedding and Detection

Human eyes are generally less sensitive to high entropy image blocks than smooth ones based on
the human visual perception model. The reason is that relatively strong edges usually appear in high
entropy image blocks [35]. Inspired by [35], we propose an image watermarking method by using
high entropy blocks in this work. The block diagram of the proposed method is illustrated in Figure 3,
which consists of watermark encoding and watermark decoding. The main advantage of this proposed
method is its simple implementation; moreover, the tradeoff between invisibility and robustness can
be resolved by a visual perceptual model. DT-CWT is also adopted in this work to embed watermark
information, which can improve the robustness of the watermarking against geometric attacks.
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(a)Watermark embedding

(b) Watermark detection

Figure 3. Block diagram of the proposed watermarking. (a) Embedding. (b) detection.

3.1. Watermark Embedding

As shown in Figure 3a. The procedure of the watermark embedding involves the following steps:
Step 1: The original image is segmented into blocks, and the first blocks in the ascending order of

estimated entropy are selected for watermarking purposes.
Step 2: DT-CWT is applied to each selected image block, and a single bit of “0” or “1” is embedded

in each block by manipulating the complex wavelet coefficients of the low frequency sub-band
as follows:

ỹ = x× (1+α) , for embedding1, (3)

ỹ = x× (1−α) , for embedding0, (4)

where x denotes the host coefficients of the low frequency sub-band; ỹ denotes the modified coefficients;
and α is called the watermark strength factor, its value being determined by texture masking and
visual saliency in Section 3.2.

Step 3: Repeat Step 2 for each image block.
Step 4: The inverse DT-CWT is applied to the watermarked blocks, and the watermarked blocks

are combined with the non-watermarked blocks to obtain the whole watermarked image.

3.2. Visual Saliency Based Watermark Strength Factor

The watermark strength factor α can affect imperceptibility. To achieve the transparency of the
watermark, two important concepts, texture masking and visual saliency, are used to design the
watermark strength factor. The just noticeable difference (JND) threshold is often high in the texture
region of an image [36]. Therefore, a high watermark strength factor can be selected to embed more
information in the texture region. In addition. The work in [37] studied the spread transform dither
modulation (STDM) watermarking algorithm based on the visual saliency model and achieved good
results. Furthermore, Wang et al. studied the JND estimation algorithm based on visual saliency in the
wavelet domain [38]. The work in [39] utilized the JND scheme in designing a watermarking method.
Besides this, in [40], an adaptive quantization watermarking algorithm was proposed. The term
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“adaptive” in their work [40] was mainly used to describe a process, behavior, and/or a system that
is able to interact with its environment. However, in our work, “adaptive” describes the embedding
strength of watermark. As a result, the concept of visual saliency [38,41,42] is used to develop an
adaptive watermark strength factor in this work. The human eye is inclined to focus on prominent
areas, and distortions are more likely hidden in the area far from the image saliency part. However,
watermark embedding strength can be enhanced accordingly. The watermark strength factor can be
calculated as follows.

First, on the basis of the characteristic of the texture masking, the high frequency energy of the ith

image block is calculated by Equation (5), i.e., the value is the average of the sum of the energies of the
six high frequency sub-bands.

EHF,i =
1
6
(EH,1 + EH,2 + · · ·+ EH,6) , (5)

where the six sub-bands of EH,1, EH,2, . . . , EH,6 are produced, which correspond to the outputs of the
six directional sub-bands oriented at 15◦, 45◦, 75◦, −15◦, −45◦, and −75◦. Subsequently, the high
frequency sub-band image energy of the N image sub-block is computed as follows:

EHF =
1
N

N

∑
i=1

EHF,i, (6)

where EHF is the average energy of all image blocks. The watermark strength factor can increase
with increasing EHF. Hence, the high frequency portion of the watermark strength factor α1 can be
computed by employing the relationship proposed in [36] as follows:

α1 = a − c× exp (−ξ · EHF) , (7)

where the values of a , c, and ξ are set to 1.023, 0.02, and 3.5× 10−5, respectively.
According to [42], the final strength factor α can be computed by exploiting visual saliency. First,

saliency distance is calculated for each image block, as denoted by D, and the maximum saliency
distance is determined from the image blocks, as denoted by Dmax. In this manner, the visual saliency
based strength factor α2 can be represented as α2 = 1 + δ · D, where δ = 0.02/Dmax.

In summary, the final watermark strength factor α can be calculated as:

α = (α− c× exp (−ξ · EHF))×
(

1 +
0.02
Dmax

· D
)
− α0, (8)

where α0 denotes a positive constant, and α0 is subtracted in this work to control the degree of image
distortion after the watermark embedding. In this manner, the value of α0 can be set to 1.0 in this work.

On the basis of the above analysis, texture masking and visual saliency can be utilized to calculate
the strength factor. This strength factor can adaptively change with the change of image texture and the
degree of saliency. In this manner, the strength of the embedding can be controlled more appropriately,
thus further improving watermarking performance.

3.3. Watermark Detection

The effect of attacks at the receiver can simply be modeled as an additive white Gaussian noise
(AWGN) [16]. Furthermore, the complex wavelet coefficients of the low frequency sub-band can be
modeled by a Gaussian distribution. The distribution of watermark information “1” or “0” can be
represented as follows:

yi|1 = (1 + α) · xi + ni ⇒ yi|1 ∈ N((1 + α)µ, σ2
y|1), (9)
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yi|0 = (1− α) · xi + ni ⇒ yi|0 ∈ N((1− α)µ, σ2
y|0), (10)

where σ2
y|1 = (1 + α)2σ2 + σ2

n , σ2
y|0 = (1− α)2σ2 + σ2

n , σ2
n is the variance of the noise in the related

sub-band coefficients.
Complex wavelet coefficients are assumed to be independent and identically distributed in this

work. Therefore, the distribution of these coefficients in a specific block with N coefficients y1, y2, · · ·, yN
for embedding “1” is:

f (y1, y2, · · ·, yN |1) =
N

∏
i=1

1√
2πσy|1

exp

(
− (yi − (1 + α)µ)2

2 · σ2
y|1

)
. (11)

Similarly, to embed “0”, we have:

f (y1, y2, · · ·, yN |0) =
N

∏
i=1

1√
2πσy|0

exp

(
− (yi − (1− α)µ)2

2 · σ2
y|0

)
. (12)

According to the ML decision criterion, the watermark extraction process can be written as follows:

f (y1, y2, · · ·, yN |1) > f (y1, y2, · · ·, yN |0), ŵ = 1, (13)

f (y1, y2, · · ·, yN |1) < f (y1, y2, · · ·, yN |0), ŵ = 0. (14)

Thus, by substituting (11) and (12) in (13) and (14), we have:

N

∏
i=1

1√
2πσy|1

exp

(
−(yi − (1 + α)µ)2

2 · σ2
y|1

)
>

N

∏
i=1

1√
2πσy|0

exp

(
−(yi − (1− α)µ)2

2 · σ2
y|0

)
, ŵ = 1,

(15)

N

∏
i=1

1√
2πσy|1

exp

(
−(yi − (1 + α)µ)2

2 · σ2
y|1

)
<

N

∏
i=1

1√
2πσy|0

exp

(
−(yi − (1− α)µ)2

2 · σ2
y|0

)
, ŵ = 0.

(16)

We take the logarithm of both sides by calculating:

ω1

N

∑
i=1

y2
i + ω2

N

∑
i=1

yi > τ, ŵ = 1, (17)

ω1

N

∑
i=1

y2
i + ω2

N

∑
i=1

yi < τ, ŵ = 0, (18)

where ω1 =

(
1

σ2
y|0
− 1

σ2
y|1

)
, ω2 = −2(1 + α)

(
1−α
σ2

y|0
− 1+α

σ2
y|1

)
.

Therefore, the watermark detection threshold can be expressed as:

τ = 2NIn

(
σy|1
σy|0

)
− N(1 + α)2

(
(1− α)2

σy|0
− (1 + α)2

σy|1

)
. (19)
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4. Experimental Results

4.1. Imperceptibility of Watermarking

To assess the performance of the proposed watermarking method, experiments are conducted by
using real images. In this study, we used eight natural images (Barbara, Boat, Bridge, Elaine, Lena, Man,
Mandrill, and Peppers), each with a size of 512× 512. The host images and their watermarked version
with 16× 16 blocks and 128-bit message are shown in Figure 4. Throughout the experiments, three level
DT-CWT was used to decompose each selected block, and the filters used were the near-symmetric
13, 19 tap filters and Q-shift 14, 14 tap filters. The watermark strength factor α was set to 0.0153
according to Equation (8) in Section 3.2. For each image in Figure 4, the top image is the host image,
the middle image the watermarked image, and the bottom image the difference image between the
host image and the watermarked version.

Figure 4. Host, watermarked, and difference images: Barbara, Boat, Bridge, Elaine, Lena, Man,
Mandrill, and Peppers.
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From Figure 4, the watermark imperceptibility is satisfied. The proposed watermarking method
provided an image dependent watermark with strong components in the complex part of the image,
which is barely noticeable to the human eyes. This scheme allowed for the setting of the high watermark
strength factor, while the visual quality of the watermarked image was kept at an acceptable level.
Moreover, the peak signal-to-noise-ratio (PSNR) and the structural similarity index measure (SSIM) [43]
were used to evaluate the performance of the proposed watermarking method in a subjective manner.
The results are shown Table 1, in which the watermarking evaluation results are satisfactory. Therefore,
the embedded watermarks were perceptually invisible.

Table 1. Evaluation results with different watermark lengths.

Image Watermark Length 128 Watermark Length 1024

PSNR (dB) SSIM PSNR (dB) SSIM

Barbara 51.1151 0.9999 42.4725 0.9959
Boat 51.6759 0.9998 41.8977 0.9952

Bridge 51.4628 0.9999 42.7279 0.9979
Elaine 51.1990 0.9995 41.4759 0.9938
Lena 52.2745 0.9998 46.0169 0.9931
Man 53.0835 0.9999 48.8653 0.9995

Mandrill 53.0835 0.9999 48.8653 0.9995
Peppers 51.5919 0.9996 42.2739 0.9939

4.2. Error of Probability Analysis

The error probability in the presence of AWGN was derived as follows. Error occurred whenever
watermark information “1” was embedded into the host image, while watermark information “0” was
extracted at the decoder end, and vice versa. The error probability of the watermarking included these
two errors.

According to Equation (17), the error probability of embedding watermark information “1” was:

fe|1 = f

(
ω1

N

∑
i=1

y2
i + ω2

N

∑
i=1

yi < τ|1
)

, (20)

where τ = 2N ln
(

σy|1
σy|0

)
− N(1+α)2

(
(1−α)2

σ2
y|0
− (1+α)2

σ2
y|1

)
, ω1 =

(
1

σ2
y|0
− 1

σ2
y|1

)
, and ω2 = −2(1 +

α)

(
1−α
σ2

y|0
− 1+α

σ2
y|1

)
. According to previous results [16], fe|1 can be written as:

fe|1 =
1√

2πNσ2
y|1

· κ1

κ2
×
∫ ∞

0
γ

(
N
2

,
x
2

)
· exp

(
− (τ̃ − κ1x/κ2 − N (1+α) µ)

2Nσ2
y|1

)
dx, (21)

where κ1 = ω1σ2
y|1, κ2 = 2 (1+α) µω1 + ω2, τ̃ = τ + ω1N(1+α)2µ2, and γ

(
N
2 , x

2

)
denotes

a Gamma function.
Meanwhile, the error probability of embedding watermark information “0” is:

fe|0 = f

(
ω1

N

∑
i=1

y2
i + ω2

N

∑
i=1

yi > τ|0
)

. (22)

According to [16], fe|0 can be further written as:

fe|0 = 1− c1

c2

√
2πNσ2

y|0

·
∫ ∞

0
γ

(
N
2

,
x
2

)
· ζ(x)dx, (23)
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where c1 = ω1σ2
y|0, σ2

y|0 = (1− α)2σ2 + σ2
n , c2 = 2 (1− α) µω1 + ω2, _

τ = τ + ω1N(1− α)2µ2, ζ(x) =

exp

(
−
(
_
τ−c1x/c2−N(1−α)µ

)
2Nσ2

y|0

)
.

The data bits “0” and “1” were assumed to be inserted in the original image with equal
probabilities. On the basis of Equations (21) and (23), the total error probability can be written as:

Fe = 0.5 fe|1 + 0.5 fe|0 (24)

Figure 5 shows the error probability Fe versus the different values of noise variance for the
Lena image under AWGN attack. From Figure 5, although the error probability Fe increased with the
increase of noise variance, the change value of error probability remained small as the noise attack
strength increased.

Figure 5. Error probability (Fe) versus noise variance for AWGN attack.

4.3. Performance under Attacks

For testing robustness, several common attacks, as described by [16,28], were utilized for the
watermarked images by the proposed method. These attacks included common image processing
attacks and geometric distortion attacks. In this study, bit-error rate (BER) was used to evaluate the
robustness of the watermarking under several intentional or unintentional attacks. To save on space,
the robustness of the proposed method under AWGN, median filtering, Gaussian filtering, JPEG
compression, scaling attack, rotation attack, and combinational attack on the eight well known images
(i.e., Barbara, Boat, Bridge, Elaine, Lena, Man, Mandrill, and Peppers) was investigated.

(1) AWGN attack:

Figure 6 shows the results of BER of various test images against AWGN attacks. When the noise
variance was less than 10, BER was near zero. When noise variance was less than 33, the corresponding
BER was near 0.1. Therefore, the proposed watermarking had good robustness against AWGN attacks.
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Figure 6. AWGN attack with different noise variances.

(2) JPEG compression attack:

Figure 7 shows the results of BER against JPEG compression attacks, in which the proposed
watermarking demonstrates robustness, even if the quality factor is very low (e.g., quality factor of
five). When the strength of the JPEG compression attack was very large (e.g., quality factor of five),
the result of BER was less than 0.3. When the JPEG compression quality factor was greater than 25,
BER tended to be zero. Therefore, the proposed watermarking algorithm was robust against JPEG
compression attacks.
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Figure 7. JPEG attack for various test images with different quality factors.

(3) Scaling attack:

Table 2 shows the BER results under amplitude scaling attacks. The watermarking algorithm was
robust to most scaling attacks. However, Table 2 also shows that when the scaling factor was equal
to 0.7 or 1.1, BER had a comparatively large value. The reason is not yet clear, and this issue will be
explored in our future work.
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Table 2. BER results of the extracted watermark under scaling attack.

Image
Scaling Factor

0.5 0.7 0.75 0.8 0.9 1.1 1.2 1.3 1.4 1.5 2.0

Barbara 0.0086 0.1868 0 0.0789 0.0164 0.1422 0.0820 0.0531 0 0 0
Boat 0 0.3141 0 0.1984 0.0336 0.2781 0.1883 0.0945 0 0 0

Bridge 0 0.1547 0 0.0719 0.0086 0.1250 0.0828 0.0336 0 0 0
Elaine 0 0.2750 0 0.1430 0.0383 0.2297 0.1406 0.0672 0.0047 0 0
Lena 0 0.2210 0 0.1289 0.0195 0.1828 0.1250 0.0680 0.0047 0 0
Man 0 0.2617 0 0.1273 0.0234 0.2336 0.1289 0.0586 0.0063 0 0

Mandrill 0.0016 0.1172 0 0.0195 0 0.0836 0.0234 0.0047 0 0 0
Peppers 0 0.2688 0 0.1563 0.0258 0.2398 0.1555 0.0570 0.0078 0 0

(4) Rotation attack:

Table 3 shows the results of the BER of various test images against rotation attacks. The range of
the rotation angle was [−10◦, 10◦]. When the range of the rotation angle was [−5◦, 5◦], the range of the
BER was [0, 0.07]. Among the values listed in in Table 3, the maximum BER was 0.1016, whereas most
of the other BER values were small. The effect of BER was not prominent when the angle increased.
Thus, the proposed embedding approach was robust against rotation attacks.

Table 3. BER results of the extracted watermark under rotation attack.

Image
Rotation Angle

−10◦ −5◦ −2◦ −1◦ −0.5◦ 0.5◦ 1◦ 2◦ 5◦ 10◦

Barbara 0.0825 0.0422 0.0422 0.0383 0.0336 0.0186 0.0188 0.0188 0.0297 0.0398
Boat 0.0320 0.0328 0.0289 0.0266 0.0242 0 0 0.0031 0.0078 0.0078

Bridge 0.0430 0.0328 0.0266 0.0266 0.0266 0.0258 0.0320 0.0344 0.0430 0.0594
Elaine 0.0727 0.0344 0.0164 0.0164 0.0164 0.0172 0.0172 0.0172 0.0352 0.0531
Lena 0.0422 0.0188 0.0133 0.0133 0.0133 0.0078 0.0078 0.0078 0.0133 0.0273
Man 0.0320 0.0227 0.0109 0.0109 0.0109 0.0031 0.0031 0.0070 0.0227 0.0328

Mandrill 0.1016 0.0789 0.0617 0.0617 0.0617 0.0359 0.0391 0.0391 0.0476 0.0820
Peppers 0.0398 0.0289 0.0242 0.0195 0.0164 0.0312 0.0359 0.0359 0.0523 0.0516

(5) Gaussian filtering and median filtering attacks:

Table 4 shows the BER results against Gaussian filtering and median filtering attacks. The window
sizes of Gaussian filtering and median filtering were 3× 3, 5× 5, and 7×7. The proposed method was
highly robust against Gaussian filtering attacks. When the window size of the median filtering was
3× 3, the performance of the proposed scheme was robust. However, with the increase of the window
size of the median filtering, the robustness of the watermarking was decreased.

Table 4. BER results of the extracted watermark under Gaussian filtering and median filtering attacks.

Image
Gaussian Filtering Median Filtering

3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7

Barbara 0.0375 0.0535 0.0535 0.0562 0.1734 0.2757
Boat 0.0176 0.0320 0.0340 0.0671 0.1902 0.2820

Bridge 0.0512 0.0664 0.0672 0.1316 0.2668 0.3422
Elaine 0.0227 0.0316 0.0332 0.0020 0.0309 0.1129
Lena 0.0301 0.0410 0.0430 0.0652 0.1836 0.2566
Man 0.0531 0.0754 0.0785 0.0715 0.2020 0.2793

Mandrill 0.0535 0.0750 0.0750 0.2035 0.3074 0.3555
Peppers 0.0297 0.0449 0.0469 0.0227 0.0668 0.1707
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(6) Combinational attack:

Table 5 shows the BER results under the combinational attack for various distortions associated
with JPEG compression with a quality factor of 20%. The robustness of the proposed method against
this kind of combinational attack was satisfactory. The result of BER against Gaussian noise attack
combined with JPEG compression attack for different images is shown in Figure 8, which further
confirmed that the proposed scheme had good robustness for this kind of combinational attack.

Table 5. BER results under JPEG compression (quality factor = 20%) combined with other attacks.

Method Barbara Boat Peppers Elaine Bridge Mandrill

JPEG and Scaling (0.75) 0 0.0078 0 0.0078 0 0.0078
JPEG and Scaling (0.90) 0.0187 0.0078 0 0.0178 0.0078 0.0239
JPEG and Scaling (1.10) 0.0781 0.0356 0.0313 0.0664 0.1253 0.0907

JPEG and Gaussian filtering (3× 3) 0.0586 0.0313 0.0295 0.0352 0.0519 0.0643
JPEG and Gaussian filtering (5× 5) 0.0586 0.0508 0.0364 0.0469 0.0741 0.0852

JPEG and Median filtering (3× 3) 0.0591 0.0710 0.0390 0.1168 0.0078 0.2015
JPEG and Median filtering (5× 5) 0.1476 0.1592 0.1187 0.2375 0.0352 0.2848
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Figure 8. Results for JPEG compression (quality factor = 20%) attack combined with AWGN attack for
various test images with different noise variances.

4.4. Comparison with Other Methods

In this part of the study, our method is compared with its most related competitors, particularly the
methods reported in [16,28,44,45]. The methods in [16,44] were chosen on the basis of their similarity
with the proposed watermarking. For example, the methods all used high entropy image blocks of
an original image for watermark embedding. To ensure fairness in comparison, the message lengths
and PSNR values used in our experiments were the same as those in the other works. The results
in Table 6 depict the same watermark lengths of 256 bits embedded into Barbara, Boat, and Peppers
images, while the PSNR of the watermarked image was 45 dB. The results of our method were better
than those in the other works for most attacks. For instance, for geometric attacks, such as scaling and
rotation attacks, the proposed method outperformed the above three watermarking methods. The main
reason was that DT-CWT can effectively approximate shift invariances for geometric transformations.
However, the proposed method was slightly ineffective compared to the methods in [28,44] under
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AWGN attacks. This problem will be investigated thoroughly by studying the statistical properties of
DT-CWT coefficients and noise in our future work.

Table 6. BER (%) results of the extracted watermark under some common attack.

Method
AWGN Median Gaussian JPEG Scaling Rotation Rotation
σn = 20 3 × 3 3 × 3 10% 0.9 −5◦ 5◦

Test image Barbara
Akhaee [16] 6.33 7.06 3.16 7.80 2.79 3.92 2.36

Kalantari [28] 0.19 20.47 5.29 7.03 6.11 9.04 10.09
Yadav [44] 0 0.78 0.39 11.72 0.32 6.27 7.35
Proposed 2.15 2.73 1.17 2.73 0 3.52 2.34

Test image Boat
Akhaee [16] 9.54 11.11 5.46 16.39 4.46 3.09 0.35

Kalantari [28] 0 14.38 8.31 9.64 8.23 8.98 9.40
Yadav [44] 2.34 1.95 1.17 9.37 0.16 5.74 6.03
Proposed 2.58 2.73 0 2.73 0.78 1.95 0.78

Test image Peppers
Akhaee [16] 11.23 2.78 3.26 17.25 1.27 3.40 4.80

Kalantari [28] 0 3.44 6.19 8.07 7.22 9.15 11.34
Yadav [44] 1.56 0.78 1.95 10.93 0.24 6.90 8.85
Proposed 2.81 0.78 1.17 4.30 0.39 2.73 3.52

Tables 7 and 8 show the BER results against median filtering attack and JPEG compression attack
by using the proposed method and those methods in [28,44], in which the watermark length was
256 bits and the PSNR of the watermarked image was 45 dB, respectively. As shown in both tables,
the proposed method had better results than the methods in [28,44].

Table 7. BER (%) comparison of the recovered watermark under median filtering attack.

Image
Kalantari [28] Proposed Method

Median Filtering Median Filtering

3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7

Lena 10.16 21.48 28.52 2.73 13.67 18.75
Peppers 3.44 14.45 25.07 0.78 3.91 14.84

Boat 14.38 26.10 37.89 2.73 13.28 22.66

Table 8. BER (%) comparison of the recovered watermark under JPEG compression attack.

Method Image JPEG Compression Quality Factor (%)

10 20 30 40 50

Kalantari [28] Lena 9.24 1.74 0.78 0.13 0
Yadav [44] Lena 18.75 8.98 4.30 0.78 0
Proposed Lena 6.25 0 0 0 0

Kalantari [28] Peppers 8.07 2.21 0.78 0.26 0
Yadav [44] Peppers 10.94 3.91 1.17 0.78 0.39
Proposed Peppers 4.30 0.39 0.39 0 0

Kalantari[28] Boat 9.64 1.56 0.39 0 0
Yadav[44] Boat 9.37 6.25 1.72 0.39 0
Proposed Boat 2.73 0 0.39 0 0

Table 9 shows the BER results under scaling attack with a watermark length of 100 bits and a
PSNR of the watermarked image of 45 dB. The results of the proposed method outperformed those
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of the methods in [44,45] for most scaling attack. As described in the third part of Section 4.2 (i.e.,
“scaling attack”), when the scaling factor was equal to 0.7 or 1.1, the robustness of the watermarking
decreased dramatically. We will investigate this issue in our future work.

Table 9. BER (%) comparison of the recovered watermark under scaling attack.

Method
Scaling Factor

0.5 0.7 0.9 1.1 1.3 1.5

Yadav [44] Lena 1.0 20.0 10.0 6.0 0 0
Tsougenis [45] Lena 5.0 3.0 4.0 8.0 8.0 12.0

Proposed method Lena 0 11.7 1.90 7.7 7.0 0

Yadav [44] Peppers 0 13.0 6.0 1.0 0 0
Tsougenis [45] Peppers 13.0 5.0 8.0 17.0 17.0 20.0

Proposed method Peppers 0 11.4 3.0 10.0 0 0

5. Conclusions

An image watermarking method was proposed in this study by using DT-CWT and the
multiplicative strategy. In this approach, after partitioning a host image into non-overlapping blocks,
the high entropy image blocks were selected for watermark embedding. Watermark data extraction
was performed by using the MLE decision criterion, and the embedding factor was computed to
improve the robustness of the watermarking by using the texture masking and visual saliency scheme.
The performance of the proposed scheme was evaluated in terms of image quality and robustness.
The experimental results demonstrated the effectiveness of the proposed method.
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