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Abstract: The majority of currently used automatic parking systems exploit the planning-and-tracking
approach that involves planning the reference trajectory first and then tracking the desired reference
trajectory. However, the response delay of longitudinal velocity prevents the parking controller
from tracing the desired trajectory because the vehicle’s velocity and other state parameters are not
synchronized, while the controller maneuvers the vehicle according to the planned desired velocity
and steering profiles. We propose an inverse vehicle model to provide a neural-network-based
integrated lateral and longitudinal automatic parking controller. We approximated the relationship of
the planned velocity to the vehicle’s velocity using a second-order difference equation that involves
the response characteristic of the vehicle’s longitudinal delay. The adjusted desired velocity to track
the origin-planned velocity is calculated using the inverse vehicle model. Furthermore, we proposed
an integrated longitudinal and lateral parking controller using an artificial neural network (ANN)
model trained on a dataset applying the inverse vehicle model. By learning the control laws between
the vehicle’s states and the corresponding actions, the proposed ANN-based controller could yield a
steering angle and the adjusted desired velocity to complete automatic parking in a confined space.

Keywords: Autonomous Vehicle; Automatic Parking; Integrated Longitudinal and Lateral Controller;
Inverse Vehicle Model; Artificial Neural Network

1. Introduction

Several studies to develop automatic parking systems have been conducted, from recognizing
vacant parking spaces [1] to booking parking lots using blockchain [2]. Despite much pioneering prior
work, the automatic parking control of a car in a tiny space remains a problem to be resolved in the
implementation of advanced driver assistant systems or autonomous vehicles. Most conventional
automatic parking controllers exploit a step-by-step approach that involves planning the reference
trajectory first and then tracking the desired reference trajectory to move the car to the destination.
These parking controllers employ a feedback control loop to track the reference path/trajectory within an
allowable error tolerance. The reference trajectory planning methods can be classified into the following
two groups: The geometric planning and mathematical optimization approaches. In the geometric
planning methods, some form of curves such as β-spline [3], Bézier [4,5], clothoid [6], or polynomial
curves [7,8] are generated as a set of reference trajectories. The mathematical optimization approaches,
firstly formulating a cost function of the automatic parking problem and then minimizing the objective
cost function [9–13]. Besides car-like vehicles, reference trajectory is feasible in the case of parking
N-trailer vehicles when complicated kinematic constraints are taken into account in planning the
trajectory [14–16].
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Fuzzy-based and knowledge-based approaches have been presented [17–19]. These methods are
capable of providing solutions within a range of designed rules with an advantage in easy implements
and practical usages.

Recently, methods based on deep neural networks have been expected to solve the drawbacks
of the mentioned step-by-step approaches by maneuvering vehicles without prior offline trajectory
planning [20–23]. By training an artificial neural network (ANN) using a dataset generated by
simulation or experiment, the ANN learns hyper-dimensional relationships between the current vehicle
states and the appropriate vehicle maneuvering signals. Instead of calculating the parking trajectory
offline, the ANN-based parking controller can yield a direct maneuvering signal of the steering angle
and velocity online, while the vehicle is moving into a parking space. Liu et al. presented a method
to enumerate all the possible parking trajectories and corresponding steering actions, and then have
the parking controller learn the relationship between the given initial-and-final state pairs and the
corresponding sequence of steering actions using an ANN [20]. Li et al. proposed an end-to-end
neural-network-based automatic parking controller [21]. Rathour also proposed an encoder-decoder
architecture for automatic parking [22]. Moon et al. developed an automatic parking controller with a
twin ANN architectures [23].

However, neither the planning-based methods nor ANN-based controllers have taken account
of longitudinal control delay for a vehicle under automatic parking. Figure 1 shows a typical block
diagram of a conventional automatic parking controller. The driver model is a controller that converts
the input velocity into the desired positions of gas and brake pedals, that is, the maneuvering input for
the vehicle’s longitudinal velocity control. In planning-and-tracking methods, the parking controller
maneuvers according to a predetermined trajectory as the reference path. Meanwhile, in ANN-based
methods, the parking controller is trained using various deep learning techniques [20–23]. Longitudinal
latency, the delay time between the input velocity and the real velocity of the vehicle, is unavoidable in
vehicle dynamics control. Because the parking controller has an architecture of integrated lateral and
longitudinal control, the latency of longitudinal velocity causes a mismatch in temporal synchronization
between the steering angle signal and desired vehicle velocity (i.e. the control input of the gas and
brake pedals).
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Figure 2 shows a simulated example of a conventional automatic parking control system using 
the optimal reference planning method [13] that does not regard the latency of longitudinal response. 
The simulated trajectory deviates from that of the planned reference, as shown in Figure 2a. The 
simulated result shows that the vehicle’s velocity has a delay from the desired input velocity of the 
parking controller; consequently, this delay, shown in Figure 2b, causes an out-of-temporal 
synchronization between the reference steering angle and longitudinal velocity control, which need 
to match for integrated lateral and longitudinal control. The mismatch of the temporal 
synchronization between the velocity and steering control signals brought by longitudinal latency 
eventually leads to a discrepancy between the planned and actual trajectories, making precise 
automatic parking control in a confined space difficult.  

Figure 1. Typical block diagram of a conventional automatic parking control system.

Figure 2 shows a simulated example of a conventional automatic parking control system using
the optimal reference planning method [13] that does not regard the latency of longitudinal response.
The simulated trajectory deviates from that of the planned reference, as shown in Figure 2a. The
simulated result shows that the vehicle’s velocity has a delay from the desired input velocity of
the parking controller; consequently, this delay, shown in Figure 2b, causes an out-of-temporal
synchronization between the reference steering angle and longitudinal velocity control, which need to
match for integrated lateral and longitudinal control. The mismatch of the temporal synchronization
between the velocity and steering control signals brought by longitudinal latency eventually leads to a
discrepancy between the planned and actual trajectories, making precise automatic parking control in
a confined space difficult.
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To overcome the mentioned problem caused by the latency of longitudinal response, we propose 
an inverse vehicle longitudinal velocity model that estimates the desired input velocity required to 
track the reference trajectory by canceling the effective response delay time from the input demand 
to longitudinal velocity. We attempt to verify that the inverse vehicle model is applicable to ANN-
based automatic parking controllers without loss of synchronization between the lateral and 
longitudinal control signals to complete automatic parking in confined spaces.  

This paper is organized into five sections. Section 2 explains how to model the relationship 
between the planned input and vehicle velocities. Section 3 describes how to solve the parallel 
parking problem, how to generate a training dataset for learning parking maneuvers, and the 
proposed automatic parking controller that is based on an ANN. Simulation results and discussions 
are presented in Section 4. Finally, the conclusions are drawn in Section 5. 

2. Concept and Derivation of the Proposed Inverse Vehicle Model  

2.1. Modeling Vehicle Longitudinal Dynamics Using the Inverse Vehicle Model 

Figure 3 shows the proposed steps and procedure for developing the inverse vehicle model for 
the neural network-based parking controller. The longitudinal speed control system of the subject 
vehicle adopted in this research consists of a driver model and a vehicle dynamics model describing 
the longitudinal speed control [24], as shown in Figure 3. The vehicle dynamics model representing 
the dynamic properties of the longitudinal velocity control consists of an engine, a transmission 
system with a torque converter, and a wheel drive model. The driver model determines the position 
of the gas and brake pedals based on the input velocity. The actual vehicle velocity lags the input 
velocity, due to a response delay aroused by vehicle dynamics. This unsynchronized property 
aggravates the uncertainty of the vehicle’s trajectory, due to the mismatch between the lateral control 
and longitudinal control signals. The main idea of the inverse vehicle model is to adjust the desired 
input velocity to compensate for the response delay of vehicle longitudinal dynamics. 

Figure 2. Example of automatic parking when a trajectory is planned without regard to the latency of the
longitudinal response: (a) The planned and simulated trajectories without accounting for longitudinal
latency; (b) the planned and simulated steering angles and velocity profiles. Longitudinal latency
causes a mismatch in time synchronization between the velocity and steering control signals.

To overcome the mentioned problem caused by the latency of longitudinal response, we propose
an inverse vehicle longitudinal velocity model that estimates the desired input velocity required to
track the reference trajectory by canceling the effective response delay time from the input demand to
longitudinal velocity. We attempt to verify that the inverse vehicle model is applicable to ANN-based
automatic parking controllers without loss of synchronization between the lateral and longitudinal
control signals to complete automatic parking in confined spaces.

This paper is organized into five sections. Section 2 explains how to model the relationship
between the planned input and vehicle velocities. Section 3 describes how to solve the parallel
parking problem, how to generate a training dataset for learning parking maneuvers, and the proposed
automatic parking controller that is based on an ANN. Simulation results and discussions are presented
in Section 4. Finally, the conclusions are drawn in Section 5.

2. Concept and Derivation of the Proposed Inverse Vehicle Model

2.1. Modeling Vehicle Longitudinal Dynamics Using the Inverse Vehicle Model

Figure 3 shows the proposed steps and procedure for developing the inverse vehicle model for
the neural network-based parking controller. The longitudinal speed control system of the subject
vehicle adopted in this research consists of a driver model and a vehicle dynamics model describing
the longitudinal speed control [24], as shown in Figure 3. The vehicle dynamics model representing the
dynamic properties of the longitudinal velocity control consists of an engine, a transmission system
with a torque converter, and a wheel drive model. The driver model determines the position of the
gas and brake pedals based on the input velocity. The actual vehicle velocity lags the input velocity,
due to a response delay aroused by vehicle dynamics. This unsynchronized property aggravates the
uncertainty of the vehicle’s trajectory, due to the mismatch between the lateral control and longitudinal
control signals. The main idea of the inverse vehicle model is to adjust the desired input velocity to
compensate for the response delay of vehicle longitudinal dynamics.

We can estimate the dynamic motion and states of the vehicle using the longitudinal vehicle model
based on a plant model of the vehicle with inputs of gas and brake pedal positions and an output of the
vehicle’s velocity. However, even if we have a perfectly accurate vehicle model, we cannot estimate the
input demand to produce the desired vehicle velocity using conventional vehicle models. The purpose
of proposing the inverse vehicle model is to estimate the proper input to the driver model to produce
the desired vehicle velocity profile in order to synchronize the steering and velocity commands from
the parking controller.
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parking controller. Here, vm is the measured vehicle velocity in association with the input vi, vd is the
adjusted desired velocity, and v is the vehicle velocity when vd is applied to the driver model.

We modeled the relationship between the input velocity (vi) and vehicle velocity (vm) under the
assumption that the longitudinal vehicle dynamics combined with the driver model can roughly
be modeled as a second-order nonlinear differential equation. Under a parking condition, we can
assume that the vehicle moves at speed slower than 3 m/s and the gear changes only between the
forward-driving first stage and backwards-moving reverse stage (i.e., either 1 or −1 stage only) without
changes in the teeth ratio of the transmission gears. We can transform differential equations into
difference equations [25,26] to model a system in a discrete domain. The derivation procedure of the
second-order difference equation of Equation (1) is explained in Appendix A.

vm[k + 1] = α1 × vm[k] + α0 × vm[k− 1] + β0 × vi[k], (1)

where k ∈ [1, . . . , N], t f = Nh indicates the completion time of the entire process, and h is the sampling
interval. vi[k] and vm[k] denote the discretized terms of the input and vehicle velocities, respectively,
measured at the center of the rear wheels in time step k.

Firstly, we required a dataset of vehicle longitudinal velocities along with the input velocity
profiles. We used an open dataset in the supplementary material of our previous work [23]. We used
the mean squared error as an objective function to obtain the coefficients, where vm[k] denotes the
estimated vehicle velocity, and vm[k] is the measured velocity at the kth time step. The coefficients α1,
α0 and β0 can be obtained by minimizing the cost function shown in Equation (2):

minimize
α1,α0,β0

1
N

∑N
k=1 ‖vm[k + 1] − vm[k + 1]‖2,

subject to vm[k + 1] = α1 × vm[k] + α0 × vm[k− 1] + β0 × vi[k].
(2)

By utilizing the extracted coefficients of Equation (1), the inverse relationship for the input velocity
can be estimated as a function of the vehicle’s states as follows:

vi[k] =
1
β0

(vm[k + 1] − α1 × vm[k] − α0 × vm[k− 1]) for k ≥ 1. (3)

The inverse relationship of the velocity profile represented by Equation (3) is only valid if the
second-order difference equation is applicable to a non-linear vehicle dynamics model of the vehicle.
Assuming the parameters remain unchanged, while the vehicle is driving under the automatic parking
condition, we can presume that the difference equation of the vehicle longitudinal velocity model
can also be valid in the inverse calculation mode. The validation of the basic assumption applied to
Equation (3) can be proved through experiments or simulations using a vehicle dynamics simulator.
The technical usefulness of Equation (3) is that it facilitates the calculation of the effective input velocity
profile to the driver model from the recorded dataset of longitudinal velocity profiles exerted by the
input velocity. The input velocity profile is a known datum in simulations; however, it cannot be
apparently given in real vehicle experiments because the signal from the driver model of the vehicle is
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either a human driver’s intention or an implied desired velocity from the automatic parking controller.
The input velocity vi[k] is the driver’s desired velocity intended to drive the car. If the real driving
velocity of the car during parking maneuvering is coincident with the velocity profile of vi[k], the
mismatch problem between the longitudinal and lateral control signals cannot occur. In order to drive
the car with the real velocity profile of vi[k], we need to produce an adjusted desired velocity, vd by
reapplying the inverse relation of Equation (3) to the sequence of input velocity as follows:

vd[k] = f (vi[k + 1], vi[k], vi[k− 1]) ≈
1
β0

(vi[k + 1] − α1 × vi[k] − α0 × vi[k− 1]) for k ≥ 1. (4)

Hereby, we propose Equation (4) as the inverse vehicle model for an ANN-based integrated
lateral and longitudinal automatic parking controller. We can calculate the adjusted desired velocity to
enforce the vehicle to drive with the input velocity profile using the proposed inverse vehicle model
using the coefficients obtained by the dataset of the velocity profile. We assumed that the coefficients
α1, α0, and β0 of Equation (1) are unchanged and are valid in the proposed inverse vehicle model for
calculating the inverse relation of vd from vi. We substantiated the validation of the basic assumption
of the proposed model by simulation using CarSim [27], a widely used vehicle dynamics simulator.

2.2. Simulation Results of the Inverse Vehicle Model

In order to obtain the coefficients of α1, α0, and β0 using Equation (2), we used a dataset available
in the supplementary study [23], which contains the simulated results of the same authors’ previous
work for automatic parking research. The obtained value of coefficients α1, α0, and β0 were 0.8284,
–0.3267, and 0.4968, respectively. We conducted a simulation using CarSim with the same vehicle model
parameters of the dataset utilized to obtain the coefficients. The model structure of the CarSim vehicle
was the same as the block diagram, shown in Figure 3. We applied the input velocity to the driver
model and measured the vehicle velocity. Figure 4 shows the simulated data of the input velocity(vi),
vehicle velocity(vm), and calculated input velocity(vi) using Equation (3).
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Figure 4. Input velocity profile and corresponding CarSim simulated vehicle velocity, and the calculated
input velocity using Equation (3).

The enlarged views of Figure 4 display the detailed velocity profiles of the six knee points of
the curve, showing the calculated input velocity matched up with actual input velocity without a
significant amount of error. The root mean square (RMS) error between vi and vi was approximately
0.0073 in the simulation. The simulated results support that Equations (1) and (3) can be applied to a
model of the longitudinal velocity of a vehicle in parking conditions.

Figure 5 shows a simulated example of the input velocity(vi), the adjusted desired velocity(vd),
and vehicle velocity (vd

m) that is driven by input vd. In the simulation, we first calculated the profile of
vd using the proposed inverse vehicle model of Equation (4), and subsequently, we applied vd as the
input velocity to the driver model and measured vehicle velocity.
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Figure 5. A simulated example of adjusted desired velocity(vd), vehicle velocity (vd
m) driven by vd.

The main purpose of the simulation, shown in Figure 5, was to verify that the vehicle speed
matched up with (vi) by applying vd as the input velocity to the driver model, shown in Figure 3.
We want to substantiate that vehicles can track the target input velocity more accurately by using
the inverse vehicle model in parking situations. The enlarged views of Figure 5 display the detailed
velocity profiles of the six knee points of the curve, where the calculated input velocity matched up with
the vd

m driven by vd without a significant amount of error. The calculated RMS error between vi and vd
m

was approximately 0.0091, which is an almost negligible amount of error for parking maneuvers.
Figure 6 shows the simulated results of the parking trajectory with and without cancelation of

the longitudinal latency (a), and profiles of the steering angle control signal along with the input
velocity(vi), adjusted desired velocity(vd), and vehicle velocity (vd

m) driven by vd (b).
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Figure 6. The simulated results of (a) parking trajectory with and without cancelation of the longitudinal
latency, and (b) profiles of the steering angle control signal along with input velocity(vi), adjusted
desired velocity(vd), and vehicle velocity driven by vd (vd

m).

By canceling the effective delay between the planed input velocity and real vehicle velocity,
we can keep the synchronization between the steering control signal and desired velocity input.
The discrepancy from the planned trajectory is quite reduced in the simulation results by applying
vd. The inverse vehicle model can enable the parking controller to track the target trajectory with less
uncertainty caused by temporal mismatching of control signals.

3. Application to an ANN-based Automatic Parking Controller

In this section, the proposed inverse vehicle model applied to an ANN-based automatic parking
controller, is investigated. We generated a dataset for training the ANN by applying the inverse
vehicle model to the open dataset [23]. The open dataset was generated by a simultaneous dynamic
optimization technique based on an interior-point method (IPM) [28,29] for offline near-optimal
automatic paths and maneuver-planning for automatic parking [12,13]. The reader can refer to [12,13]
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for details of the IPM-based simultaneous dynamic optimization to solve parking problems. We adopted
the definition of parking problems and the results of the dataset of automatic parking profiles in
various parking scenarios from the authors’ previous research [23].

For variants of parking scenarios, we set three variables as the length of the parking slot (SL) in
the range from 4.4 m to 5.4 m and x- and y- coordinates of the initial starting points (xinit, yinit), where
SL + 0.8 + (yinit − 1.0) ≤ xinit ≤ SL + 2.0 and b + 0.2 ≤ yinit ≤ b + 1.0. Symbol b denotes the half-width
of the vehicle. In total, 891 scenarios for the training dataset were generated with 0.1m increment
of these three variables. The vehicle parameters in the dataset were as follows: Min/max values of
the input velocity vmax/min = ±2 m/s, min/max values of acceleration amax/min = ±0.75 m/s2, min/max
values of steering angle δmax/min = ±33◦, and min/max values of angular velocity ωmax/min = ±1 rad/s.
The vehicle coefficients used in the training data generation were as follows: Overall width (2× b =

1.6 m), length of body/wheelbase (L/lw = 3.6/2.53), front/rear overhang (o f /r = 0.54/0.54 m), and no
longitudinal response delay occurred. Using the open dataset, we calculated the adjusted desired
velocity vd, by applying the inverse vehicle model described in Section 2.

Modifying the automatic parking controller using an ANN [23], we constituted the automatic
parking controller based on the proposed ANN model shown in Figure 7. The proposed ANN
consisted of seven fully connected layers with 128 neurons in each layer and with seven inputs and
two outputs. Hyperbolic tangent activation functions (tanh) were used in each fully connected layer.
The inputs consist of the states of the vehicle at time k − 1 (x[k− 1], y[k− 1], Ψ[k− 1], and v[k− 1]) and
the parking slot length (SL) and actions of the vehicle at time k − 1 (vd[k− 1] and δ[k− 1]). Then, actions
of the vehicle at time k (vd[k] and δ[k]) are outputs of the neural network for supervised learning.
In the dataset, 103,650 inputs and outputs pairs sampled with a period of 0.1 s were included, where
trajectories with single-maneuver include approximately 60–70 pairs of states, but multiple-maneuver
trajectories include approximately 90–150 pairs of states.
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Figure 7. Structure of the artificial neural network (ANN) model of the parking controller and
arrangement of input and output data in the training dataset.

The trained ANN was the core of the automatic parking controller, which maneuvered the vehicle
with parking skills learned from the training data, so as to produce the appropriate action outputs,
while maneuvering the vehicle with respect to its current state and previous actions. The key idea of
the proposed ANN was learning from the adjusted dataset using the inverse vehicle model to yield the
adjusted desired velocity. Profiles of the adjusted desired velocity were calculated using the input
velocity using the inverse vehicle model.

We trained the ANN by applying a supervised learning method using the dataset with a mean
squared error (MSE) loss function. We divided the dataset into training and validation data in the
ratio of 80% and 20%. The proposed deep neural network was implemented using the Caffe deep
learning framework [30]. It was trained through 1000 epochs with a randomly sampled batch (size of
64). The learning rate was 0.001, with a descent ratio of 0.96 per 10,000 iterations.
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The proposed ANN parking controller and kinematic model of a vehicle constituted a
software-in-the-loop (SIL) architecture for validation of the proposed approach, as illustrated in
Figure 8. The SIL architecture has a feedback control loop, wherein the trained ANN generates action
signals (desired velocity vd[k] and steering angle δ[k]) as outputs and the vehicle poses (x[k− 1], y[k− 1],
Ψ[k− 1]), vehicle velocity v[k− 1], and previous action (vd[k− 1] and δ[k− 1]) as inputs to be fed into
the ANN at every time step, while running parking tasks. Compared with the conventional ANN
model [23], the proposed ANN model had two terms of input velocity for the desired and vehicle
velocity in order to consider the latency of longitudinal velocity.

4. Simulations and Discussions

The SIL architecture composed by the proposed ANN parking controller was simulated using
MATLAB and CarSim vehicle simulator. Figure 8 shows the parking controller and kinematic vehicle
model composing the (SIL) structure in MATLAB. We conducted MATLAB simulations for two cases:
The first one was the parking controller trained with a dataset generated from an ideal vehicle without
longitudinal latency and a kinematic vehicle model without a longitudinal response delay. For the
second case, the parking controller was trained with a dataset that had adjusted longitudinal latency
by applying the inverse vehicle model and a kinematic vehicle model with a second-order longitudinal
response delay described in Section 2. Both simulation cases of automatic parking were conducted
under the same environmental conditions. The parking task began at the ready-to-reverse point (RRP),
where the vehicle started to move backwards toward the destination position in the parking slot.
The parking process was complete when the vehicle reached the designated parking slot with the
requirements for the final pose of automatic parking, as described by the ISO 16787 standard [31].Electronics 2019, 8, 1452 9 of 19 
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4.1. MATLAB Simulation Results

Figure 9 shows the results of the parking controller and ideal vehicle kinematic model without
longitudinal delay based on the automatic parking controller using an ANN [23]. Figure 9a shows
the results of consequential parking trajectories in the case of multiple maneuverings. Even with a
small parking slot length (SL) (4.4 m) such that the vehicle had to change gears for back-and-forth
movement, the conventional parking controller successfully completed parking in the tiny space with
the ideal kinematic vehicle model.

Figure 10 shows the simulation results of the SIL structure composed of the kinematic vehicle
model that has longitudinal velocity delay approximated with the values of the coefficients α1, α0, and
β0 at 0.8284, –0.3267, and 0.4968, respectively.
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Figure 9. The simulated results of the parking controller with the ANN model containing the ideal
vehicle model without longitudinal delay: (a) the simulated parking trajectory and.(b) profiles of the
steering angle and velocity, in the case of SL = 4.4 and ready-to-reverse point (RRP) at position (xRRP,
yRRP) = (6.0, 1.4).
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Figure 10. The simulated results of the proposed parking controller with kinematic vehicle model,
including longitudinal delay: (a) The simulated parking trajectory and (b) profiles of the steering angle,
desired velocity, and vehicle velocity in a case of SL = 4.4 and RRP at position (xRRP, yRRP) = (6.0, 1.4).

The neural network learned to properly maneuver the vehicle even for back-and-forth movement
to prevent a collision in the tiny space. The MATLAB simulation results demonstrate that the parking
controller generated appropriate online maneuvers to complete the parking when the ANN model
was trained with the dataset generated by the same vehicle model as the kinematic model in the SIL.

4.2. Simulation Results of the CarSim Vehicle Simulator

We simulated vehicle dynamics behavior with a realistic SIL configuration using the CarSim
vehicle simulator. We composed a SIL structure for CarSim as shown in Figure 11. The dynamics
model consisted of the following components: Engine, transmission, chassis, and gear-shift logic.
A vehicle model having the same kinematic model coefficients (L/lw = 3.6/2.53) utilized in the dataset
generation [23] was used in this simulation. In addition to the kinematic model, we adopted a gearshift
logic similar to a real vehicle to consider the time required to change gears when the moving direction
changed for multiple maneuverings. The logic held a zero velocity for 0.8 s when the longitudinal
velocity changed from positive to negative, or vice versa.
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Figure 11. Structure of software-in-the-loop for the CarSim vehicle simulator.

We conducted CarSim simulations for these two cases: In the first case, the ANN trained with the
dataset generated from an ideal vehicle model without canceled latency, and in the second case, the
ANN trained with the dataset adjusted by the proposed inverse vehicle model.

Figure 12 shows the simulated results of the first case when the conditions of SL = 4.4 m, and
RRP was at the position (xRRP, yRRP) = (6.0, 1.4). The front right side of the vehicle can be seen to have
collided with the borderline of the slot, whose area is indicated by blue dotted lines in Figure 12a.
On the other hand, the simulated results of the second case with the same parking environmental
conditions, the automatic parking was completed successfully without collision through multiple
back-and-forth movements, as shown in Figure 13. The ANN parking controller trained with the
dataset adjusted by the proposed inverse vehicle model learned to yield accurate automatic parking
maneuvers without collision in a confined space.
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Figure 12. The simulated results using CarSim simulator with ANN controller trained with dataset
having longitudinal latency without latency canceling procedure when SL = 4.4 and RRP at position
(xRRP, yRRP) = (6.0, 1.4). (a) Simulated parking trajectory and (b) profiles of steering angle, desired
velocity, and vehicle velocity.

Figure 14 shows the simulated velocity input profiles of the driver model for the parking
controller trained with the adjusted or un-adjusted dataset. At the beginning of the parking maneuver,
no significant difference between two cases existed; however, the error became severe after two
back-and-forth movements around a lap time of 12 s (or after moving distance was more than 7 m).
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Figure 13. The simulated results using CarSim with the proposed ANN controller trained with the 
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Figure 13. The simulated results using CarSim with the proposed ANN controller trained with the
dataset adjusted by the proposed inverse vehicle model when SL = 4.4 and RRP at position (xRRP, yRRP)
= (6.0, 1.4): (a) Simulated parking trajectory and (b) profiles of the steering angle, desired velocity, and
vehicle velocity.
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Figure 14. The simulated results of the velocity profile of parking under the environment condition of
SL = 4.4 and RRP at position (xRRP, yRRP) = (6.0, 1.4). (a) x-axis with time and (b) x-axis with respect to
the length of moving distance.

4.3. Discussions

We simulated automatic parking for different vehicle models (kinematic and CarSim vehicles)
and parking controllers consisting of an ANN trained with a dataset with and without adjustment
using the proposed inverse vehicle model, as listed in Table 1. We defined an area of the initial starting
points by the union of x- and y- coordinates’ boundaries for the generation of the training dataset.
For the simulations, we chose random starting points in the union, which are not included in the
training dataset. We conducted 1000 MATLAB simulations and 100 CarSim simulations. We defined
the fail-condition if the main vehicle failed to reach the destination, satisfying the requirement defined
in ISO 16787 [31] of within 30 s. Table 1 shows a summary of the simulated success ratios of the
automatic parking, with simple kinematic and dynamic models close to the realistic vehicle simulations.
The success ratio of the ANN trained with dataset without canceled latency was up to 99% in the
MATLAB simulation when the kinematic model of the ideal vehicle model was used. However, in the
CarSim simulation, the ratio dropped to 41%. The parking controller trained with the adjusted dataset
using the inverse vehicle model showed that the success rate dropped less than 3% in the CarSim
dynamic simulations.
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Table 1. Success rates of automatic parking on test conditions.

Parking Controller
Ratio of Successful Parking

MATLAB Simulations
(Kinematics) CarSim Simulations (Dynamics)

ANN trained with dataset without
canceled latency

99.1%
(with ideal vehicle model without latency) 41%

ANN trained with dataset adjusted by
Proposed inverse vehicle model

98.9%
(with vehicle model, including latency) 96%

Conventional controllers without canceled latency effects can successfully perform parking
maneuvers when both the vehicle model generating the dataset for training the ANN and the kinematic
vehicle model are almost equal and nearly ideal without the longitudinal latency. The generalization
capability of the network is mostly determined by system complexity and training of the network.
Poor generalization may be observed when the network is over-fitted or system complexity is relatively
more than the training data. To reach the generalization, the dataset should be split into three parts:
the training dataset, the validation dataset, and a test dataset. We carried out the training, validation,
and testing steps during the development of the proposed ANN-based automatic parking controller.
We divided the dataset into training and validation data in the ratio of 80% and 20%. In addition to
the dataset split method, we conducted simulations with additional consideration to improve the
generalization capability of the proposed ANN-based parking controller. The training dataset was
generated by using a bicycle kinematic model. However, we simulated the parking controller using
a CarSim simulator with dynamic models that are different from the kinematic model used in the
dataset generation. We obtained a success rate of 96%, when the proposed Inverse vehicle model
was applied to cancel the longitudinal latency. The success rate without applying the inverse vehicle
model was only 41%. We also considered variation in the vehicle’s overall length in the ANN-based
automatic parking controller in our previous research [23]. Our results in previous work showed
that the ANN-based parking controller (with twin architecture) can successfully perform parking
maneuvers without retraining while the variations in the vehicle’s overall length are less than 5% [23].

The parking controller, consisting of an ANN trained with a dataset adjusted by the inverse
vehicle model, prevents the mismatch in the temporal synchronization between lateral and longitudinal
control signals by compensating the effect of the vehicle’s longitudinal latency. The simulation results
with the various vehicle models provide substantial evidence that the proposed inverse vehicle model
trained ANN model learned more robust parking skills compared with the conventional methods.

However, in this study, we did not consider the changes of environmental factors, such as surface
conditions of the road, weight, and distribution of the mounted load, aging of vehicles, inclined
parking lots, etc., that may cause uncertainty in the trajectory of the vehicle during automatic parking
maneuvers. As a further work we need an experimental validation of the proposed automatic parking
controller, including changes in environmental factors for the real-world applications.

5. Conclusions

We proposed an integrated longitudinal and lateral controller for automatic parking by training
an ANN on a dataset using an inverse vehicle model. The inverse vehicle model calculates the adjusted
desired velocity with which the vehicle can output the previously planned velocity. By learning
the current vehicle states and the corresponding actions applied with the inverse vehicle model, the
proposed automatic parking controller can yield a direct steering angle and desired velocity online,
predicting the relationships of the desired and vehicle velocities. The proposed trained ANN model
can compensate a vehicle’s longitudinal latency and mismatches, while the controller maneuvers
the vehicle according to a planned desired velocity and steering profiles. Using a vehicle dynamics
model, we validated that the ANN controller trained with the adjusted dataset by the proposed inverse
vehicle model can complete automatic parking, even with multiple back-and-forth movements in a
confined space.
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Appendix A

The automatic parking system structure controls the longitudinal velocity through a driver and
vehicle dynamics model. The vehicle dynamics model, shown in Figure 3, which represents the
dynamic properties of longitudinal velocity control, consists of an engine model, a transmission system
with a torque converter model, and a wheel drive model. The driver model is used to determine
the acceleration and brake pedal positions, based on the velocity tracking error relative to the input
given by,

e = vi − vm. (A1)

The exponential convergence toward zero of the tracking error is ensured if the condition is
satisfied with a decay rate, k > 0 [32],

.
e = ke. (A2)

Here, a longitudinal dynamics model of the vehicle based on the force balance of the vehicle can
be represented by [33,34]

.
vm =

1
M

(
T

rwh
−

1
2
ρCdA f rv2

m − Rx

)
, (A3)

in which T is a torque of propulsion unit, M the effective mass of the vehicle, rwh the effective wheel
radius, ρ the density of air, Cd the aerodynamic drag coefficient, A f r the effective frontal area of the
vehicle, and Rx the rolling resistance.

In parking situations, a vehicle usually moves with a low speed below 3 m/s. Therefore, the
aerodynamics can be negligible, and the gear ratio is changed only between the first stages of drive and
reverse modes in parking situations; moreover, the effects of tire slip and the rolling resistance may
be negligible in a low-velocity situation. The mentioned vehicle movement environment in parking
conditions implies that a vehicles longitudinal control model in automatic parking situations can be
simpler than a dynamics model used in a normal on-road driving condition. The torque of propulsion
unit (T) is a nonlinear function of the driver’s characteristics, as well as variables of error terms in
Equations (A1) and (A2). Even though representing a longitudinal dynamics plus driver model as a
simple analytic form of a physical model equation is not easy, the above analysis implies a possibility
that the longitudinal dynamics plus driver model can be roughly modeled as a second-order nonlinear
differential equation with some hypothesized parameters under the parking conditions.

Hereby, based on the assumption of a second-order differential equation of the longitudinal
velocity model, we proposed a general form of second-order difference equation modeling the vehicle’s
longitudinal state in the discrete-time domain with arbitrary fitting coefficients α1, α0, β0, and β1:

vm[k + 1] = α1 × vm[k] + α0 × vm[k− 1] + β0 × vi[k] + β1 × vi[k− 1], ∀ k ≥ 1. (A4)
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We used the mean squared error as an objective function as shown below, where
=

vm denoted a
calculated vehicle velocity using a dataset of measured vehicle velocity, vm.

minimize
α1,α0,β0,β1

1
N

∑N
k=1 ‖vm[k + 1] −

=
vm[k + 1]‖2,

subject to
=

vm[k + 1] = α1 × vm[k] + α0 × vm[k− 1] + β0 × vi[k] + β1 × vi[k− 1].
(A5)

Nevertheless, in the longitudinal velocity model of Equations (A4) and (A5), the model parameters
are still unknown; hence, we executed a numerical procedure for the following three different cases.

In Case 1, we assumed a first-order vehicle state and zeroth-order of input variable; hereby, we
minimized the root mean square (RMS) error only with variables of α1 and β0 by setting α0 = β1 =

0. Whereas, in Case 2, we assumed a second-order vehicle state and zeroth-order of input variable;
here, we minimized the RMS error with variables of α1, α0 and β0 by setting β1 = 0. Table A1 shows
that the RMS error in Case 2 is lower than that in Case 1, which means that the second-order model is
better fitting compared with the first-order model of the longitudinal control dynamics of the vehicle
to the experimental dataset. In Case 3, we optimized the fitting parameters under the assumption of a
second-order of vehicle state, while considering a first, as well as zeroth-order of the input velocity.
We can expect a decrease of RMS error in Case 3, if the system has some dependency on the first-order
of the input variable. The RMS error of Case 3 is a little larger than the error of Case 2 in the numerical
minimization result. Therefore, the optimization results are shown in Table A1 strongly support that
the longitudinal dynamics of vehicle can be approximated by a second-order difference equation with
zeroth-order of input velocity.

Table A1. RMS error of estimated vehicle velocity
=

vm and measured velocity vm for each case under the
parking condition.

Cases State Variable Input Variable RMS Error

Case 1 1st order zero order 0.0079
Case 2 2nd order zero order 0.0072
Case 3 2nd order 1st order 0.0078
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