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Abstract: The design and testing phase of photovoltaic (PV) power systems requires time-consuming
and expensive field-testing activities for the proper operational evaluation of maximum power
point trackers (MPPT), battery chargers, DC/AC inverters. Instead, the use of a PV source emulator
that accurately reproduces the electrical characteristic of a PV panel or array is highly desirable
for in-lab testing and rapid prototyping. In this paper, we present the development of a low-cost
microcontroller-based PV source emulator, which allows testing the static and dynamic performance
of PV systems considering different PV module types and variable operating and environmental
conditions. The novelty of the simple design adopted resides in using a low-cost current generator
and a single MOSFET converter to reproduce, from a fixed current source, the exact amount of
current predicted by the PV model for the actual load conditions. The I–V characteristic is calculated
in real-time using a single diode exponential model under variable and user-selectable operating
conditions. The proposed method has the advantage of reducing noise from high-frequency switching,
reducing or eliminating ripple and the demand for output filters, and it does not require expensive DC
Power source, providing high accuracy results. The fast response of the system allows the testing of
very fast MPPTs algorithms, thus overcoming the main limitations of state-of-art PV source emulators
that are unable to respond to the quick variation of the load. Experimental results carried on a
hardware prototype of the proposed PV source emulator are reported to validate the concept. As a
whole result, an average error of ±1% in the reproduction of PV module I–V characteristics have been
obtained and reported.

Keywords: photovoltaic emulator; photovoltaic panel; single diode model; MPPT

1. Introduction

The design of electronic power converters for photovoltaic (PV) applications requires a stable
and repeatable PV source for experimental testing under realistic operating conditions, which can
accurately reproduce the relationship between the output voltage and current of a given PV module.

Furthermore, the possibility to test variable conditions of the PV source is crucial as it is part of
the validation of the final product, assessing the behavior in the broadest range of operative condition
modifications as temperature, irradiation, and shadowing.

PV real installation does not satisfy at all the requirements hereafter: the I–V characteristics are
linked to slowly varying operational parameters like temperature and irradiation, they require in-field
test systems and apparatus, test conditions are defined by the actual meteorological conditions that
should be jointly acquired [1] and which can rapidly change during the test [2].
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Therefore, a PV source emulator is required to complete the on-lab assessments under variable
operating conditions in a reasonable amount of time.

Typically, a PV source emulator reproduces the I–V curve of an actual PV module starting from a
constant DC source, using both different conversion strategies and power sizes.

Commercial PV source emulators are available in the market, enabling the user to select different
PV module or PV array emulations with variable power range [3–5]. However, commercial PV source
emulators present several drawbacks, as high cost and a limitation in the rapidly changing atmospheric
conditions emulation [6].

Many researchers tried to overcome the limitation of commercial products or to develop low-cost
and affordable PV source emulators. Many possible approaches to performing the task of PV source
emulator design were found in the literature.

The simplest model of photovoltaic generator emulator can be obtained by connecting in series a
DC voltage generator and a variable resistor [7]. The open-circuit voltage VOC is set by the maximum
output voltage of the DC generator, while the short-circuit current ISC depends both on the output
voltage of the DC generator and on the value of the resistance of the variable resistor. For a given value
of the series resistance RS, if the load resistance is varied from its minimum value to its maximum value,
a linear I–V characteristic with a negative slope will be obtained. The main advantage of this technique
is the simplicity of implementation, however, the characteristic I–V obtained differs significantly from
that of a real photovoltaic source. Moreover, this type of PV source emulator is characterized by a low
efficiency (maximum 50%) due to dissipative losses on the series resistance.

A further method is based on the use of an analog amplification technique that allows to
independently amplify the low current and voltage values typical of a photodiode operating in the
photovoltaic mode so as to make them coincide with those of a standard photovoltaic module [8,9].
Since this type of emulator is made entirely with analog components, it has a high bandwidth, which
allows using this circuit to test photovoltaic inverters with maximum power point tracker (MPPT)
algorithms operating at high frequency [10–12]. On the other hand, the main disadvantage of this
circuit is the high power dissipation that involves the use of heat sinks with a large surface area.

In [11] the logarithmic approximation of the ideal single diode model is used, and the power stage
consists of a DC power supply feeding a linear voltage regulator.

To overcome the disadvantage of the high power consumption of PV source simulators based on
analog electronics, several solutions based on the use of DC/DC static converters (choppers) have been
proposed, such as [13–20]. To determine the output voltage and current values of the DC/DC converter,
this is controlled by a feedback control where the output current of the chopper is compared with a
reference current. The reference current can be determined in real-time by means of a mathematical
model of the photovoltaic module (PV-model) [19] or extrapolated from data stored in a look-up-table
(LUT). The first approach requires knowledge of the parameters, which is difficult to achieve in some
situations. The most commonly used approach is to derive an analytical model to represent the
I–V curves from the data available from the datasheet of the photovoltaic panel manufacturer [21].
The choice of whether to use a mathematical model of the photovoltaic module or a LUT must be made
considering several factors such as the speed of response of the system, accuracy, and use of hardware
resources in terms of both computational and memory. The complexity of the problem increases if
there is the necessity to emulate modules with different I–V characteristics since each of them will
require its own look-up-table. Another disadvantage of emulators using look-up-tables is that the I–V
characteristic of the module, between two successive points stored in the look-up-table, is obtained
by linear interpolation, which makes the system less accurate than the mathematical model-based
approach. In contrast, emulators based on the resolution of a mathematical model of the PV module
are more accurate and do not require a large amount of memory [22]. However, in order to obtain
a detailed representation of the I–V characteristic, the mathematical model will contain high order
equations, leading to an increase in computational time and thus to a slower system.



Electronics 2019, 8, 1445 3 of 14

In [23] is proposed a solution with a field programmable analog array, characterized by great ease
of reconfiguration and programming with respect to field programmable gate array (FPGA) or digital
signal processing (DSP) based implementations. No digital to analog converters (DAC) or analog to
digital converters (ADC) is needed while the final cost remains quite high due to the need for at least a
DC/DC converter.

In [24] is proposed a solution that adopts modular hardware, configurable software, systematic
modeling, and design methods, requiring a PC running Matlab/Simulink to determine the controller
parameters.

Another method builds an equivalent photovoltaic source using an unlighted photovoltaic panel
and a DC current power supply [10]. However, this approach requires the use of an actual PV panel
that must be changed if it is necessary to emulate a different panel; also, the temperature effect is not
easily simulated.

In [25] a dual-mode regulator consisting of a voltage regulator and a current regulator, connected
by two diodes for power hybridization, is proposed. The system switches between voltage and current
regulation, thus requiring complex and costly electronics.

In this paper, in order to overcome high realization costs, reduced accuracy and versatility, we
present a low-cost, microcontroller-based PV source emulator, which allows for testing the performance
of PV systems including different PV module types at user-selectable operating conditions. The I–V
characteristic is calculated in real-time using a simple diode model, and it does not use any DC-DC
converter, reducing the noise from high-frequency switching, and reducing or eliminating ripple and
the demand of output filters. Moreover, it does not require the use of expensive DC power sources
and can be used for laboratory tests and rapid prototyping by researchers and students. In addition,
the proposed solution provides accurate emulations over the full span of emulated power source,
differently from other state-of-art solutions that provide good results only closer to the maximum power
point (MPP). The model implemented takes into account fast-changing environmental conditions
that can be accurately tracked and/or emulated with the use of actual temperature, humidity and
illumination sensors or by software techniques.

The paper is organized as follows. Section 2 introduces the photovoltaic cell model. Section 3
explains the working principle of the proposed PV source emulator and the experimental setup.
Section 4 reports the experimental results and compares them with simulations, at different conditions.
Section 5 draws the paper conclusions.

2. PV Cell Model and Characteristics

Each photovoltaic cell is characterized by some basic parameters provided by the manufacturers,
referring to the standard test conditions (STC) which specifies an irradiance of 1000 W/m2, a cell
temperature of 25 ◦C and an air mass 1.5 (AM1.5) spectrum:

• Short-circuit current ISC: the maximum current that can be supplied by a photovoltaic cell under
short-circuit conditions (V = 0);

• Open circuit voltage VOC: the maximum voltage drop at the cell terminals when the supplied
current is null;

• Maximum power point MPP: the point of the I–V characteristic (Vmax, Imax) where the power
supplied to the load is maximum;

• Fill Factor FF = (Vmax × Imax)/(VOC × ISC): a parameter that measures the quality of the cell;
• Conversion efficiency η, defined as the ratio between the maximum power produced by the cell

and the total power incident on its surface at STC.

The Short-circuit current depends linearly on the value of the irradiance, whereas the influence of
the temperature can be expressed by the coefficient kI (Temperature coefficient of short-circuit current)
that indicates the percentage variation of the short circuit current as the temperature changes from the
value determined under STC. Contrary to the short-circuit current, the open-circuit voltage remains
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relatively constant when the radiation changes but is strictly dependent on the cell temperature.
The coefficient kV (Temperature coefficient of open-circuit voltage) expresses the variation of the
open-circuit voltage as the temperature changes with respect to the reference value calculated under
STC. The photovoltaic cell absorbs most of the incident solar radiation but there is a significant
portion of the absorbed radiation that is not converted into electricity but generates heat, which
causes an increase of the temperature of the cells that affects ISC and VOC, and consequently the
conversion efficiency.

In the dark, the I–V characteristic of a photovoltaic cell shows an exponential shape like the I–V
characteristic of a diode. As a result, a photovoltaic cell exposed to solar radiation can be assimilated
from a circuital point of view to a current generator with a diode in parallel (Figure 1). Various models
are available in literature [26–30] and the single diode model is one of the simplest models.

Electronics 2019, 8, x FOR PEER REVIEW 4 of 15 

 

a significant portion of the absorbed radiation that is not converted into electricity but generates heat, 
which causes an increase of the temperature of the cells that affects ISC and VOC, and consequently the 
conversion efficiency. 

In the dark, the I–V characteristic of a photovoltaic cell shows an exponential shape like the I–V 
characteristic of a diode. As a result, a photovoltaic cell exposed to solar radiation can be assimilated 
from a circuital point of view to a current generator with a diode in parallel (Figure 1). Various models 
are available in literature [26–30] and the single diode model is one of the simplest models. 

 
Figure 1. Photovoltaic cell: equivalent circuit of the single diode model. 

The current generator delivers an IPH current directly proportional to the solar radiation incident 
on the photovoltaic cell. Two resistors have been added to take into account the internal losses of the 
photovoltaic cell: 

• RS is the series resistance that models the internal losses of the cell due to the sum of the resistive 
contributions inside the cell and the contact resistance; 

• RSH is the shunt resistance that models the effects of leakage currents in the p-n junction mainly 
due to manufacturing defects in the photovoltaic cell. 

This model can be extended to model the operation of a photovoltaic module by specifying the 
number of cells connected in series Ns and in parallel Np. 

Various mathematical models are available describing the electrical behavior of a photovoltaic 
cell, which differs according to the precision of the mathematical model to be obtained and the 
number of parameters available. Simplified models have been developed taking into account only 
the parameters that can be measured practically [31]; in this work, the mathematical model follows 
equations in [32–34]. The thermal voltage Vt is defined as 𝑉  =  𝑘𝑇𝑞 , (1)

where q is the charge of an electron, k is the Boltzmann constant, Top is the temperature in K. 
VOC depends on the saturation current density of the solar cell IS and the photo-generated current 

Iph:  𝑉  =  𝑙𝑛 𝐼𝐼 𝑉 , (2)

The Shockley equation that relates the current and voltage of the cell in zero-illumination 
condition is adjusted for a photovoltaic module [32] by specifying the number of cells connected in 
series Ns and in parallel Np: 𝐼  =  𝐼 𝑒 − 1 𝑁 , (3)

where n is the ideality factor which is defined as how closely a diode follows the ideal diode 
equations. The reverse saturation current can be obtained by: 
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The current generator delivers an IPH current directly proportional to the solar radiation incident
on the photovoltaic cell. Two resistors have been added to take into account the internal losses of the
photovoltaic cell:

• RS is the series resistance that models the internal losses of the cell due to the sum of the resistive
contributions inside the cell and the contact resistance;

• RSH is the shunt resistance that models the effects of leakage currents in the p-n junction mainly
due to manufacturing defects in the photovoltaic cell.

This model can be extended to model the operation of a photovoltaic module by specifying the
number of cells connected in series Ns and in parallel Np.

Various mathematical models are available describing the electrical behavior of a photovoltaic cell,
which differs according to the precision of the mathematical model to be obtained and the number of
parameters available. Simplified models have been developed taking into account only the parameters
that can be measured practically [31]; in this work, the mathematical model follows equations in [32–34].
The thermal voltage Vt is defined as

Vt =
kTop

q
, (1)

where q is the charge of an electron, k is the Boltzmann constant, Top is the temperature in K.
VOC depends on the saturation current density of the solar cell IS and the photo-generated current Iph:

Voc = ln
Iph

Is
Vt, (2)

The Shockley equation that relates the current and voltage of the cell in zero-illumination condition
is adjusted for a photovoltaic module [32] by specifying the number of cells connected in series Ns and
in parallel Np:

Id = Is

(
e

V+RSI
nVtNS − 1

)
Np, (3)
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where n is the ideality factor which is defined as how closely a diode follows the ideal diode equations.
The reverse saturation current can be obtained by:

Is = Irs

(
Top

Tre f

)3

e
−qEg

nk ( 1
Top −

1
Tre f

)
, (4)

with Eg that is the extrapolated energy bandgap at 0 K. Irs is the value of the saturation current at Top:

Irs =
ISC

e
Vocq

nkTop − 1
. (5)

The current flowing through the shunt resistance RSH is defined as:

Ish =
V + RSI

Rsh
, (6)

and the photo-generated current is defined as:

Iph = Gk
[
Isc + kI

(
Top − Tre f

)]
, (7)

with Gk being the solar irradiance and Isc the short circuit current, kI = (ISC(Top) − ISC(Tref ))/(Top − Tref).
Finally, the characteristic equation of a photovoltaic panel using the equivalent circuit of Figure 1
is deduced:

I = IphNp − Id − Ish. (8)

3. Description of the PV Source Emulator

3.1. System Overview

Starting from a circuit model of a photovoltaic module and from the knowledge of the parameters
of that model, it is possible to create a MATLAB Simulink model useful to test the behavior of a generic
photovoltaic module and to trace its I–V and P–V characteristics when the load conditions or the
environmental parameters to which the module is subjected, such as temperature and radiation, vary.
The Simulink model of the photovoltaic module used in this work is based on the single diode circuit
model of the Solarex MSX-60 photovoltaic module model available on [35].

It is worth noting that the novelty proposed in this work resides in the accurate emulation and
curve-fitting of the characteristic of a real PV module by the proposed PV source emulator, and not in
the model itself.

The model parameters have been adapted to simulate the output characteristic of a 12 W
photovoltaic module with the parameters reported in Table 1. The block diagram of the proposed
photovoltaic source emulator is shown in Figure 2.

Table 1. Basic Parameter of the Simulated PV module at Standard Test Conditions (STC).

Parameter Value

Typical Peak Power (PMPP) 12 W
Short circuit Current (ISC) 0.683 A
Open circuit Voltage (VOC) 25 V

Temperature coefficient of Open-Circuit Voltage (kV) −(80 ± 10) mV/◦C
Temperature coefficient of Short circuit Current (kI) (0.065 ± 0.015) %/◦C

Temperature coefficient of Power (0.5 ± 0.05) %/◦C
Nominal Operating Cell Temperature (NOCT) 47 ± 2 ◦C
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3.2. Emulation Technique

The I–V characteristic of a photovoltaic module is a monotonous decreasing function, in fact,
the current supplied by the photovoltaic module is maximum I = ISC when it is in a short circuit
condition, and decreases as the voltage across the module increases. Referring to the I–V characteristic
in Figure 3, it can be seen that, for each voltage value, the current supplied by the photovoltaic module
can be determined as the difference between the short circuit current ISC and a loss current ILOSS:

∀V ∈ (0, Voc)→ I(V) = Isc − Iloss(V). (9)

The technique proposed in this paper is based on the use of:

• A current generator capable of delivering a constant current equal to ISC in the voltage range from
0 to VOC;

• A control system capable of determining, for each voltage, the value of the current ILOSS required
to subtract to the load;

• A power MOSFET that drain ILOSS from the branch in which the ISC flows.
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Based on the data returned by the mathematical model of the photovoltaic module, the control
system determines the value of the current ILOSS and generates a control signal that is applied to the gate
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of the MOSFET in order to modulate the drain current so that it results in IDRAIN = ILOSS. The current
circulating in the MOSFET is sensed by the control system that aims to minimize the error between the
target ILOSS and the one that actually flows on the MOSFET. A proportional-integral-derivative (PID)
controller allows generating the suitable control signal to achieve the required current regulation.

3.3. Experimental Setup

The control logic and the mathematical model of the photovoltaic module have been implemented
on an STM32F401RE microcontroller (STMicroelectronics), mounted on the STM32 Nucleo board.
A specifically made shield board attached on the Nucleo board implements the necessary hardware
that allows to control the MOSFET and sense current and voltage (Figure 4).
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Figure 4. A picture of the realized photovoltaic source emulator prototype: the custom made shield is
mounted on top of an STM32 Nucleo board by STMicroelectronics.

The microcontroller implements the PID controller that allows modulating the control signal
to achieve the required current regulation. It generates a 3.3 V PWM control signal and a TC4424A
(Microchip, Chandler, AZ, USA) driver produces a PWM signal between 0 V and 8 V, which is filtered by
a low-pass RC filter to extract the average value and used to control an IRF820 MOSFET (International
Rectifier Semiconductors) in linear mode. The average value of the PWM signal depends on the duty
cycle D = Ton/T of the signal, defined as the ratio between the pulse active time Ton and the period T of
the signal. The average value of the gate signal can, therefore, be adjusted by acting on the duty cycle
according to the relationship:

Vout = VHD, (10)

where VH is the maximum voltage of the PWM signal.
The PWM frequency of the control signal is 50 kHz and the RC filter is set with a resistance

R = 150 kΩ and a capacitance C = 10 µF for a cut-off frequency of 0.106 Hz to minimize the control
signal high-frequency components.

The microcontroller firmware configures and initializes the microcontroller peripherals needed
to interact with the PV source emulator hardware, and implements the photovoltaic emulator code.
The internal 12-bit ADC is used to measure the voltage on the load through a voltage divider, and the
current through a shunt resistor of 10 mΩ and a current sense amplifier INA283 (Texas Instruments,
Dallas, TX, USA) with a gain of 200 V/V; this configuration allows to measure up to 1.65 A of current
with very low power dissipation.
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After the initialization, the firmware cyclically: (1) reads the voltage on the load and current ILOSS
passing through the MOSFET, (2) calculates the target ILOAD,ref by using the PV model equations and
Equation (9), and (3) determines, by mean of a digital PID controller, the variation of duty cycle of the
PWM control signal required to produce the desired ILOSS,ref current.

The constant current generator is chosen such that the voltage and current ratings are higher than
the ISC and VOC of the panel to be emulated reported in Table 1. A Jolight KL824-04 power supply
that delivers 700 mA with a voltage range up to 30 V and its output has been connected to a variable
resistive load of a maximum of 110 Ω. The system is supplied by an AC-DC miniature switching
power supply (Bias Power BPSX 1-08-50) that converts 230 V AC main voltage to 8 V and 5 V DC
voltage to supply the boards.

The digital multimeter Agilent U1272A and the LeCroy WaveSurfer 343 oscilloscope were used to
monitor and acquire the signals.

4. Results

4.1. Simulation Results

In order to test the Simulink model of the photovoltaic module, simulations have been carried
out at different solar irradiances and operating temperatures. Figure 5 shows the I–V and P–V
characteristics generated by the model for different values of irradiance and temperature.
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Figure 5. I–V and P–V characteristics generated by the model: (a) I–V characteristic at 25 °C, AM1.5, 
at different irradiance values; (b) P–V characteristic at 25 °C, AM1.5, at different irradiance values; (c) 
I–V characteristic at different temperatures, G = 1000 W/m2, AM1.5; (d) P–V characteristic at different 
temperatures, G = 1000 W/m2, AM1.5. 

  

Figure 5. I–V and P–V characteristics generated by the model: (a) I–V characteristic at 25 ◦C, AM1.5,
at different irradiance values; (b) P–V characteristic at 25 ◦C, AM1.5, at different irradiance values;
(c) I–V characteristic at different temperatures, G = 1000 W/m2, AM1.5; (d) P–V characteristic at different
temperatures, G = 1000 W/m2, AM1.5.
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4.2. Experimental Results

The first test conducted aims to verify the ability of the photovoltaic emulator to follow the I–V
characteristic of the simulated photovoltaic module in the Simulink environment under STC conditions.
For the test, the photovoltaic source emulator has been programmed to VOC = 25 V and ISC = 0.7 A.
Figure 6 shows the comparison of the I–V characteristics generated by the Simulink model and that of
the proposed photovoltaic source emulator. It is possible to note that the emulator faithfully reproduces
the characteristic of the simulated photovoltaic module. The right terminal part of the I–V characteristic
cannot be reproduced by the emulator because the value of the power resistor used as a load in the
tests could not assume sufficiently high resistance values, being limited to 110 Ω.
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Figure 6. Comparison between the simulated I–V characteristic and the output I–V characteristic of the
photovoltaic source emulator under STC conditions (1000 W/m2, 25 ◦C).

The absolute deviation value between the simulated I–V characteristic and the one reproduced by
the photovoltaic emulator has been calculated, according to:

Abs(Error)% = Abs
(
IloadModel

− IloadPVEmulator

)
100, (11)

and the results are shown in Figure 7. The deviation for a large part of the characteristic is less than 1%
and overall is below 5%. The maximum error is reported very close to VOC where a slight variation of
the voltage causes a sudden and large current variation. The accuracy of the system demonstrates the
effectiveness of the proposed PV source emulator in reproducing the I–V characteristic.
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4.2.1. Results at Different Environmental Conditions

Other tests have been carried out to verify that the photovoltaic source emulator is able to follow
the characteristics of I–V and P–V at different values of the environmental parameters. From the graphs
shown in Figures 8 and 9, it can be seen that even when irradiation and temperature conditions vary,
the photovoltaic source emulator can fit the target I–V and P–V characteristics.
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4.2.2. Dynamic Performance

In previous paragraphs, the ability of the photovoltaic source emulator to reproduce the I–V
and P–V characteristics under very slowly varying load and fixed environmental conditions has been
shown. On the other hand, a photovoltaic emulator must also be characterized by a dynamic point of
view, evaluating the time necessary to track the sudden changes in load resistance.

To test the settling time of the control signal, the filter has been set to a cut-off frequency of 10.6 Hz
and the value of the load resistance was changed using a rheostat to increase the load resistance from
5 Ω to 30 Ω. The results are reported in Figure 10 and show a response time of less than 150 ms.
The system has also been tested as a power source with two different MPPTs, a commercial SolarEdge
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Power Optimizer and an experimental MPPT [36], showing a correct behavior within the limits of its
power range.
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5. Conclusions

In this paper, we presented the design, test, and results of the development of a low-cost
microcontroller-based PV source emulator, which allows testing the static and dynamic performance
of PV systems considering different PV module types and variable operating and environmental
conditions. The photovoltaic source emulator is based on a completely new technique, which consists
in subtracting an adequate amount of current from a fixed direct current source so as to reproduce
the desired I–V characteristic. Direct current sources can be found on the market at a very low price,
in comparison with systems based on expensive DC voltage sources. Moreover, the proposed method
has the advantage of reducing noise from high-frequency switching, reducing or eliminating ripple
and the demand of output filters, and it does not require expensive DC Power source, providing high
accuracy results. In fact, very good accuracy in the reproduction of PV module I–V characteristics
has been obtained and reported with an average and maximum error of, respectively ±1% and ±5%.
Experimental results on a hardware prototype of the proposed PV source emulator validate the concept,
showing a very good adherence to the simulation.

The fast dynamic response of the system (150 ms) allows the testing of very fast MPPTs algorithms,
thus overcoming the main limitations of state-of-art PV source emulator that is unable to respond
to the quick variation of the load. The system has been tested as a power source with two different
MPPTs showing a correct behavior within the limited power range.

A drawback of the proposed system is mostly the heat dissipation over the transistor used in
linear region, which in fact reduces the efficiency of the system. However, for the purpose of this work,
such drawback is considered acceptable, allowing the reduction of the Bill of Material of the board cost
to less than 20 dollars and providing, at the same time, an accurate yet simple method for emulating
photovoltaic sources.
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