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Abstract: It is commonly believed that having more white pixels in a color filter array (CFA) will help
the demosaicing performance for images collected in low lighting conditions. However, to the best of
our knowledge, a systematic study to demonstrate the above statement does not exist. We present a
comparative study to systematically and thoroughly evaluate the performance of demosaicing for
low lighting images using two CFAs: the standard Bayer pattern (aka CFA 1.0) and the Kodak CFA
2.0 (RGBW pattern with 50% white pixels). Using the clean Kodak dataset containing 12 images,
we first emulated low lighting images by injecting Poisson noise at two signal-to-noise (SNR) levels:
10 dBs and 20 dBs. We then created CFA 1.0 and CFA 2.0 images for the noisy images. After that,
we applied more than 15 conventional and deep learning based demosaicing algorithms to demosaic
the CFA patterns. Using both objectives with five performance metrics and subjective visualization,
we observe that having more white pixels indeed helps the demosaicing performance in low lighting
conditions. This thorough comparative study is our first contribution. With denoising, we observed
that the demosaicing performance of both CFAs has been improved by several dBs. This can be
considered as our second contribution. Moreover, we noticed that denoising before demosaicing
is more effective than denoising after demosaicing. Answering the question of where denoising
should be applied is our third contribution. We also noticed that denoising plays a slightly more
important role in 10 dBs signal-to-noise ratio (SNR) as compared to 20 dBs SNR. Some discussions on
the following phenomena are also included: (1) why CFA 2.0 performed better than CFA 1.0; (2) why
denoising was more effective before demosaicing than after demosaicing; and (3) why denoising
helped more at low SNRs than at high SNRs.

Keywords: debayering; demosaicing; color filter array (CFA); RGBW pattern; Bayer pattern; CFA 1.0;
CFA2.0; pansharpening; deep learning

1. Introduction

The standard Bayer pattern [1], also known as color filter array (CFA) 1.0, has been widely used in
many commercial cameras. As shown in Figure 1a, for each 2 × 2 block, there are two green pixels,
one red pixel, and one blue pixel. Even in the Mastcam onboard the Mars rover Curiosity [2–5],
the Bayer pattern has been used for the RGB images. The main reason for using the Bayer pattern
is to reduce cost. Some researchers also developed image tamper detection algorithms based on
demosaicing artifacts [6]. Because of the success of the Bayer pattern, a follow-up pattern, known as
red-green-blue-white (RGBW) or CFA 2.0, was introduced by researchers at Kodak [7,8]. For each 4 × 4
block in a RGBW pattern (Figure 1b), there are 50% white pixels, 25% green pixels, and 12.5% red and
blue pixels. In the past two decades, there are numerous other CFA patterns mentioned in [9–15].
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Figure 1. Two color filter array (CFA) patterns. (a) Standard Bayer pattern (CFA 1.0); (b) RGBW (red-
green-blue-white) (CFA 2.0). 

For images collected in normal illumination conditions, our earlier papers [16] concluded that 
CFA 1.0 is better than CFA 2.0. In the CFA research community, one common belief is that CFA 2.0 
has better performance for images taken in low lighting conditions. The argument is that, due to the 
presence of 50% white pixels in CFA 2.0, the signal-to-noise (SNR) of the whole image should be 
higher, hence the demosaicing performance of CFA 2.0 should be better for low lighting images.  

From the above discussions, one may have several natural questions regarding the various CFA 
patterns. First, has anyone carried out a comparative study to compare CFA 1.0 and CFA 2.0 for low 
lighting images? To the best of our knowledge, only one paper [17] briefly mentioned that CFA 2.0 
has some advantages in some images. This means that the claim that CFA 2.0 is more suitable for low 
lighting conditions may be based on intuition rather than on observations based on objective 
experiments. It will be good to have some objective measures to judge which CFA is better for low 
lighting conditions. Second, how can one perform objective experiments for low lighting conditions? 
If one collects images in low lighting conditions, then we may not have the ground truth images, 
which would be used to generate objective metrics. In [17], low lighting images were emulated by 
adding noise to clean images. It is well-known that the noise induced by low lighting conditions is 
called Poisson noise, which is magnitude-dependent. If one simply adds Gaussian noise to clean 
reference images, then the noise behavior will be very different from that of images collected in actual 
low lighting conditions. In [18], a procedure for adding Poisson noise is mentioned in detail, and we 
have adopted that procedure in this research. Third, after the demosaicing of low lighting images, 
the demosaiced images are still noisy. A common practice is to perform some denoising and contrast 
enhancement to improve the image quality. One immediate question regards where we should apply 
the denoising step. There are two places to introduce the denoising: after demosaicing and before 
demosaicing. Which one is better? Answering the above questions will have important implications 
in practice. First, practitioners or camera designers may design a camera in which a denoising 
algorithm is activated if lighting conditions are unfavorable. Second, camera manufacturers need to 
know where denoising should be performed if CFA 2.0 is chosen.  

In this paper, we attempt to answer the questions raised earlier. In Section 2, we will briefly 
review a number of demosaicing algorithms for CFA 1.0 and CFA 2.0. The algorithms range from 
conventional to deep learning. Two out of 16 methods for CFA 1.0 are deep learning algorithms. 
Although there are other promising learning methods in the literature [19–22], some serious 
customizations may be needed. In Section 3, we will summarize a comparative study that compares 
the performance of CFA 1.0 and CFA 2.0 using a benchmark data set (Kodak). Noisy images 
emulating two low lighting conditions were generated. The noisy images have 10 dBs and 20 dBs 
SNR. Three case studies were performed for each CFA: (1) no denoising; (2) denoising before 
demosaicing; (3) denoising after demosaicing. Our first major finding is that CFA 2.0 indeed helped 
the demosaicing performance for both 10 dBs and 20 dBs conditions. Our second finding is that the 
demosaicing performance of the CFAs performs even better if denoising is applied. Our third finding 
is that denoising before demosaicing is better than denoising after demosaicing. Our last finding is 
that denoising helps demosaicing more in the 10 dBs SNR case than the 20 dBs SNR case. Some 
discussions are included to provide some qualitative analysis for the above findings. Section 4 
concludes the paper with some further remarks and future research directions. 

Figure 1. Two color filter array (CFA) patterns. (a) Standard Bayer pattern (CFA 1.0); (b) RGBW
(red-green-blue-white) (CFA 2.0).

For images collected in normal illumination conditions, our earlier papers [16] concluded that
CFA 1.0 is better than CFA 2.0. In the CFA research community, one common belief is that CFA 2.0
has better performance for images taken in low lighting conditions. The argument is that, due to the
presence of 50% white pixels in CFA 2.0, the signal-to-noise (SNR) of the whole image should be higher,
hence the demosaicing performance of CFA 2.0 should be better for low lighting images.

From the above discussions, one may have several natural questions regarding the various CFA
patterns. First, has anyone carried out a comparative study to compare CFA 1.0 and CFA 2.0 for low
lighting images? To the best of our knowledge, only one paper [17] briefly mentioned that CFA 2.0
has some advantages in some images. This means that the claim that CFA 2.0 is more suitable for
low lighting conditions may be based on intuition rather than on observations based on objective
experiments. It will be good to have some objective measures to judge which CFA is better for low
lighting conditions. Second, how can one perform objective experiments for low lighting conditions?
If one collects images in low lighting conditions, then we may not have the ground truth images,
which would be used to generate objective metrics. In [17], low lighting images were emulated by
adding noise to clean images. It is well-known that the noise induced by low lighting conditions is
called Poisson noise, which is magnitude-dependent. If one simply adds Gaussian noise to clean
reference images, then the noise behavior will be very different from that of images collected in actual
low lighting conditions. In [18], a procedure for adding Poisson noise is mentioned in detail, and we
have adopted that procedure in this research. Third, after the demosaicing of low lighting images,
the demosaiced images are still noisy. A common practice is to perform some denoising and contrast
enhancement to improve the image quality. One immediate question regards where we should apply
the denoising step. There are two places to introduce the denoising: after demosaicing and before
demosaicing. Which one is better? Answering the above questions will have important implications in
practice. First, practitioners or camera designers may design a camera in which a denoising algorithm
is activated if lighting conditions are unfavorable. Second, camera manufacturers need to know where
denoising should be performed if CFA 2.0 is chosen.

In this paper, we attempt to answer the questions raised earlier. In Section 2, we will briefly review
a number of demosaicing algorithms for CFA 1.0 and CFA 2.0. The algorithms range from conventional
to deep learning. Two out of 16 methods for CFA 1.0 are deep learning algorithms. Although there are
other promising learning methods in the literature [19–22], some serious customizations may be needed.
In Section 3, we will summarize a comparative study that compares the performance of CFA 1.0 and
CFA 2.0 using a benchmark data set (Kodak). Noisy images emulating two low lighting conditions
were generated. The noisy images have 10 dBs and 20 dBs SNR. Three case studies were performed
for each CFA: (1) no denoising; (2) denoising before demosaicing; (3) denoising after demosaicing.
Our first major finding is that CFA 2.0 indeed helped the demosaicing performance for both 10 dBs
and 20 dBs conditions. Our second finding is that the demosaicing performance of the CFAs performs
even better if denoising is applied. Our third finding is that denoising before demosaicing is better
than denoising after demosaicing. Our last finding is that denoising helps demosaicing more in the
10 dBs SNR case than the 20 dBs SNR case. Some discussions are included to provide some qualitative
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analysis for the above findings. Section 4 concludes the paper with some further remarks and future
research directions.

2. Demosaicing Algorithms

In this section, we present some algorithms for demosaicing CFA 1.0 and CFA 2.0.

2.1. Algorithms for Demosaicing CFA 1.0

The following algorithms were evaluated in our experiments and they are briefly
summarized below:

• Linear Directional Interpolation and Nonlocal Adaptive Thresholding (LDI-NAT): This algorithm
is simple but the non-local search is time consuming [23];

• Malvar–He–Cutler (MHC): This is the algorithm in [24]. This is the default method for demosaicing
Mastcam images [2] used by NASA. The algorithm is very efficient and simple to implement;

• Directional Linear Minimum Mean Square-Error Estimation (DLMMSE): This is the Zhang and
Wu algorithm in [25]. This method was investigated in Bell et al.’s paper [2];

• Lu and Tan Interpolation (LT): This is a frequency domain approach [26];
• Adaptive Frequency Domain (AFD): This is a frequency domain approach from Dubois [27].

The algorithm can also be used for other mosaicing patterns;
• Alternate Projection (AP): This is the algorithm from Gunturk et al. [28];
• Primary-Consistent Soft-Decision (PCSD): This is Wu and Zhang’s algorithm from [29];
• Alpha Trimmed Mean Filtering (ATMF): This method is from [30,31]. At each pixel location,

we demosaic pixels from seven methods; the largest and smallest pixels are removed and the
mean of the remaining pixels are used;

• Demosaicnet (Demonet): In [32], a feed-forward network architecture was proposed for
demosaicing. There are D + 1 convolutional layers and each layer has W outputs and uses
K × K size kernels. An initial model was trained using 1.3 million images from Imagenet and
1 million images from MirFlickr. Additionally, some challenging images were searched to further
enhance the training model. Details can be found in [32];

• Fusion using three best (F3) [30]: The mean of pixels from demosaiced images of the three best
individual methods were used;

• Bilinear: Bilinear interpolation is the simplest algorithm that uses the nearest neighbors
for interpolation;

• Sequential Energy Minimization (SEM) [33]: A deep learning approach based on sequential energy
minimization was proposed in [33]. The performance was reasonable, except that the computation
takes a long time due to sequential optimization;

• Exploitation of Color Correlation (ECC) [34]: The authors of [34] proposed a scheme that
exploits the correlation between different color channels much more effectively than some of the
existing algorithm;

• Minimized-Laplacian Residual Interpolation (MLRI) [35]: This is a residual interpolation (RI)-based
algorithm based on a minimized-Laplacian version;

• Adaptive Residual Interpolation (ARI) [36]: ARI adaptively combines RI and MLRI at each pixel,
and adaptively selects a suitable iteration number for each pixel, instead of using a common
iteration number for all of the pixels;

• Directional Difference Regression (DDR) [37]: DDR obtains the regression models using directional
color differences of the training images. Once models are learned, they will be used for demosaicing.

It should be noted that F3 and ATMF are both pixel-level fusion methods. Details can be found
in [30].
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2.2. Algorithms for Demosaicing CFA 2.0

The baseline approach refers to a simple upsampling of the reduced resolution color image shown
in Figure 2. The standard approach for CFA 2.0 is shown in Figure 2, which illustrates how to combine
the interpolated luminance image with the reduced resolution color image to generate a full resolution
color image.
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Figure 3. A pansharpening approach to demosaicing CFA 2.0 images [16]. 

Recently, we further improved the pansharpening approach by integrating it with deep learning. 
This approach was summarized in a recent paper [52]. The key idea is to apply deep learning to 
improve two steps. The first is the demosaicing of the reduced resolution CFA (see Figure 4) via deep 
learning. The second is the improvement of the interpolation of the pan band via deep learning. The 

Figure 2. Standard approach to demosaicing CFA 2.0 images. Image from [38].

In the paper [16] written by us, we proposed a pansharpening approach to demosaicing CFA 2.0.
This approach is illustrated in Figure 3. The missing pixels in the panchromatic band are interpolated.
At the same time, the reduced resolution CFA is demosaiced. We then apply pansharpening to generate
the full resolution color image. There are many pansharpening algorithms that can be used. Principal
Component Analysis (PCA) [39], Smoothing Filter-based Intensity Modulation (SFIM) [40], Modulation
Transfer Function Generalized Laplacian Pyramid (GLP) [41], MTF-GLP with High Pass Modulation
(HPM) [42], Gram Schmidt (GS) [43], GS Adaptive (GSA) [44], Guided Filter PCA (GFPCA) [45],
PRACS [46] and hybrid color mapping (HCM) [47–51] have been used in our experiments. The list is a
representative, if not exhaustive, set of competitive pansharpening algorithms.
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Recently, we further improved the pansharpening approach by integrating it with deep learning.
This approach was summarized in a recent paper [52]. The key idea is to apply deep learning to improve
two steps. The first is the demosaicing of the reduced resolution CFA (see Figure 4) via deep learning.
The second is the improvement of the interpolation of the pan band via deep learning. The particular
deep learning algorithm is Demonet mentioned earlier. We have seen good performance improvement.
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Figure 4. A combination of deep learning and pansharpening approach to demosaicing CFA 2.0.

In addition to the above mentioned algorithms for CFA 2.0, we also applied least-squares
luma-chroma demultiplexing (LSLCD) over [53] in our experiments.

We also have two fusion based algorithms known as F3 and ATMF, which were used in our
earlier studies [16,30,52]. F3 fuses the three best performing algorithms and ATMF fuses seven
high-performing algorithms.

It should be noted that algorithms for CFA 2.0 are much fewer than those of CFA 1.0. There may
be promising machine learning algorithms [19–22] that have the potential to be applied to demosaicing
of CFA 2.0.

3. Comparative Studies

In this section, we will answer the questions raised in Section 1. One of them is whether CFA 2.0
is indeed better than CFA 1.0 for low lighting conditions. The second is how to emulate low lighting
images. The third is where denoising should be introduced. In short, we will answer the following
question: which one of the two CFAs is the best method for images collected in low lighting conditions?

Since there are many possible algorithms for each CFA, our strategy is to first perform a comparative
study for all the algorithms for each CFA using the same data set. We then compare the best methods
from all the CFA studies. That is, we compare the best against the best, to select the best CFA.

3.1. Low Lighting Images and Denoising

We downloaded a benchmark data set (Kodak) from a website (http://r0k.us/graphics/kodak/) and
selected 12 images, which are shown in Figure 5. It should be noted that this dataset is well-known and
has been used by many authors in the demosaicing community such as [23,25–29]. These clean images
will be used as reference images for objective performance metrics generation. Moreover, they will be
used to generate noisy images that emulate low lighting conditions.

http://r0k.us/graphics/kodak/
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each image was rescaled between 1 and some number less than 255. Poisson noise was applied to 
each band. The rescaling was adjusted until the PSNR between the ground truth and the noisy image 
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Figure 5. Twelve clean images from the Kodak dataset.

Emulating images in low lighting conditions is non-trivial. This is because noise introduced in
low lighting images is known as Poisson noise. Unlike Gaussian noise, Poisson noise is amplitude
dependent. That is, the amount of noise applied depends on the magnitude range of the image.
To create a consistent level of noise close to our SNR levels of 10 dBs and 20 dBs, we created a loop
where each image was rescaled between 1 and some number less than 255. Poisson noise was applied
to each band. The rescaling was adjusted until the PSNR between the ground truth and the noisy
image was as close to the desired SNR level as possible. This technique is described in [18]. The noisy
images at 10 dBs and 20 dBs are shown in Figures 6 and 7, respectively.
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Figure 7. Twelve noisy images at 20 dB (Poisson noise). 

Figure 6. Twelve noisy images at 10 dB (Poisson noise).

It should be noted that simply adding Gaussian noise to the clean image cannot emulate low
lighting images. For example, we added Gaussian noise to the clean images to create images at
10 dBs SNR. The noisy images are shown in Figure 8. It can be seen the image characteristics are totally
different as compared to the Poisson noisy images shown in Figure 6.
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Figure 7. Twelve noisy images at 20 dB (Poisson noise). Figure 7. Twelve noisy images at 20 dB (Poisson noise).

We adopted the well-known denoising algorithm known as BM3D (Block Matching 3D) [54] in
our denoising experiments.
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The image characteristics are very different from those of Poisson noise.

3.2. Performance Metrics

In this paper, we have used five performance metrics to compare the different methods and
CFA patterns.

• Peak Signal-to-Noise Ratio (PSNR) [55]

PNSR is related to Root Mean Squared Error (RMSE). The RMSE of two vectorized images S
(ground truth) and Ŝ (prediction) is defined as

RMSE(S, Ŝ) =

√√√√
1
Z

Z∑
j=1

(
s j − ŝ j

)2
(1)

where Z is the number of pixels in each image. The ideal value of RMSE is 0 if the prediction is perfect.
If the image pixels are expressed in doubles with values between 0 and 1, then

PSNR = 20 log(1/RMSE (S, Ŝ)) (2)

A higher PSNR means better quality. A combined PSNR is the mean of the PSNRs of the R, G,
B bands.



Electronics 2019, 8, 1444 10 of 58

• Structural SIMilarity (SSIM)

This metric was defined in [56] to reflect the similarity between two images. The SSIM index is
computed on various blocks of an image. The measure between two blocks x and y from two images
can be defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
x + c1)(σ2

x + σ
2
x + c2)

(3)

where µx and µy are the means of blocks x and y, respectively; σ2
x and σ2

y are the variances of blocks x
and y, respectively; σxy is the covariance of blocks x and y; and c1 c2 are small values (0.01, for instance)
to avoid instability. The ideal value of SSIM is 1 for perfect prediction.

• Human Visual System (HVS) metric

The HVS metric in dB is defined as

HVS = 20log(255/MSEH) (4)

where

MSEH = K
I−7∑
i=1

J−7∑
j=1

8∑
m=1

8∑
n=1

((X[m, n]i j −X[m, n]ei j)Tc[m, n])2 (5)

I and J denote image size, K = 1/[(I− 7)(J− 7)64], Xi j are the discrete cosine transform (DCT) [57]
coefficients of 8 × 8 image block for which the coordinates of the its upper left corner are equal to i and
j, Xe

i j are the DCT coefficients of the corresponding block in the original image, and Tc is the matrix of
correcting factors [58].

• HVSm (HVS with masking)

This metric is similar to HVS except that visual masking effects are taken into account. The inclusion
of a block containing contrast masking is the only difference between HVS and HVSm. Details can be
found in [59].

On the website of the authors of [59], there is a table containing the correlation of different metrics
with human perception. For completeness, we include that table below (Table 1). It can be seen that
HVSm and HVS have much higher correlation with human perception than PSNR and SSIM in terms
of Spearman and Kendall correlation coefficients.

Table 1. Correlation of different metrics to human’s visual perception.

Measure Reference Spearman Correlation Kendall Correlation

HVS-m Ponomarenko, N.; et al. [59] 0.984 0.948
HVS Egiazarian, K.; et al. [58] 0.895 0.712
NQM Damera-Venkata, N.; et al. [60] 0.857 0.673

DCTune Watson, A. B.; et al. [61] 0.829 0.712
UQI Wang, Z.; Bovik, A. C. [62] 0.550 0.438

PSNR Peak Signal to Noise Ratio [55] 0.537 0.359
SSIM Structural similarity [56] 0.406 0.358
VIF Sheikh, H. R.; Bovik, A. C. [63] 0.377 0.255
PQS Miyahara, M.; Kotani, K.; Algazi, V. R. [64] 0.302 0.242

In addition to PSNR, SSIM, HVS, and HVSm, we also used CIELAB [65] for assessing
demosaicing performance.

Before we summarize the detailed experimental results, we would like to use a diagram (Figure 9)
to highlight the various studies and their corresponding sections.
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3.3. CFA 1.0 Results

In this section, we summarize the CFA 1.0 studies for two SNRs: 10 dBs and 20 dBs. Within
each SNR, we have three sub-cases. Both objective and subjective evaluations have been used in
our studies.

3.3.1. 10 dBs SNR Case

We have three case studies. The first case is about demosaicing the noisy images without any
denoising. The second case deals with the scenario where denoising is performed after demosaicing.
The third case is to investigate the performance of denoising before demosaicing.

• Case 1: No Denoising

As mentioned earlier, we have 16 methods for demosaicing CFA 1.0, which were mentioned in
Section 2.1. The F3 fusion method fuses the results of Demonet, Bilinear, and SEM, which were the
best performing demosaicing methods. The ATMF fusion method uses the seven highest performing
methods, which are Demonet, Bilinear, SEM, PCSD, DLMMSE, LDI, and LT. Table A1 in Appendix A
summarizes the PSNR scores, which are the average of the three individual PSNR scores for R, G, and
B bands, the CIELAB scores, SSIM, HVS, and HVSm metrics. One can see that all methods achieved
PSNR values of around 16 dBs. All the SSIM values are low and the CIELAB scores are high (poor).
The HVS and HVSm metrics are also not high.

Figure 10 shows the averaged PSNR, CIELAB, SSIM, HVS, and HVSm scores of all the 16 methods.
There are some minor variations in the metrics.

Figure 11 shows the demosaiced results of Image 1 and Image 8. The demosaiced images have
color distortion and noise.

In short, without denoising, all the demosaicing algorithms performed not so well at 10 dBs.

• Case 2: Denoising after Demosaicing

Here, our focus is to investigate the demosaicing performance with help from the BM3D denoising
algorithm, which is applied after demosaicing is completed.

The F3 fusion method fuses the results of Demonet, Bilinear, and SEM, which were the best
performing demosaicing methods in this case. The ATMF fusion method uses the seven highest
performing methods, which are Demonet, Bilinear, SEM, DLMMSE, LDI, AP, and LT. Table A2 in
Appendix A summarizes the PSNR, CIELAB, SSIM, HVS, and HVSm metrics. One can see that
all methods achieved PSNR values of around 20 dBs, which are 4 dBs higher than those values in
Table A1 in Appendix A. All the SSIM, CIELAB, HVS, and HVSm values have been improved over the
no-denoising case.

Figure 12 shows the averaged PSNR, CIELAB, SSIM, HVS, and HVSm scores of all the 16 methods.
All the scores have improved quite a lot, as compared to those in Figure 10.
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Figure 13 shows the demosaiced results of Image 1 and Image 8. The demosaiced images look
much better than those images in Figure 11. The artifacts are less noticeable after denoising.
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• Case 3: Denoising before Demosaicing

Here, denoising was performed before demosaicing started. In other words, BM3D was applied
to the CFA patterns before feeding them into the demosaicing algorithms. Intuitively, this makes more
sense in practical applications because denoising should be more effective if one suppresses noise at
the early stages rather than near the end of the demosaicing process.

The F3 fusion method fuses the results of Demonet, AP, and LT, which were the best performing
demosaicing methods in this case. The ATMF fusion method uses the seven highest performing
methods, which are Demonet, AP, LT, DLMMSE, DDR, LDI, and ECC. Table A3 in Appendix A
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summarizes the PSNR, CIELAB, SSIM, HVS, and HVSm metrics. One can see that all methods achieved
metrics slightly better than those in Table A2 in Appendix A.

Figure 14 shows the averaged PSNR, CIELAB, SSIM, HVS, and HVSm scores of all the 16 methods.
All the scores have improved slightly as compared to those in Figure 12.
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Figure 15 shows the demosaiced results of Image 1 and Image 8. The demosaiced images look
much better than those images in Figure 11. However, it is hard to visually judge whether images in
Figure 15 are of a better quality than those in Figure 13.
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From the above studies, one can easily make two observations. First, denoising plays a very
important role in enhancing the overall demosaicing performance in low lighting conditions. In terms
of PSNR, the improvement exceeds 10 dBs. Second, denoising before demosaicing starts is more
effective than after demosaicing. We can observe one to two dBs of performance gain in PSNR.

3.3.2. SNR at 20 dBs

One may argue that the noisy low lighting images at 10 dBs may be too extreme because people
seldom take pictures without flash lights in such dark conditions. Now, we investigate the performance
of CFA 1.0 in more realistic low lighting conditions of 20 dBs. Similar to Section 3.3.1, we also have
three sub-cases.

• Case 1: No Denoising

We have 16 methods for demosaicing CFA 1.0. The F3 fusion method fuses the results of Demonet,
ARI, and LDI, which are the best performing demosaicing methods. The ATMF fusion method uses
the seven highest performing methods, which are Demonet, ARI, LDI, Bilinear, LT, MLRI, and SEM.
Table A4 in Appendix B summarizes the PSNR scores, which is the average of the three individual
PSNR scores for R, G, and B bands, the CIELAB scores, SSIM, HVS, and HVSm metrics. It should be
noted that some methods (SFIM and HPM) did not perform well. Other methods achieved PSNR
values of around 22 dBs.

Figure 16 shows the averaged PSNR, CIELAB, SSIM, HVS, and HVSm scores of all the 16 methods.
There are some big variations in the metrics.
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• Case 2: Denoising after Demosaicing 

Here, our focus is to investigate the demosaicing performance with help from the BM3D 
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Figure 17 shows the demosaiced results of Image 1 and Image 8. The demosaiced images do not
look good because of color distortion, noise, and contrast.

In short, without denoising, all the demosaicing algorithms did not perform well at 20 dBs. That is,
the demosaiced images have the same quality as the input CFAs.

• Case 2: Denoising after Demosaicing
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Here, our focus is to investigate the demosaicing performance with help from the BM3D denoising
algorithm, which is applied after demosaicing is completed.
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Figure 17. Visual comparison of three high performing demosaicing algorithms for CFA 1.0 at 20 dBs
SNR (Poisson noise). No denoising.

The F3 fusion method fuses the results of Demonet, bilinear, and ARI, which were the best
performing demosaicing methods in this case. The ATMF fusion method uses the seven highest
performing methods, which are Demonet, bilinear, ARI, LDI, AP, LT, and MLRI. Table A5 in Appendix B
summarizes the PSNR, CIELAB, SSIM, HVS, and HVSm metrics. One can see that all methods
achieved PSNR values of around 22 dBs, which are 2 dBs higher than those values in the Table A4 in
Appendix B. All the SSIM, CIELAB, HVS, and HVSm values have all been slightly improved over the
no denoising case.

Figure 18 shows the averaged PSNR, CIELAB, SSIM, HVS, and HVSm scores of all the 16 methods.
All the scores have improved slightly as compared to those in Figure 16.
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• Case 3: Denoising before Demosaicing 

Here, denoising was performed before demosaicing started. That is, BM3D was applied to the 
CFA patterns before feeding them into the demosaicing algorithms.  

The F3 fusion method fuses the results of Demonet, DLMMSE, and AP, which were the best 
performing demosaicing methods in this case. The ATMF fusion method uses the seven highest 
performing methods, which are Demonet, DLMMSE, AP, LT, ARI, LDI, MLRI, and ECC. Table A6 in 
Appendix B summarizes the PSNR, CIELAB, SSIM, HVS, and HVSm metrics. One can see that all 
methods achieved metrics slightly better than those in Table A5 in Appendix B. 
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using CFA 1.0 pattern with denoising after demosaicing. (a) PNSR; (b) CIELAB; (c) SSIM; (d) HVS
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Figure 19 shows the demosaiced results of Image 1 and Image 8. The demosaiced images look
slightly better than the images in Figure 17. The artifacts are less noticeable after denoising.
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Figure 19. Visual comparison of three demosaicing results for CFA 1.0 at 20 dBs SNR (Poisson noise).
Denoising is performed after demosaicing.

• Case 3: Denoising before Demosaicing

Here, denoising was performed before demosaicing started. That is, BM3D was applied to the
CFA patterns before feeding them into the demosaicing algorithms.

The F3 fusion method fuses the results of Demonet, DLMMSE, and AP, which were the best
performing demosaicing methods in this case. The ATMF fusion method uses the seven highest
performing methods, which are Demonet, DLMMSE, AP, LT, ARI, LDI, MLRI, and ECC. Table A6 in
Appendix B summarizes the PSNR, CIELAB, SSIM, HVS, and HVSm metrics. One can see that all
methods achieved metrics slightly better than those in Table A5 in Appendix B.

Figure 20 shows the averaged PSNR, CIELAB, SSIM, HVS, and HVSm scores of all the 16 methods.
All the scores have improved slightly as compared to those in Figure 18.

Figure 21 shows the demosaiced results of Image 1 and Image 8. The demosaiced images look
much better than those images in Figure 17. However, it is hard to visually judge whether the images
in Figure 15 are of better quality than those in Figure 19.

From the above studies, one can easily obtain two observations. First, denoising plays an important
role in enhancing the overall demosaicing performance in low lighting conditions. In terms of PSNR,
the improvement exceeds 2 dBs. Second, denoising before demosaicing starts is more effective than
that of after demosaicing. We can observe one to two dBs of additional performance gain in PSNR if
denoising is done before demosaicing.
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Figure 21. Visual comparison of three demosaicing results for CFA 1.0 at 20 dBs SNR (Poisson noise).
Denoising is performed after CFA is generated and before demosaicing starts.

3.4. CFA 2.0 Results

The objective of this section is to investigate the performance of CFA 2.0 in low lighting conditions.
We have two SNR cases: 10 dBs and 20 dBs. Within each SNR case, we have three sub-cases, depending
on whether denoising is applied or not.
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3.4.1. SNR at 10 dBs

Here, we have three cases. The first case is about demosaicing the noisy images without any
denoising. The second case deals with the scenario where the denoising is performed after demosaicing.
The third case is to investigate the performance of denoising before demosaicing.

• Case 1: No Denoising

We have compared 15 methods for demosaicing CFA 2.0 pattern. Those methods are summarized
in Section 2.2. The baseline refers to the bicubic interpolation of the reduced resolution color image
shown in Figure 2. The F3 fusion method uses the three best performing methods, which are the
Baseline, Standard, and GFPCA. ATMF uses the 7 best performing methods: Baseline, Standard,
GFPCA, GSA, PCA, GS, and PRACS. From Table A7 in Appendix C, it can be seen that the averaged
PSNR score of F3 yielded the best score, which is 21 dBs.

Figure 22 shows the average performance metrics of PSNR, CIELAB, SSIM, HVS, and HVSm.
All of them are reasonable. Figure 23 shows the demosaiced images of three methods. One can still see
some noticeable artifacts.
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Figure 23. Visual comparison of three high performing demosaicing algorithms for CFA 2.0 at 10 dBs
SNR (Poisson noise). No denoising.

• Case 2: Denoising after Demosaicing

Here, denoising was applied after demosaicing. The F3 fusion method uses the three best
performing methods, which were the Demonet+GFPCA, GFPCA, and LSLCD. ATMF uses the seven
best performing methods: Demonet+GFPCA, GFPCA, LSLCD, Standard, PCA, GS, and PRACS. From
Table A8 in Appendix C, it can be seen that the averaged PSNR score of LSLCD yielded the best score,
which is more than 24 dBs. This is better than those numbers in Table A7 in Appendix C. The other
metrics in Table A8 of Appendix C are all improved as well.

Figure 24 shows the average performance metrics of PSNR, CIELAB, SSIM, HVS, and HVSm.
All of them look much better than those in Figure 22.
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Figure 25 shows the demosaiced images of three methods. It can be seen that the artifacts in
Figure 23 have been reduced quite a lot. Visually speaking, F3 has minimal distortion for the fence
area of Image 8.

• Case 3: Denoising before Demosaicing

Here, denoising was applied before demosaicing. That is, the BM3D algorithm was applied to
the CFA patterns. Intuitively, denoising before demosaicing should perform better that that of after
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demosaicing. The F3 fusion method uses the three best performing methods, which were the Standard,
Demonet + GFPCA, GSA. ATMF uses the seven best performing methods: Standard, Demonet +

GFPCA, GSA, HCM, GLP, GS, and PRACS. From Table A9 in Appendix C, it can be seen that the
averaged PSNR score of Demonet + GFPCA yielded the best score, which is more than 26 dBs. This is
at least 2 dBs better than those numbers in Table A8 in Appendix C.Electronics 2019, 8, 1444 20 of 56 
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Figure 25. Visual comparison of three demosaicing results for CFA 2.0 at 10 dBs SNR (Poisson noise).
Denoising is performed after demosaicing.

Figure 26 shows the average performance metrics of PSNR, CIELAB, SSIM, HVS, and HVSm.
All of them look much better than those in Figure 22 and slightly better than those in Figure 24.
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Figure 26. Averaged performance metrics for all the low light images at 10 dBs SNR (Poisson noise)
using CFA 2.0 pattern. Denoising is after CFA is generated and before demosaicing starts: (a) PNSR;
(b) CIELAB; (c) SSIM; (d) HVS and HVSm.

Figure 27 shows the demosaiced images of three methods, not necessarily the best performing
methods. It is difficult to judge whether or not the demosaiced images in Figure 27 is better than that
of Figure 25.
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Figure 27. Visual comparison of three demosaicing results for CFA 2.0 at 10 dBs SNR (Poisson noise).
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3.4.2. SNR at 20 dBs

There are three case studies here.

• Case 1: No Denoising

There are 15 methods. The F3 fusion method uses the three best performing methods, which
were the Baseline, Standard, and GFPCA. ATMF uses the seven best performing methods: Baseline,
Standard, GFPCA, GSA, GS, PRACS, and LSLCD. From Table A10 in Appendix A, it can be seen that
the averaged PSNR score of F3 yielded the best score, which is slightly above 20 dBs. The other metrics
are mediocre.

Figure 28 shows the average performance metrics of PSNR, CIELAB, SSIM, HVS, and HVSm.
All of them can be considered reasonable as demosaicing methods do not have denoising capability in
general. Figure 29 shows the demosaiced images of three methods. One can see some artifacts.
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All of them look better than those in Figure 28.  
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Figure 29 have been reduced. However, some artifacts are still very noticeable, especially the color 
distortions. This means there is still room for further improvement in the future. 
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Figure 29. Visual comparison of three high performing demosaicing algorithms for CFA 2.0 at 20 dBs
SNR (Poisson noise). No denoising.

• Case 2: Denoising after Demosaicing

Here, denoising was applied after demosaicing. The F3 fusion method uses the three best
performing methods, which were the Demonet + GFPCA, GFPCA, and PRACS. ATMF uses the seven
best performing methods: Demonet + GFPCA, GFPCA, PRACS, GSA, PCA, GS, and LSLCD. From
Table A11 in Appendix A, it can be seen that the averaged PSNR score of LSLCD yielded the best
score, which is 24.391 dBs. This is better than most of the PSNR numbers in Table A10 in Appendix A,
but only slightly better than the LSLCD method (24.05 dBs) in Table A8 of Appendix C (10 dBs SNR
case). This means denoising has more impact for low SNR cases than high SNR cases.

Figure 30 shows the average performance metrics of PSNR, CIELAB, SSIM, HVS, and HVSm.
All of them look better than those in Figure 28.

Figure 31 shows the demosaiced images of three methods. It can be seen that the artifacts in
Figure 29 have been reduced. However, some artifacts are still very noticeable, especially the color
distortions. This means there is still room for further improvement in the future.
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Figure 31. Visual comparison of three demosaicing results for CFA 2.0 at 20 dBs SNR (Poisson noise). 
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• Case 3: Denoising before Demosaicing 

Here, denoising was applied before demosaicing. That is, the BM3D algorithm was applied to 
the CFA patterns. The F3 fusion method uses the three best performing methods, which were the 
Standard, GSA, and HCM. ATMF uses the seven best performing methods: Standard, GSA, HCM, 
GLP, GS, and HPM. From Table 12 in Appendix D, it can be seen that the averaged PSNR score of 
GSA yielded the best score, which is 28.172 dBs. This is 4 dBs better than those numbers in Table A10 
in Appendix D, and 2 dBs better than the best method in Table A11 in Appendix D. 
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• Case 3: Denoising before Demosaicing

Here, denoising was applied before demosaicing. That is, the BM3D algorithm was applied to
the CFA patterns. The F3 fusion method uses the three best performing methods, which were the
Standard, GSA, and HCM. ATMF uses the seven best performing methods: Standard, GSA, HCM,
GLP, GS, and HPM. From Table A12 in Appendix A, it can be seen that the averaged PSNR score of
GSA yielded the best score, which is 28.172 dBs. This is 4 dBs better than those numbers in Table A10
in Appendix A, and 2 dBs better than the best method in Table A11 in Appendix A.
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Figure 32 shows the average performance metrics of PSNR, CIELAB, SSIM, HVS, and HVSm.
All of them look better than those in Figure 28 and slightly better than those in Figure 30.
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Now, we would like to compare the two CFA patterns. Since different algorithms were used in 
each CFA, we think that an appropriate way to compare the different CFAs is to compare the best 

Figure 32. Averaged performance metrics for all the low light images at 20 dBs SNR (Poisson noise)
using CFA 2.0 pattern. Denoising is after CFA is generated and before demosaicing starts: (a) PNSR;
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Figure 33 shows the demosaiced images of three methods, not necessarily the best performing
methods. It is difficult to judge whether or not the demosaiced images in Figure 33 are better than
those of Figure 31 because some color distortions are still present.
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3.5. Best Against the Best Comparison Among the Two CFA Patterns

Now, we would like to compare the two CFA patterns. Since different algorithms were used in
each CFA, we think that an appropriate way to compare the different CFAs is to compare the best
against the best. That is, for each CFA, we select the best performing method and compare its results
with the best performing methods in the other CFA.
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We have two case studies below: 10 dB SNR and 20 dB SNR. For each SNR, we have three
sub-cases: no denoising, denoising after demosaicing, and denoising before demosaicing.

3.5.1. 10 dBs SNR

Table 2 and Figure 34 summarize the average performance metrics for the 10 dBs SNR case
in our earlier studies in Sections 3.2 and 3.3 In Table 2, the name of the best performing algorithm
is also included in each cell alongside the metrics. From Table 2 and Figure 34, we have the
following observations:

• In the no denoising case, CFA 2.0 is indeed better than CFA 1.0. For instance, the PSNR gain in
Figure 34a is more than 4 dBs, which is significant;

• Denoising definitely improves the demosaicing performance, regardless of where the denoising
is done. For CFA 1.0, the improvement over no denoising is about 4 dBs; for CFA 2.0,
the improvement is more than 3 dBs in terms of PSNR. For other metrics in Figure 34b–e,
we also observe big improvements;

• Denoising before demosaicing has a better performance than that of denoising after demosaicing.
For CFA 1.0, the improvement is 1.1 dBs and, for CFA 2.0, the improvement is 2.1 dBs in PSNR.
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Table 2. Comparison of CFA patterns for the various demosaicing cases at 10 dBs SNR. Bold numbers
indicate the high performance CFA pattern.

Metrics CFA No Denoising/Best
Algorithm

Denoising After
Demosaicing/Best Algorithm

Denoising Before
Demosaicing/Best Algorithm

PSNR (dB) 1.0 16.889/F3 20.826/F3 21.978/F3
2.0 21.249/F3 24.050/LSLCD 26.141/Demonet+GFPCA

CIELAB 1.0 10.149/GFPCA 6.664/F3 6.545/Demonet
2.0 6.354/GFPCA 5.516/F3 4.310/Demonet+GFPCA

SSIM 1.0 0.455/F3 0.476/ATMF 0.463/ATMF
2.0 0.451/ATMF 0.459/LSLCD 0.467/Standard

HVS (dB) 1.0 12.285/SEM 16.229/F3 16.833/ARI
2.0 16.531/F3 19.056/LSLCD 22.053/Demonet+GFPCA

HVSm (dB) 1.0 12.403/SEM 16.494/F3 17.116/ARI
2.0 16.868/F3 19.568/LSLCD 23.121/Demonet+GFPCA

3.5.2. 20 dBs SNR

Table 3 and Figure 35 summarize the best against the best results for different CFAs under different
denoising/demosaicing scenarios. We have the following observations:

• In the no-denoising case, CFA 2.0 is 2.8 dBs better than CFA 1.0 in terms of PSNR (Figure 35a).
Other metrics in Figure 35b–e also improved quite significantly;

• Denoising definitely helps the demosaicing performance, regardless of where the denoising is
done. For CFA 1.0, the improvement is over 2 to 3.5 dBs; for CFA 2.0, the improvement is more than
1.1 to 4.8 dBs in terms of PSNR. There are also big improvements in other metrics (Figure 35b–e);

• Denoising before demosaicing has a better performance than that of denoising after demosaicing.
For CFA 1.0, the improvement is 1.2 dBs and, for CFA 2.0, the improvement is close to 4 dBs
in PSNR;

• Denoising helps the demosaicing performance more when the SNR is low. More than 4 dBs of
gain in PSNR were observed after denoising in the 10 dBs SNR case;

Table 3. Comparison of CFA patterns for the various demosaicing cases at 20 dBs SNR. Bold numbers
indicate the high performance CFA pattern.

Metrics CFA No Denoising/Best
Algorithm

Denoising After
Demosaicing/Best Algorithm

Denoising Before
Demosaicing/Best Algorithm

PSNR (dB) 1.0 20.488/ATMF 22.821/F3 24.059/Bilinear
2.0 23.290/F3 24.391/GSA 28.172/LSLCD

CIELAB 1.0 6.713/Demonet 5.256/Demonet 4.935/Demonet
2.0 5.121/GFPCA 5.268/LSLCD 3.584/F3

SSIM 1.0 0.500/SEM 0.548/F3 0.574/F3
2.0 0.545/Demonet+GFPCA 0.535/LSLCD 0.539/GSA

HVS (dB) 1.0 16.130/Demonet 18.204/Bilinear 19.142/Demonet
2.0 18.646/F3 19.415/LSLCD 24.382/ATMF

HVSm (dB) 1.0 16.365/Demonet 18.734/Bilinear 19.444/ARI
2.0 19.112/F3 19.881/LSLCD 25.516/ATMF
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deep learning approaches, some rectified linear units (ReLu) are inherently nonlinear. This 
intuition has been found to be valid in our past research on active noise suppression in noisy 
conditions, as well. For a NASA project on noise suppression in Space Station [66,67], we noticed 
that noise was suppressed more effectively near the source than farther away from the source, 
as there are more reflections in the far-field due to multipath propagations; 

• Why CFA 2.0 is better than CFA 1.0 in low lighting conditions:  
We believe a concrete theory is needed to explain why CFA 2.0 has better performance than CFA 
1.0 and this could be a good future research topic. The inventors of CFA 2.0 also did not provide 
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3.5.3. Discussions

Here, we provide some qualitative analyses/explanations for some of those important findings in
Sections 3.5.1 and 3.5.2:

• Why denoising before demosaicing is better that that of after demosaicing:

One intuitive explanation is that noise can be suppressed more effectively earlier rather than later.
Once noise has propagated to subsequent steps in the processing pipeline, it is harder to suppress
it because some steps in the demosaicing process may be nonlinear. For example, in deep learning
approaches, some rectified linear units (ReLu) are inherently nonlinear. This intuition has been
found to be valid in our past research on active noise suppression in noisy conditions, as well.
For a NASA project on noise suppression in Space Station [66,67], we noticed that noise was
suppressed more effectively near the source than farther away from the source, as there are more
reflections in the far-field due to multipath propagations;

• Why CFA 2.0 is better than CFA 1.0 in low lighting conditions:
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We believe a concrete theory is needed to explain why CFA 2.0 has better performance than
CFA 1.0 and this could be a good future research topic. The inventors of CFA 2.0 also did not
provide a theory behind this. Intuitively, we agree with the inventors of CFA 2.0 that this must
have something to do with the amount of white pixels in CFA 2.0. According to the inventors of
CFA 2.0, more white pixels improve the sensitivity of the imager. We offer another analysis below.

We use the bird image at 10 dBs condition (Image 1 in Figure 6 of our paper) as a case study.
There is no denoising in the demosaicing process. Figure 36 below contains two histograms of the
residual images (residual = reference − demosaiced) for CFAs 1.0 and 2.0. From this figure, it can
be seen that the histogram of CFA 2.0 is centered near zero, whereas the histogram of CFA 1.0
is biased towards the right, meaning that CFA 2.0 is more accurate (close to the ground truth),
because of its better light sensitivity, than CFA 1.0;

• Why denoising helps slightly more for 10 dBs case than the 20 dBs case:

From Table 2 and 3, we noticed that the gap between denoising improvement in 10 dBs and 20 dBs
is slim. However, we still noticed that denoising helps the demosaicing performance slightly more
in the 10 dBs case than in the 20 dBs case. We do not have a concrete theory behind this. However,
one intuitive explanation can be found using Figure 37, which is a hypothetical optimization
problem. The x-axis shows the computational load and the y-axis shows the performance.
This curve shows that, for the same amount of effort, the improvement in performance is higher
in the early stage than the later. In other words, it is difficult to further improve once the system
is already in good shape. In economics, there is a law of diminishing returns, which might be
related to the case here.

Although there is no physical law governing this behavior, we have seen similar observations in
some engineering applications. For example, in a past paper on speech recognition [68] under
noisy conditions, we noticed that the word recognition rate improves more when the SNR is low.
See Table 1 in [68]. From that table, at 0 dB, the relative improvement is 140%, as compared to
only 37% in the 6 dBs case. This implies that it may be easier to see improvements when a system
starts from a poor condition.
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4. Conclusions 

In this research, we thoroughly investigated the performance of CFA 1.0 and CFA 2.0 for low 
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applied more than 15 conventional and deep learning based algorithms to CFAs 1.0 and 2.0 using a 
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In this paper, we have used the BM3D denoising algorithm, which is proven algorithm in the 
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possibility of incorporating CFA 2.0 in NASA’s future planetary missions to Mars and other planets.
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Appendix A Performance Metrics of CFA 1.0 at 10 dBs. Three Cases: No Denoising, Denoising After Demosaicing, and Denoising Before Demosaicing

Table A1. Performance metrics of 16 algorithms for CFA 1.0 pattern at 10 dBs SNR. Bold numbers indicate the best performing method in each row. No denoising. Red
numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img1 PSNR 17.215 17.001 17.053 16.561 16.402 17.145 17.093 16.894 16.220 16.781 17.096 15.915 17.165 16.825 16.997 17.122 17.215
Cielab 11.325 12.046 11.517 12.420 14.085 12.691 11.722 12.652 12.702 12.035 11.688 13.485 12.019 11.656 11.393 11.369 11.325
SSIM 0.218 0.195 0.195 0.203 0.210 0.250 0.202 0.194 0.186 0.188 0.200 0.204 0.212 0.299 0.332 0.235 0.332
HVS 11.703 11.571 11.707 11.088 10.813 11.605 11.673 11.436 10.857 11.412 11.702 10.391 11.651 11.289 11.397 11.614 11.707

HVSm 11.800 11.683 11.815 11.194 10.909 11.672 11.784 11.562 10.942 11.513 11.813 10.478 11.766 11.336 11.446 11.697 11.815

Img2 PSNR 15.498 15.435 15.460 15.475 15.335 16.148 15.456 15.316 15.399 15.406 15.467 15.016 15.484 16.624 15.977 15.638 16.624
Cielab 10.895 11.716 11.226 11.630 13.358 11.378 11.506 12.321 11.339 11.399 11.457 12.312 11.755 9.438 10.487 10.997 9.438
SSIM 0.478 0.468 0.473 0.475 0.363 0.433 0.470 0.461 0.463 0.469 0.471 0.465 0.470 0.521 0.549 0.506 0.549
HVS 10.912 10.782 10.848 10.829 10.661 11.502 10.815 10.661 10.807 10.774 10.836 10.343 10.802 12.009 11.301 10.966 12.009

HVSm 11.007 10.889 10.952 10.942 10.805 11.619 10.923 10.778 10.911 10.877 10.943 10.443 10.911 12.112 11.386 11.059 12.112

Img3 PSNR 17.398 16.845 16.885 15.783 18.927 16.211 16.283 16.442 17.429 16.009 16.059 16.180 15.208 17.637 18.265 17.062 18.927
Cielab 11.456 12.404 11.797 13.825 12.296 14.240 12.958 13.431 11.122 13.199 13.264 13.360 14.979 10.698 10.233 11.625 10.233
SSIM 0.354 0.330 0.331 0.329 0.345 0.354 0.331 0.330 0.325 0.318 0.329 0.331 0.324 0.424 0.453 0.373 0.453
HVS 12.321 11.756 11.915 10.668 13.740 11.043 11.198 11.348 12.572 10.958 10.981 11.066 10.035 12.527 13.090 11.921 13.740

HVSm 12.449 11.892 12.049 10.775 13.994 11.126 11.312 11.484 12.733 11.062 11.087 11.186 10.121 12.616 13.187 12.027 13.994

Img4 PSNR 14.876 14.625 14.851 14.755 14.579 11.843 14.864 13.712 14.725 14.752 14.877 14.841 14.492 14.789 15.209 14.992 15.209
Cielab 13.131 15.023 13.774 15.084 18.714 20.041 14.686 17.664 14.113 14.315 14.472 15.318 15.796 12.205 12.263 13.158 12.205
SSIM 0.480 0.474 0.480 0.478 0.398 0.370 0.480 0.452 0.467 0.471 0.481 0.477 0.474 0.501 0.575 0.520 0.575
HVS 10.583 10.140 10.471 10.257 9.929 7.168 10.384 9.131 10.381 10.372 10.425 10.336 9.916 10.347 10.606 10.456 10.606

HVSm 10.871 10.437 10.775 10.569 10.300 7.323 10.696 9.387 10.684 10.675 10.735 10.661 10.201 10.598 10.840 10.722 10.871

Img5 PSNR 17.382 17.204 17.239 17.212 17.287 15.415 17.268 17.215 17.127 17.145 17.274 17.257 17.326 16.620 17.331 17.339 17.382
Cielab 8.939 9.561 9.155 9.621 11.231 12.521 9.467 10.171 9.284 9.364 9.404 9.762 9.880 9.584 9.106 9.112 8.939
SSIM 0.269 0.261 0.263 0.265 0.237 0.259 0.265 0.258 0.255 0.257 0.265 0.263 0.266 0.311 0.354 0.293 0.354
HVS 13.358 13.184 13.251 13.129 13.027 11.248 13.201 13.109 13.167 13.157 13.233 13.144 13.172 12.497 13.151 13.247 13.358

HVSm 13.496 13.351 13.411 13.305 13.208 11.321 13.365 13.300 13.325 13.318 13.395 13.321 13.334 12.570 13.232 13.372 13.496

Img6 PSNR 18.292 17.986 18.080 18.097 18.342 19.737 18.111 17.636 17.762 17.983 18.127 17.484 17.558 18.612 18.811 18.382 19.737
Cielab 11.490 12.414 11.415 12.278 14.734 12.359 11.934 13.705 11.865 11.778 11.886 13.150 13.161 9.873 10.241 10.985 9.873
SSIM 0.369 0.350 0.354 0.358 0.302 0.346 0.357 0.345 0.340 0.346 0.357 0.350 0.354 0.421 0.471 0.397 0.471
HVS 14.075 13.832 14.032 13.903 13.985 15.598 13.943 13.396 13.744 13.952 14.005 13.244 13.262 14.308 14.477 14.138 15.598

HVSm 14.308 14.103 14.300 14.196 14.317 15.923 14.214 13.668 13.994 14.219 14.276 13.482 13.489 14.497 14.661 14.362 15.923
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Table A1. Cont.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img7 PSNR 17.909 17.274 17.692 16.765 17.986 18.206 17.721 16.789 17.397 17.180 17.731 16.509 17.498 20.127 18.989 17.998 20.127
Cielab 10.019 11.190 10.154 11.900 12.891 11.504 10.642 12.553 10.556 10.922 10.551 12.479 11.462 7.059 8.757 9.843 7.059
SSIM 0.341 0.322 0.326 0.324 0.263 0.312 0.327 0.314 0.312 0.319 0.327 0.320 0.328 0.410 0.444 0.367 0.444
HVS 13.756 13.156 13.662 12.566 13.658 14.011 13.594 12.570 13.392 13.101 13.636 12.282 13.259 16.040 14.737 13.809 16.040

HVSm 13.903 13.317 13.838 12.713 13.862 14.142 13.772 12.730 13.556 13.254 13.815 12.415 13.423 16.202 14.845 13.947 16.202

Img8 PSNR 16.828 17.117 17.175 16.844 17.035 17.155 16.885 16.825 15.952 16.700 16.879 16.563 16.337 17.183 17.255 17.135 17.255
Cielab 10.685 10.788 10.204 11.112 12.812 11.802 10.919 11.793 11.800 10.925 10.876 11.597 11.987 9.770 10.077 10.269 9.770
SSIM 0.398 0.387 0.391 0.388 0.323 0.368 0.389 0.380 0.373 0.383 0.389 0.383 0.384 0.432 0.480 0.425 0.480
HVS 11.911 12.205 12.361 11.960 12.055 12.222 11.997 11.921 11.094 11.849 12.014 11.640 11.376 12.250 12.257 12.177 12.361

HVSm 12.048 12.382 12.534 12.133 12.278 12.375 12.163 12.108 11.224 12.005 12.178 11.803 11.523 12.367 12.374 12.318 12.534

Img9 PSNR 12.723 12.667 12.682 12.680 13.554 10.623 12.689 12.675 13.208 12.633 12.691 12.346 12.706 13.968 13.488 12.915 13.968
Cielab 11.754 12.117 11.819 12.065 12.191 15.968 11.986 12.477 11.114 11.970 11.954 12.646 12.220 9.859 10.682 11.468 9.859
SSIM 0.277 0.270 0.272 0.271 0.236 0.239 0.273 0.268 0.269 0.269 0.273 0.269 0.273 0.303 0.331 0.295 0.331
HVS 8.259 8.175 8.223 8.199 9.042 6.116 8.211 8.191 8.774 8.164 8.222 7.851 8.205 9.536 8.998 8.414 9.536

HVSm 8.298 8.224 8.269 8.250 9.114 6.140 8.258 8.245 8.828 8.211 8.269 7.899 8.253 9.580 9.031 8.454 9.580

Img10 PSNR 16.970 16.781 16.546 16.651 16.317 17.822 16.853 16.243 15.820 16.656 16.712 16.691 16.888 17.492 17.140 16.974 17.822
Cielab 10.162 10.889 10.705 11.052 13.349 10.808 10.708 12.234 11.685 10.719 10.811 11.164 11.089 9.125 9.920 10.191 9.125
SSIM 0.385 0.376 0.377 0.378 0.308 0.369 0.379 0.368 0.363 0.373 0.378 0.376 0.379 0.416 0.448 0.405 0.448
HVS 13.160 12.985 12.744 12.783 12.354 14.003 13.002 12.358 11.987 12.877 12.881 12.819 12.991 13.583 13.211 13.103 14.003

HVSm 13.324 13.181 12.918 12.973 12.573 14.212 13.194 12.544 12.136 13.061 13.066 13.011 13.182 13.733 13.346 13.264 14.212

Img11 PSNR 16.636 15.804 15.492 15.160 16.102 16.819 16.246 16.218 15.104 16.142 16.127 15.277 16.560 16.339 16.528 16.223 16.819
Cielab 11.650 13.110 13.154 14.039 14.262 12.528 12.284 13.021 13.846 12.272 12.416 13.990 12.274 11.517 11.513 12.044 11.513
SSIM 0.384 0.362 0.361 0.360 0.321 0.358 0.371 0.364 0.347 0.359 0.370 0.360 0.374 0.419 0.478 0.411 0.478
HVS 11.512 10.666 10.407 10.007 10.917 11.700 11.160 11.118 10.016 11.096 11.050 10.133 11.435 11.189 11.332 11.065 11.700

HVSm 11.613 10.762 10.492 10.091 11.034 11.798 11.267 11.241 10.092 11.199 11.152 10.221 11.555 11.262 11.400 11.148 11.798

Img12 PSNR 16.766 16.013 16.686 16.228 16.626 16.893 16.688 15.488 15.545 15.890 16.699 15.931 16.062 16.457 16.831 16.554 16.893
Cielab 10.962 12.348 11.000 12.166 13.334 11.919 11.376 13.723 12.642 12.229 11.306 12.643 12.528 11.005 10.717 11.172 10.717
SSIM 0.451 0.429 0.439 0.431 0.377 0.427 0.441 0.420 0.414 0.422 0.442 0.429 0.434 0.502 0.543 0.479 0.543
HVS 12.210 11.383 12.167 11.615 12.070 12.360 12.111 10.863 10.965 11.321 12.129 11.316 11.439 11.851 12.208 11.921 12.360

HVSm 12.346 11.516 12.319 11.758 12.284 12.519 12.267 10.991 11.082 11.446 12.283 11.451 11.574 11.959 12.323 12.045 12.519

Average PSNR 16.541 16.229 16.320 16.018 16.541 16.168 16.347 15.954 15.974 16.106 16.312 15.834 16.107 16.889 16.902 16.528 16.902
Cielab 11.039 11.967 11.327 12.266 13.605 13.147 11.682 12.979 11.839 11.761 11.674 12.659 12.429 10.149 10.449 11.019 10.149
SSIM 0.367 0.352 0.355 0.355 0.307 0.340 0.357 0.346 0.343 0.348 0.357 0.352 0.356 0.413 0.455 0.392 0.455
HVS 11.980 11.653 11.816 11.417 11.854 11.548 11.774 11.342 11.480 11.586 11.759 11.214 11.462 12.285 12.230 11.903 12.285

HVSm 12.122 11.811 11.973 11.575 12.057 11.681 11.935 11.503 11.626 11.737 11.918 11.364 11.611 12.403 12.339 12.034 12.403
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Table A2. Performance metrics of 16 algorithms for CFA 1.0 pattern at 10 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img1 PSNR 18.633 18.817 19.054 19.121 20.651 19.127 18.543 18.134 22.081 19.195 18.733 18.297 18.488 20.280 20.221 19.785 22.081
Cielab 9.110 9.371 8.852 8.836 7.847 9.199 9.418 10.108 6.687 8.883 9.233 9.708 9.535 7.934 7.604 7.903 6.687
SSIM 0.395 0.366 0.384 0.366 0.337 0.349 0.362 0.339 0.396 0.377 0.367 0.355 0.352 0.409 0.430 0.433 0.433
HVS 12.926 13.118 13.423 13.436 14.956 13.505 12.893 12.464 16.478 13.522 13.096 12.627 12.814 14.723 14.597 14.143 16.478

HVSm 12.979 13.180 13.484 13.506 15.094 13.580 12.953 12.527 16.595 13.586 13.157 12.688 12.878 14.797 14.672 14.208 16.595

Img2 PSNR 18.084 18.578 18.964 18.826 19.949 20.205 18.463 16.879 18.991 18.301 18.574 16.700 18.009 20.685 19.569 19.154 20.685
Cielab 7.843 8.002 7.313 7.764 7.401 7.121 7.894 9.778 7.396 8.003 7.787 9.712 8.428 5.782 6.566 6.839 5.782
SSIM 0.513 0.513 0.526 0.515 0.376 0.408 0.501 0.485 0.520 0.520 0.506 0.484 0.483 0.464 0.482 0.531 0.531
HVS 13.424 13.843 14.276 14.127 15.367 15.675 13.770 12.161 14.284 13.546 13.892 11.981 13.308 16.177 15.019 14.486 16.177

HVSm 13.550 14.000 14.438 14.293 15.732 15.975 13.929 12.281 14.452 13.688 14.050 12.090 13.454 16.435 15.223 14.647 16.435

Img3 PSNR 21.401 21.132 20.615 19.756 22.395 19.260 19.814 20.237 23.351 20.167 19.448 20.109 18.111 22.521 22.149 21.480 23.351
Cielab 7.137 7.708 7.693 8.575 7.193 9.639 8.446 8.479 6.242 8.247 8.767 8.313 10.186 6.403 6.441 6.721 6.242
SSIM 0.522 0.501 0.511 0.488 0.454 0.450 0.488 0.476 0.521 0.500 0.488 0.481 0.459 0.523 0.539 0.551 0.551
HVS 16.069 15.690 15.349 14.450 16.987 14.019 14.519 14.896 18.009 14.837 14.178 14.797 12.830 17.412 16.952 16.217 18.009

HVSm 16.221 15.849 15.488 14.579 17.304 14.154 14.648 15.052 18.264 14.966 14.296 14.938 12.927 17.627 17.145 16.371 18.264

Img4 PSNR 17.287 15.222 15.440 15.066 16.574 12.411 16.640 14.179 16.889 16.391 16.788 15.285 14.716 17.130 17.371 17.094 17.371
Cielab 10.375 20.858 20.576 14.186 14.899 18.289 12.423 16.290 11.645 12.260 12.124 14.190 21.141 9.366 9.550 9.735 9.366
SSIM 0.569 0.487 0.495 0.525 0.446 0.380 0.547 0.493 0.541 0.541 0.552 0.523 0.463 0.601 0.632 0.626 0.632
HVS 12.924 11.453 11.767 10.397 11.849 7.732 12.031 9.493 12.457 11.869 12.212 10.620 10.840 12.570 12.772 12.488 12.924

HVSm 13.303 11.938 12.275 10.666 12.381 7.903 12.406 9.736 12.855 12.220 12.595 10.911 11.269 12.883 13.106 12.793 13.303

Img5 PSNR 23.498 22.842 22.671 22.971 21.832 18.074 23.198 20.259 19.933 22.018 23.299 23.446 23.001 19.360 21.712 22.137 23.498
Cielab 4.370 5.129 4.995 5.140 6.052 8.551 4.944 6.834 6.703 5.470 4.874 4.979 5.199 6.843 5.236 5.020 4.370
SSIM 0.360 0.351 0.359 0.345 0.284 0.285 0.346 0.330 0.345 0.353 0.348 0.341 0.333 0.326 0.355 0.375 0.375
HVS 19.209 18.518 18.369 18.550 17.365 13.874 18.828 15.907 15.634 17.658 18.957 18.986 18.580 15.202 17.514 17.914 19.209

HVSm 19.430 18.752 18.572 18.800 17.678 13.981 19.082 16.068 15.755 17.844 19.210 19.271 18.845 15.303 17.687 18.081 19.430

Img6 PSNR 22.626 21.705 22.785 21.617 23.185 22.764 21.438 20.442 19.337 23.257 21.922 20.440 21.624 22.592 23.193 22.543 23.257
Cielab 6.842 8.093 6.795 8.070 7.852 8.105 7.893 9.243 9.293 6.971 7.590 8.857 8.099 6.359 6.055 6.369 6.055
SSIM 0.428 0.438 0.451 0.435 0.347 0.349 0.428 0.417 0.402 0.447 0.433 0.416 0.410 0.359 0.417 0.450 0.451
HVS 18.168 17.185 18.365 17.120 18.626 18.549 16.974 15.933 14.905 18.753 17.498 15.997 17.164 18.288 19.004 18.163 19.004

HVSm 18.561 17.542 18.807 17.486 19.371 19.160 17.321 16.238 15.125 19.244 17.880 16.277 17.539 18.777 19.534 18.568 19.534

Img7 PSNR 25.621 25.076 26.870 24.030 24.849 23.871 25.453 21.866 25.894 26.066 25.881 24.384 24.482 26.868 26.528 26.799 26.870
Cielab 4.328 5.207 4.307 5.794 5.976 6.176 5.088 7.102 4.781 4.818 4.898 5.731 5.670 3.494 3.767 3.758 3.494
SSIM 0.450 0.440 0.459 0.429 0.312 0.328 0.427 0.402 0.443 0.452 0.433 0.421 0.407 0.406 0.436 0.479 0.479
HVS 21.236 20.606 22.440 19.464 20.143 19.648 20.943 17.341 21.341 21.454 21.413 19.803 19.915 23.059 22.546 22.631 23.059

HVSm 21.677 21.047 23.076 19.831 20.769 20.082 21.440 17.600 21.853 21.974 21.954 20.214 20.340 23.842 23.195 23.222 23.842
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Table A2. Cont.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img8 PSNR 22.581 21.262 21.668 21.481 22.362 21.289 22.441 19.943 22.151 21.202 22.109 21.087 21.980 23.574 23.136 22.460 23.574
Cielab 5.500 6.804 6.202 6.674 6.697 7.241 6.023 8.004 6.097 6.705 6.162 6.931 6.439 4.790 5.067 5.351 4.790
SSIM 0.480 0.480 0.491 0.472 0.380 0.396 0.476 0.455 0.487 0.484 0.477 0.463 0.455 0.440 0.478 0.513 0.513
HVS 17.470 16.062 16.585 16.399 17.306 16.345 17.354 14.844 17.055 16.060 17.054 15.994 16.889 18.733 18.245 17.412 18.733

HVSm 17.741 16.304 16.839 16.659 17.882 16.667 17.678 15.060 17.346 16.294 17.350 16.240 17.190 19.115 18.624 17.687 19.115

Img9 PSNR 18.522 16.339 18.439 17.025 18.982 11.088 19.316 15.181 17.822 17.544 18.475 16.823 15.973 18.082 18.712 18.476 19.316
Cielab 5.907 7.790 6.100 7.210 6.388 14.595 5.721 9.001 6.580 6.800 6.172 7.397 8.106 6.160 5.758 5.837 5.721
SSIM 0.322 0.314 0.326 0.315 0.262 0.224 0.320 0.304 0.320 0.321 0.320 0.311 0.300 0.289 0.311 0.333 0.333
HVS 14.046 11.775 13.925 12.489 14.443 6.577 14.787 10.646 13.288 12.985 13.962 12.284 11.442 13.643 14.265 13.990 14.787

HVSm 14.107 11.826 13.995 12.548 14.602 6.601 14.878 10.693 13.353 13.046 14.036 12.343 11.493 13.701 14.340 14.053 14.878

Img10 PSNR 19.388 19.724 19.683 18.734 19.942 20.919 19.227 17.060 17.770 19.758 19.135 17.302 19.047 20.644 20.218 19.624 20.919
Cielab 7.405 7.689 7.384 8.480 7.953 7.283 7.938 10.451 9.152 7.531 7.980 9.863 8.244 6.260 6.609 7.048 6.260
SSIM 0.429 0.435 0.439 0.422 0.340 0.372 0.423 0.402 0.417 0.439 0.425 0.404 0.411 0.397 0.422 0.445 0.445
HVS 15.439 15.778 15.725 14.738 15.923 17.085 15.237 13.078 13.767 15.775 15.173 13.325 15.071 16.723 16.342 15.665 17.085

HVSm 15.641 16.029 15.959 14.939 16.338 17.503 15.466 13.233 13.934 16.016 15.394 13.481 15.295 17.021 16.622 15.887 17.503

Img11 PSNR 19.170 19.845 19.225 19.189 20.750 21.170 19.868 19.245 19.499 18.755 20.116 18.605 19.977 18.467 19.534 19.492 21.170
Cielab 8.290 8.096 8.268 8.550 7.678 7.440 7.867 8.797 8.158 8.863 7.665 9.128 7.961 8.788 7.714 7.750 7.440
SSIM 0.408 0.440 0.437 0.426 0.360 0.360 0.434 0.434 0.434 0.429 0.437 0.419 0.416 0.323 0.401 0.448 0.448
HVS 13.985 14.572 14.053 13.981 15.593 16.126 14.689 14.033 14.310 13.533 14.956 13.405 14.794 13.348 14.429 14.342 16.126

HVSm 14.110 14.723 14.183 14.116 15.855 16.380 14.846 14.182 14.448 13.651 15.120 13.526 14.963 13.474 14.575 14.474 16.380

Img12 PSNR 18.298 17.711 17.768 17.574 16.583 20.013 17.849 16.304 17.470 17.857 17.903 17.930 17.782 17.146 17.569 17.758 20.013
Cielab 8.797 9.560 9.302 9.765 11.602 7.713 9.468 11.548 9.669 9.374 9.293 9.390 9.550 10.357 9.597 9.190 7.713
SSIM 0.520 0.514 0.524 0.503 0.397 0.451 0.511 0.481 0.510 0.520 0.513 0.507 0.492 0.461 0.498 0.533 0.533
HVS 13.708 13.011 13.147 12.907 12.088 15.663 13.224 11.641 12.806 13.211 13.266 13.291 13.160 12.633 13.064 13.178 15.663

HVSm 13.859 13.161 13.293 13.052 12.272 15.997 13.381 11.761 12.949 13.360 13.421 13.451 13.319 12.762 13.208 13.316 15.997

Average PSNR 20.426 19.854 20.265 19.616 20.671 19.183 20.188 18.311 20.099 20.043 20.199 19.201 19.432 20.613 20.826 20.567 20.826
Cielab 7.159 8.692 8.149 8.254 8.128 9.279 7.760 9.636 7.700 7.827 7.712 8.683 9.047 6.878 6.664 6.793 6.664
SSIM 0.450 0.440 0.450 0.437 0.358 0.363 0.439 0.418 0.445 0.448 0.442 0.427 0.415 0.416 0.450 0.476 0.476
HVS 15.717 15.134 15.619 14.838 15.887 14.567 15.438 13.536 15.361 15.267 15.471 14.426 14.734 16.043 16.229 15.886 16.229

HVSm 15.932 15.363 15.867 15.039 16.273 14.832 15.669 13.703 15.578 15.491 15.705 14.619 14.959 16.311 16.494 16.109 16.494
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Table A3. Performance metrics of 16 algorithms for CFA 1.0 pattern at 10 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is generated and before CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those
methods used in ATMF.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img1 PSNR 19.813 19.772 19.807 19.779 20.502 19.807 19.813 19.833 20.624 19.756 21.410 19.817 19.809 21.545 20.800 19.962 21.545
Cielab 7.897 7.960 7.839 7.827 7.997 7.877 7.824 7.852 7.803 7.891 10.137 7.830 7.846 7.352 8.123 7.775 7.352
SSIM 0.402 0.397 0.406 0.407 0.401 0.400 0.406 0.408 0.421 0.403 0.211 0.408 0.402 0.413 0.361 0.415 0.421
HVS 14.099 14.097 14.158 14.126 16.141 14.171 14.162 14.181 16.275 14.086 14.270 14.170 14.163 16.037 14.948 14.367 16.275

HVSm 14.161 14.163 14.223 14.189 16.279 14.239 14.228 14.244 16.375 14.151 14.363 14.235 14.230 16.126 15.021 14.432 16.375

Img2 PSNR 21.603 21.533 21.576 21.568 20.469 21.484 21.526 21.475 21.078 21.485 21.323 21.547 21.544 21.765 21.472 21.555 21.765
Cielab 5.413 5.553 5.387 5.453 7.174 5.565 5.463 5.674 6.079 5.466 8.720 5.474 5.480 5.217 6.190 5.496 5.217
SSIM 0.542 0.539 0.544 0.543 0.387 0.520 0.536 0.532 0.516 0.541 0.453 0.537 0.538 0.512 0.531 0.542 0.544
HVS 16.917 16.838 16.914 16.923 15.266 16.887 16.887 16.880 15.723 16.789 16.046 16.889 16.889 17.022 16.365 16.814 17.022

HVSm 17.169 17.100 17.176 17.189 15.597 17.166 17.158 17.163 15.938 17.046 16.309 17.153 17.153 17.296 16.591 17.068 17.296

Img3 PSNR 24.197 24.097 24.151 24.170 24.854 24.106 24.161 24.210 25.504 24.064 24.298 24.156 24.152 22.627 26.060 24.653 26.060
Cielab 5.707 5.835 5.663 5.661 9.136 5.905 5.674 5.673 8.822 5.725 9.903 5.704 5.694 6.494 7.455 5.740 5.661
SSIM 0.539 0.535 0.540 0.544 0.500 0.532 0.541 0.542 0.534 0.536 0.465 0.540 0.539 0.534 0.545 0.549 0.549
HVS 19.060 18.942 19.112 19.130 15.022 19.114 19.109 19.164 15.233 18.940 15.137 19.116 19.124 17.528 16.449 18.436 19.164

HVSm 19.303 19.196 19.370 19.388 15.190 19.380 19.368 19.423 15.349 19.190 15.283 19.375 19.384 17.708 16.591 18.652 19.423

Img4 PSNR 17.519 17.476 17.529 17.514 16.411 17.869 17.534 17.375 16.824 17.412 16.888 17.507 17.555 16.152 17.614 17.565 17.869
Cielab 9.608 11.395 10.493 11.512 15.537 11.890 11.265 12.869 11.396 10.973 12.250 11.709 11.743 10.728 9.184 10.620 9.184
SSIM 0.542 0.543 0.547 0.547 0.443 0.529 0.546 0.533 0.526 0.540 0.528 0.544 0.546 0.543 0.611 0.560 0.611
HVS 13.364 13.065 13.228 13.073 11.151 13.357 13.111 12.904 11.809 13.096 12.436 13.048 13.050 11.694 12.821 13.107 13.364

HVSm 13.815 13.543 13.695 13.557 11.597 13.844 13.590 13.425 12.159 13.557 12.861 13.538 13.532 11.993 13.157 13.550 13.844

Img5 PSNR 23.825 23.755 23.803 23.772 22.393 23.760 23.801 23.784 22.800 23.668 25.101 23.794 23.786 21.219 24.103 23.869 25.101
Cielab 4.670 4.770 4.688 4.702 7.066 4.758 4.671 4.810 6.680 4.757 6.773 4.701 4.711 6.000 5.683 4.712 4.670
SSIM 0.370 0.369 0.376 0.370 0.298 0.356 0.372 0.371 0.351 0.371 0.321 0.365 0.365 0.348 0.371 0.373 0.376
HVS 19.914 19.897 19.933 19.882 17.209 19.914 19.929 19.936 17.539 19.773 18.713 19.925 19.923 17.308 18.858 19.745 19.936

HVSm 20.157 20.150 20.181 20.132 17.464 20.177 20.182 20.196 17.706 20.020 18.947 20.177 20.175 17.446 19.053 19.980 20.196

Img6 PSNR 20.465 20.420 20.460 20.468 23.033 20.406 20.448 20.460 23.928 20.405 23.886 20.443 20.443 22.027 23.006 21.031 23.928
Cielab 7.825 7.911 7.701 7.780 10.465 7.899 7.733 7.888 9.808 7.775 7.537 7.793 7.787 6.581 7.738 7.574 6.581
SSIM 0.404 0.403 0.407 0.406 0.333 0.386 0.404 0.405 0.411 0.405 0.358 0.399 0.399 0.393 0.414 0.408 0.414
HVS 16.217 16.161 16.225 16.210 17.054 16.229 16.205 16.262 17.590 16.162 17.583 16.226 16.229 17.808 17.288 16.470 17.808

HVSm 16.463 16.415 16.481 16.473 17.516 16.496 16.463 16.522 17.947 16.417 17.993 16.480 16.485 18.161 17.606 16.737 18.161

Img7 PSNR 27.428 27.295 27.401 27.329 22.517 27.308 27.371 27.279 22.846 27.238 21.820 27.373 27.375 25.762 24.515 27.736 27.736
Cielab 4.439 4.537 4.406 4.451 13.519 4.527 4.401 4.458 13.236 4.497 14.096 4.472 4.465 4.802 10.064 5.395 4.401
SSIM 0.471 0.470 0.475 0.475 0.360 0.468 0.469 0.465 0.449 0.471 0.314 0.474 0.473 0.461 0.454 0.478 0.478
HVS 23.212 23.153 23.303 23.213 15.946 23.230 23.302 23.288 16.176 23.083 16.633 23.243 23.234 21.429 18.498 22.114 23.303

HVSm 23.858 23.808 23.972 23.881 16.131 23.904 23.986 24.008 16.311 23.722 16.827 23.909 23.899 21.866 18.713 22.607 24.008
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Table A3. Cont.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img8 PSNR 22.125 22.057 22.115 22.092 23.681 22.056 22.089 22.003 25.340 22.023 24.412 22.096 22.093 21.109 24.822 22.602 25.340
Cielab 5.693 5.795 5.642 5.688 9.145 5.858 5.681 5.930 8.464 5.715 5.490 5.709 5.710 6.314 5.930 5.543 5.490
SSIM 0.492 0.491 0.496 0.493 0.399 0.476 0.492 0.489 0.486 0.492 0.432 0.491 0.490 0.452 0.496 0.494 0.496
HVS 17.199 17.109 17.223 17.224 18.267 17.229 17.213 17.135 19.518 17.105 18.023 17.233 17.233 16.257 18.389 17.463 19.518

HVSm 17.441 17.363 17.481 17.478 18.930 17.493 17.474 17.416 19.964 17.361 18.379 17.488 17.488 16.460 18.703 17.726 19.964

Img9 PSNR 18.293 18.253 18.277 18.278 20.981 18.257 18.275 18.272 21.270 18.190 22.088 18.274 18.271 20.972 20.425 18.721 22.088
Cielab 6.176 6.302 6.168 6.182 5.193 6.345 6.178 6.317 4.594 6.245 5.674 6.211 6.230 4.703 5.166 5.874 4.594
SSIM 0.327 0.324 0.329 0.328 0.281 0.313 0.327 0.326 0.322 0.324 0.295 0.326 0.325 0.311 0.332 0.329 0.332
HVS 13.738 13.654 13.728 13.731 16.709 13.733 13.731 13.741 16.979 13.628 15.269 13.726 13.727 16.465 15.278 14.054 16.979

HVSm 13.794 13.715 13.787 13.788 16.930 13.795 13.790 13.802 17.102 13.687 15.366 13.785 13.786 16.558 15.355 14.115 17.102

Img10 PSNR 22.461 22.350 22.433 22.382 19.978 22.321 22.410 22.382 20.443 22.329 21.577 22.404 22.402 19.913 21.585 22.238 22.461
Cielab 5.491 5.657 5.501 5.563 8.025 5.711 5.538 5.751 7.071 5.593 6.999 5.583 5.586 7.119 6.150 5.581 5.491
SSIM 0.456 0.455 0.460 0.458 0.346 0.438 0.456 0.456 0.429 0.456 0.405 0.454 0.453 0.422 0.452 0.458 0.460
HVS 18.860 18.763 18.846 18.804 15.150 18.816 18.822 18.848 15.559 18.725 15.719 18.817 18.830 16.092 16.725 18.302 18.860

HVSm 19.232 19.164 19.241 19.192 15.472 19.234 19.225 19.264 15.773 19.115 15.972 19.213 19.225 16.313 16.973 18.646 19.264

Img11 PSNR 20.359 20.318 20.356 20.347 20.129 20.316 20.354 20.353 20.408 20.291 22.180 20.350 20.347 19.754 21.040 20.524 22.180
Cielab 7.106 7.161 7.046 7.035 9.474 7.106 7.031 7.114 9.127 7.105 6.724 7.058 7.059 7.606 7.270 6.995 6.724
SSIM 0.414 0.414 0.418 0.414 0.330 0.395 0.415 0.420 0.400 0.416 0.340 0.412 0.410 0.365 0.407 0.415 0.420
HVS 15.198 15.154 15.236 15.217 12.778 15.233 15.236 15.260 12.903 15.146 15.897 15.240 15.239 14.590 14.685 15.180 15.897

HVSm 15.352 15.312 15.395 15.376 12.904 15.399 15.395 15.419 13.001 15.303 16.111 15.399 15.399 14.735 14.824 15.336 16.111

Img12 PSNR 18.795 18.733 18.774 18.824 17.016 18.691 18.747 18.753 17.334 18.724 18.605 18.753 18.751 17.790 18.300 18.699 18.824
Cielab 8.512 8.653 8.503 8.504 13.268 8.640 8.524 8.619 12.679 8.586 12.133 8.557 8.554 9.661 10.579 8.844 8.503
SSIM 0.537 0.534 0.540 0.536 0.401 0.515 0.536 0.540 0.491 0.537 0.445 0.534 0.534 0.512 0.520 0.536 0.540
HVS 14.058 13.979 14.072 14.096 10.517 14.082 14.051 14.109 10.650 14.000 13.264 14.039 14.056 13.029 12.606 13.837 14.109

HVSm 14.211 14.143 14.234 14.258 10.642 14.260 14.217 14.280 10.733 14.161 13.421 14.204 14.220 13.159 12.720 13.990 14.280

Average PSNR 21.407 21.338 21.390 21.377 20.997 21.365 21.377 21.348 21.533 21.299 21.966 21.376 21.377 20.886 21.978 21.596 21.978
Cielab 6.545 6.794 6.586 6.697 9.666 6.840 6.665 6.913 8.813 6.694 8.870 6.733 6.739 6.881 7.461 6.679 6.545
SSIM 0.458 0.456 0.461 0.460 0.373 0.444 0.458 0.457 0.445 0.458 0.381 0.457 0.456 0.439 0.458 0.463 0.463
HVS 16.820 16.734 16.831 16.802 15.101 16.833 16.813 16.809 15.496 16.711 15.749 16.806 16.808 16.272 16.076 16.657 16.833

HVSm 17.080 17.006 17.103 17.075 15.388 17.116 17.090 17.097 15.696 16.978 15.986 17.080 17.081 16.485 16.276 16.903 17.116
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Appendix B Performance Metrics of CFA 1.0 at 20 dBs. Three Cases: No Denoising, Denoising After Demosaicing, and Denoising Before Demosaicing

Table A4. Performance metrics of 16 algorithms for CFA 1.0 pattern at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
No denoising. Red numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img1 PSNR 20.455 20.316 20.002 19.994 20.029 20.713 20.156 20.003 19.908 19.939 20.155 20.056 20.092 20.072 20.520 20.394 20.713
Cielab 7.186 7.848 7.826 7.985 8.975 8.029 7.852 8.405 7.946 7.982 7.828 8.019 8.119 8.618 7.431 7.436 7.186
SSIM 0.321 0.300 0.300 0.311 0.315 0.362 0.308 0.298 0.289 0.291 0.307 0.314 0.319 0.366 0.347 0.379 0.366
HVS 15.056 14.909 14.638 14.541 14.487 15.206 14.731 14.549 14.599 14.565 14.750 14.573 14.589 14.846 15.033 14.910 15.206

HVSm 15.173 15.046 14.758 14.671 14.631 15.305 14.857 14.689 14.715 14.683 14.874 14.708 14.717 14.929 15.138 15.001 15.305

Img2 PSNR 20.252 20.144 20.189 20.190 19.664 20.392 20.172 20.062 20.044 20.083 20.191 20.187 20.234 20.206 20.411 20.445 20.392
Cielab 6.015 6.835 6.391 6.804 8.893 7.132 6.711 7.476 6.525 6.565 6.645 6.860 6.905 6.339 6.342 6.253 6.015
SSIM 0.578 0.571 0.577 0.579 0.446 0.539 0.573 0.561 0.566 0.573 0.575 0.574 0.576 0.607 0.590 0.619 0.607
HVS 15.956 15.640 15.752 15.683 15.093 15.872 15.663 15.524 15.611 15.601 15.700 15.643 15.652 15.477 15.899 15.838 15.956

HVSm 16.161 15.877 15.976 15.928 15.446 16.108 15.901 15.802 15.833 15.820 15.934 15.888 15.891 15.647 16.107 16.023 16.161

Img3 PSNR 21.415 20.595 20.620 21.119 22.259 20.459 21.833 20.181 20.073 20.649 21.526 21.387 20.247 20.230 21.363 21.322 22.259
Cielab 6.472 7.709 7.355 7.249 8.071 8.530 6.719 8.388 7.805 7.415 6.875 7.161 8.058 7.721 6.986 6.856 6.472
SSIM 0.455 0.447 0.447 0.457 0.445 0.478 0.456 0.446 0.436 0.441 0.454 0.456 0.457 0.502 0.476 0.504 0.502
HVS 16.598 15.536 15.678 16.105 17.114 15.336 16.883 15.108 15.106 15.695 16.578 16.361 15.129 15.158 16.325 16.230 17.114

HVSm 16.793 15.719 15.855 16.323 17.452 15.479 17.128 15.290 15.262 15.873 16.802 16.596 15.295 15.271 16.501 16.383 17.452

Img4 PSNR 17.897 17.904 17.961 17.952 17.470 18.771 18.015 17.741 17.718 17.779 18.025 17.952 18.077 17.806 18.600 18.860 18.771
Cielab 9.649 12.138 10.894 12.273 16.494 12.824 11.945 14.013 11.235 11.492 11.695 12.614 12.695 9.496 10.454 9.821 9.496
SSIM 0.511 0.517 0.521 0.521 0.441 0.513 0.522 0.506 0.506 0.511 0.523 0.519 0.523 0.514 0.547 0.582 0.523
HVS 14.513 13.887 14.160 13.852 12.899 14.496 13.960 13.523 14.018 13.975 14.021 13.807 13.812 14.167 14.559 14.642 14.513

HVSm 15.202 14.597 14.861 14.578 13.664 15.186 14.665 14.297 14.705 14.663 14.725 14.537 14.517 14.820 15.215 15.239 15.202

Img5 PSNR 20.343 20.085 20.114 20.085 20.017 20.483 20.143 20.067 19.962 19.988 20.149 20.132 20.201 20.121 20.451 20.449 20.483
Cielab 6.505 6.742 6.426 6.775 8.169 7.210 6.671 7.248 6.528 6.608 6.621 6.874 6.975 6.229 6.570 6.352 6.229
SSIM 0.333 0.328 0.330 0.332 0.291 0.334 0.332 0.323 0.321 0.324 0.332 0.330 0.333 0.362 0.353 0.380 0.362
HVS 16.410 16.095 16.169 16.036 15.768 16.377 16.100 15.985 16.033 16.034 16.137 16.049 16.077 16.126 16.379 16.341 16.410

HVSm 16.578 16.306 16.368 16.256 16.027 16.538 16.305 16.224 16.233 16.237 16.341 16.268 16.283 16.257 16.541 16.486 16.578

Img6 PSNR 22.551 21.025 20.389 20.495 22.464 21.110 20.610 20.328 20.282 20.310 20.394 21.173 20.395 20.335 21.514 21.181 22.551
Cielab 6.179 7.925 7.950 8.242 8.897 8.445 8.030 9.034 8.092 8.165 8.164 7.819 8.455 7.806 7.303 7.321 6.179
SSIM 0.561 0.549 0.551 0.555 0.459 0.517 0.552 0.538 0.537 0.544 0.552 0.552 0.550 0.592 0.574 0.607 0.592
HVS 18.530 16.731 16.116 16.164 18.229 16.881 16.304 16.027 16.048 16.047 16.096 16.888 16.057 15.899 17.247 16.844 18.530

HVSm 18.847 16.991 16.331 16.398 18.822 17.153 16.538 16.272 16.263 16.260 16.315 17.158 16.279 16.067 17.499 17.058 18.847



Electronics 2019, 8, 1444 38 of 58

Table A4. Cont.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img7 PSNR 20.415 20.319 20.355 20.303 21.104 20.387 20.358 20.290 21.170 20.262 20.368 20.357 20.184 22.203 20.465 20.738 22.203
Cielab 6.740 7.492 7.110 7.523 8.665 8.000 7.422 8.057 6.523 7.271 7.352 7.600 7.807 5.457 7.182 6.887 5.457
SSIM 0.471 0.466 0.470 0.471 0.374 0.457 0.467 0.455 0.459 0.464 0.469 0.469 0.472 0.519 0.490 0.522 0.519
HVS 16.385 16.174 16.252 16.119 16.824 16.181 16.185 16.084 17.164 16.146 16.212 16.159 15.942 18.080 16.294 16.513 18.080

HVSm 16.529 16.343 16.413 16.296 17.098 16.317 16.353 16.282 17.371 16.306 16.378 16.336 16.101 18.259 16.430 16.641 18.259

Img8 PSNR 20.347 20.108 20.162 20.136 19.652 20.620 20.150 20.058 20.026 20.059 20.165 20.147 20.191 20.102 20.460 20.421 20.620
Cielab 6.662 7.418 7.019 7.406 9.344 7.782 7.306 8.039 7.144 7.203 7.244 7.499 7.550 6.964 7.023 6.886 6.662
SSIM 0.504 0.495 0.500 0.498 0.409 0.485 0.499 0.487 0.490 0.494 0.500 0.496 0.500 0.537 0.520 0.550 0.537
HVS 15.626 15.230 15.364 15.295 14.716 15.763 15.305 15.196 15.225 15.250 15.345 15.282 15.295 15.074 15.606 15.492 15.763

HVSm 15.825 15.456 15.581 15.527 15.043 15.998 15.532 15.455 15.439 15.466 15.568 15.519 15.526 15.226 15.811 15.676 15.998

Img9 PSNR 20.204 20.023 20.052 20.046 20.052 20.534 20.105 19.987 19.933 19.886 20.101 20.080 20.194 20.034 20.395 20.455 20.534
Cielab 4.968 5.655 5.266 5.642 7.248 6.234 5.533 6.243 5.342 5.467 5.479 5.778 5.873 4.848 5.334 5.088 4.848
SSIM 0.317 0.312 0.313 0.314 0.273 0.307 0.315 0.308 0.308 0.310 0.315 0.314 0.316 0.340 0.329 0.349 0.340
HVS 16.184 15.780 15.920 15.763 15.563 16.190 15.860 15.667 15.840 15.725 15.887 15.749 15.801 15.682 16.135 16.110 16.190

HVSm 16.371 16.012 16.141 16.006 15.850 16.347 16.086 15.939 16.059 15.943 16.109 15.995 16.028 15.831 16.303 16.260 16.371

Img10 PSNR 20.220 20.062 20.124 20.077 19.694 20.308 20.126 20.044 20.008 20.015 20.140 20.117 20.159 20.067 20.378 20.387 20.308
Cielab 6.644 7.318 6.901 7.298 9.311 7.792 7.188 7.970 7.006 7.088 7.120 7.368 7.458 6.776 6.904 6.752 6.644
SSIM 0.473 0.464 0.467 0.467 0.382 0.453 0.467 0.458 0.458 0.463 0.468 0.465 0.467 0.489 0.484 0.507 0.489
HVS 16.540 16.284 16.369 16.253 15.785 16.525 16.301 16.201 16.252 16.281 16.341 16.275 16.286 16.181 16.568 16.518 16.540

HVSm 16.760 16.554 16.622 16.518 16.179 16.791 16.565 16.503 16.506 16.535 16.602 16.544 16.548 16.363 16.804 16.731 16.791

Img11 PSNR 20.543 20.180 20.218 20.218 19.988 20.436 20.241 20.169 20.083 20.119 20.251 20.228 20.263 20.221 20.508 20.493 20.543
Cielab 7.028 7.666 7.330 7.608 9.138 7.946 7.514 8.111 7.444 7.474 7.466 7.683 7.743 7.383 7.271 7.119 7.028
SSIM 0.520 0.513 0.515 0.519 0.443 0.496 0.520 0.510 0.502 0.508 0.520 0.517 0.520 0.558 0.540 0.578 0.558
HVS 15.566 15.110 15.228 15.149 14.907 15.365 15.183 15.111 15.145 15.123 15.212 15.157 15.162 15.081 15.416 15.361 15.566

HVSm 15.724 15.282 15.393 15.328 15.127 15.527 15.353 15.307 15.306 15.285 15.380 15.340 15.340 15.210 15.566 15.494 15.724

Img12 PSNR 20.557 20.436 20.495 20.544 19.830 20.542 20.472 20.395 20.355 20.398 20.488 20.478 20.501 20.390 20.694 20.714 20.557
Cielab 6.511 7.225 6.831 7.196 9.111 7.516 7.128 7.827 6.963 7.005 7.067 7.301 7.338 6.699 6.769 6.654 6.511
SSIM 0.577 0.574 0.577 0.576 0.491 0.565 0.579 0.568 0.565 0.569 0.580 0.577 0.580 0.632 0.598 0.632 0.632
HVS 16.203 15.918 16.060 16.022 15.492 16.204 15.968 15.910 15.940 15.969 15.978 15.958 15.979 15.819 16.230 16.170 16.204

HVSm 16.415 16.169 16.299 16.276 15.878 16.479 16.217 16.196 16.178 16.207 16.222 16.216 16.231 16.008 16.460 16.376 16.479

Average PSNR 20.433 20.100 20.057 20.097 20.185 20.396 20.198 19.944 19.964 19.957 20.163 20.191 20.062 20.149 20.480 20.488 20.488
Cielab 6.713 7.664 7.275 7.667 9.360 8.120 7.501 8.401 7.380 7.478 7.463 7.715 7.915 7.028 7.131 6.952 6.713
SSIM 0.468 0.461 0.464 0.467 0.397 0.459 0.466 0.455 0.453 0.458 0.466 0.465 0.468 0.502 0.487 0.517 0.517
HVS 16.130 15.608 15.642 15.582 15.573 15.866 15.704 15.407 15.582 15.534 15.688 15.658 15.482 15.632 15.974 15.914 16.130

HVSm 16.365 15.863 15.883 15.842 15.935 16.102 15.958 15.688 15.823 15.773 15.938 15.925 15.730 15.824 16.198 16.114 16.365
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Table A5. Performance metrics of 16 algorithms for CFA 1.0 pattern at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img1 PSNR 24.062 22.760 22.477 22.819 24.434 24.627 23.713 21.142 20.800 22.414 23.883 24.289 23.978 20.767 24.541 23.981 24.627
Cielab 4.744 5.841 5.845 5.673 5.042 5.003 5.215 6.935 7.063 5.989 5.129 4.951 5.118 8.052 4.591 4.880 4.591
SSIM 0.515 0.477 0.491 0.477 0.439 0.457 0.479 0.454 0.479 0.484 0.483 0.475 0.469 0.473 0.515 0.507 0.515
HVS 18.431 17.099 16.867 17.164 18.864 19.066 18.083 15.497 15.202 16.753 18.263 18.613 18.313 15.448 18.973 18.349 19.066

HVSm 18.546 17.204 16.961 17.268 19.113 19.243 18.210 15.580 15.271 16.846 18.392 18.763 18.457 15.513 19.129 18.474 19.243

Img2 PSNR 21.275 19.427 19.995 19.572 21.730 21.477 20.339 19.321 20.237 19.635 19.962 19.445 19.389 20.663 21.735 20.686 21.735
Cielab 5.380 7.063 6.396 6.941 6.184 5.977 6.315 7.429 6.310 6.753 6.544 7.017 7.063 6.034 5.303 5.862 5.303
SSIM 0.618 0.589 0.604 0.591 0.437 0.495 0.587 0.577 0.604 0.603 0.588 0.583 0.569 0.569 0.556 0.598 0.618
HVS 16.740 14.716 15.313 14.895 17.242 16.998 15.672 14.629 15.514 14.882 15.293 14.759 14.714 15.826 17.265 16.064 17.265

HVSm 16.925 14.867 15.471 15.048 17.756 17.311 15.859 14.795 15.685 15.029 15.461 14.910 14.868 15.993 17.562 16.252 17.756

Img3 PSNR 24.501 22.779 22.955 22.680 25.667 20.890 22.377 21.407 22.626 22.421 22.677 23.142 21.532 21.781 23.650 23.060 25.667
Cielab 4.735 6.011 5.719 5.945 4.954 7.635 6.096 6.956 5.987 6.136 5.914 5.708 6.694 6.552 5.287 5.518 4.735
SSIM 0.621 0.587 0.600 0.587 0.541 0.543 0.584 0.567 0.594 0.592 0.588 0.580 0.569 0.596 0.606 0.613 0.621
HVS 19.318 17.432 17.719 17.400 20.394 15.676 17.093 16.139 17.345 17.116 17.405 17.857 16.267 16.611 18.451 17.795 20.394

HVSm 19.511 17.595 17.878 17.561 20.903 15.814 17.248 16.271 17.499 17.259 17.565 18.039 16.404 16.730 18.662 17.957 20.903

Img4 PSNR 18.649 18.098 18.309 18.139 18.014 19.211 18.457 17.664 18.297 18.091 18.259 18.037 18.300 18.204 19.624 19.207 19.624
Cielab 9.054 11.692 10.444 11.854 14.842 12.199 11.358 13.535 10.677 11.069 11.242 12.193 12.142 9.108 8.856 9.346 8.856
SSIM 0.547 0.549 0.556 0.552 0.462 0.521 0.556 0.532 0.539 0.543 0.556 0.548 0.552 0.549 0.614 0.615 0.615
HVS 15.007 13.741 14.149 13.725 13.328 14.832 14.108 13.146 14.307 13.936 13.919 13.586 13.766 14.184 15.219 14.793 15.219

HVSm 15.665 14.330 14.745 14.331 14.109 15.523 14.738 13.757 14.944 14.523 14.506 14.183 14.371 14.739 15.854 15.344 15.854

Img5 PSNR 24.003 21.153 21.271 21.254 23.863 23.594 21.866 20.268 22.705 20.618 21.473 21.810 21.952 21.042 24.021 22.744 24.021
Cielab 4.083 5.776 5.572 5.716 4.759 4.738 5.324 6.549 4.839 6.066 5.535 5.421 5.375 5.646 4.132 4.690 4.083
SSIM 0.402 0.395 0.401 0.391 0.330 0.354 0.392 0.381 0.401 0.395 0.392 0.388 0.381 0.382 0.394 0.410 0.410
HVS 19.898 16.928 17.049 16.997 19.465 19.430 17.609 16.006 18.419 16.358 17.239 17.544 17.694 16.891 19.885 18.547 19.898

HVSm 20.093 17.060 17.171 17.133 19.896 19.690 17.761 16.129 18.590 16.472 17.376 17.699 17.857 16.995 20.148 18.713 20.148

Img6 PSNR 24.506 22.169 22.695 21.335 24.969 21.827 23.096 19.874 22.484 22.207 23.035 22.007 21.419 19.527 24.007 23.127 24.969
Cielab 4.948 6.701 6.024 7.170 5.863 7.237 5.956 8.688 6.253 6.497 5.970 6.734 7.132 8.469 5.321 5.703 4.948
SSIM 0.601 0.585 0.597 0.578 0.467 0.474 0.585 0.551 0.589 0.592 0.587 0.577 0.553 0.493 0.550 0.589 0.601
HVS 20.210 17.732 18.295 16.919 20.785 17.590 18.704 15.494 18.079 17.788 18.656 17.626 17.042 15.055 19.850 18.807 20.785

HVSm 20.581 18.002 18.582 17.148 21.747 17.922 19.033 15.677 18.359 18.049 18.975 17.883 17.281 15.213 20.323 19.126 21.747

Img7 PSNR 25.508 26.688 27.693 27.009 26.075 20.641 26.120 27.019 28.627 28.852 26.942 26.737 26.309 28.942 24.041 26.456 28.942
Cielab 3.809 4.022 3.463 4.014 4.771 7.154 4.154 4.353 3.353 3.351 3.866 4.106 4.225 2.751 4.661 3.653 2.751
SSIM 0.599 0.571 0.589 0.568 0.419 0.445 0.558 0.546 0.586 0.590 0.566 0.560 0.548 0.567 0.537 0.592 0.599
HVS 21.378 22.401 23.479 22.677 21.768 16.403 21.830 22.527 24.261 24.482 22.678 22.401 21.991 24.928 19.898 22.267 24.928

HVSm 21.654 22.837 23.993 23.157 22.468 16.547 22.223 23.103 24.907 25.147 23.141 22.857 22.409 25.637 20.167 22.643 25.637
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Table A5. Cont.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img8 PSNR 24.167 21.382 21.544 22.508 23.014 23.559 21.927 21.292 21.958 21.629 21.620 22.441 22.693 21.167 23.896 22.796 24.167
Cielab 4.405 6.295 5.985 5.665 5.896 5.514 5.878 6.679 5.818 6.058 6.036 5.713 5.582 6.223 4.721 5.165 4.405
SSIM 0.595 0.567 0.578 0.569 0.455 0.490 0.563 0.553 0.578 0.576 0.564 0.563 0.554 0.528 0.558 0.584 0.595
HVS 19.275 16.305 16.521 17.520 18.097 18.735 16.924 16.271 16.871 16.562 16.632 17.441 17.709 16.042 19.073 17.829 19.275

HVSm 19.561 16.508 16.721 17.768 18.706 19.137 17.155 16.499 17.092 16.768 16.845 17.693 17.977 16.201 19.480 18.084 19.561

Img9 PSNR 20.711 19.771 19.658 20.453 20.264 21.547 19.919 18.836 20.097 19.752 19.466 19.483 19.387 19.752 20.938 20.208 21.547
Cielab 4.591 5.415 5.294 5.056 5.577 4.923 5.256 6.142 5.147 5.355 5.470 5.559 5.637 5.110 4.645 4.901 4.591
SSIM 0.353 0.347 0.351 0.347 0.283 0.299 0.344 0.339 0.350 0.351 0.344 0.342 0.334 0.325 0.333 0.354 0.354
HVS 16.305 15.193 15.129 15.885 15.717 17.103 15.384 14.273 15.532 15.161 14.938 14.921 14.839 15.111 16.502 15.721 17.103

HVSm 16.384 15.277 15.204 15.979 15.907 17.250 15.470 14.356 15.618 15.240 15.014 15.004 14.922 15.175 16.620 15.803 17.250

Img10 PSNR 21.655 20.663 20.817 20.558 21.271 22.258 20.907 19.737 21.077 20.908 20.924 20.282 20.625 20.403 21.920 21.293 22.258
Cielab 5.573 6.655 6.319 6.718 6.815 5.987 6.403 7.675 6.211 6.369 6.364 6.908 6.700 6.549 5.568 5.882 5.568
SSIM 0.505 0.506 0.512 0.503 0.402 0.451 0.502 0.493 0.509 0.512 0.504 0.496 0.491 0.478 0.488 0.515 0.515
HVS 17.799 16.734 16.877 16.612 17.353 18.494 16.954 15.781 17.079 16.961 16.992 16.333 16.687 16.405 18.123 17.403 18.494

HVSm 18.025 16.967 17.096 16.828 17.856 18.907 17.197 15.988 17.316 17.187 17.229 16.545 16.918 16.582 18.472 17.650 18.907

Img11 PSNR 21.985 20.968 21.134 20.885 23.983 21.733 20.828 20.448 20.304 20.602 21.079 21.207 20.850 19.660 22.734 21.477 23.983
Cielab 5.855 6.792 6.496 6.816 5.400 6.474 6.779 7.353 7.163 6.958 6.592 6.614 6.866 7.799 5.387 6.181 5.387
SSIM 0.547 0.553 0.558 0.548 0.459 0.457 0.546 0.549 0.545 0.552 0.549 0.548 0.528 0.479 0.524 0.550 0.558
HVS 16.869 15.737 15.956 15.693 19.101 16.665 15.638 15.264 15.116 15.380 15.901 16.032 15.682 14.450 17.731 16.332 19.101

HVSm 17.038 15.886 16.106 15.836 19.588 16.891 15.785 15.405 15.242 15.514 16.053 16.189 15.833 14.561 17.976 16.494 19.588

Img12 PSNR 21.313 20.352 20.365 20.466 20.567 21.303 20.149 19.832 20.138 20.245 20.239 20.191 20.080 20.169 21.271 20.673 21.313
Cielab 5.890 6.877 6.677 6.831 7.079 6.320 6.953 7.538 6.927 6.876 6.865 7.042 7.126 6.890 5.918 6.361 5.890
SSIM 0.665 0.644 0.655 0.640 0.521 0.561 0.635 0.630 0.648 0.650 0.639 0.634 0.620 0.623 0.621 0.652 0.665
HVS 16.820 15.706 15.766 15.854 16.331 17.026 15.539 15.240 15.508 15.625 15.615 15.589 15.504 15.554 16.928 16.131 17.026

HVSm 17.023 15.908 15.956 16.052 16.758 17.377 15.736 15.435 15.696 15.812 15.810 15.785 15.700 15.726 17.228 16.338 17.377

Average PSNR 22.695 21.351 21.576 21.473 22.821 21.889 21.642 20.570 21.613 21.448 21.630 21.589 21.376 21.006 22.698 22.142 22.821
Cielab 5.256 6.595 6.186 6.533 6.432 6.597 6.307 7.486 6.312 6.457 6.294 6.497 6.638 6.599 5.366 5.678 5.256
SSIM 0.548 0.531 0.541 0.529 0.434 0.462 0.527 0.514 0.535 0.537 0.530 0.525 0.514 0.505 0.525 0.548 0.548
HVS 18.171 16.644 16.927 16.779 18.204 17.335 16.962 15.856 16.936 16.750 16.961 16.892 16.684 16.376 18.158 17.503 18.204

HVSm 18.417 16.870 17.157 17.009 18.734 17.634 17.201 16.083 17.185 16.987 17.197 17.129 16.916 16.589 18.468 17.740 18.734
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Table A6. Performance metrics of 16 algorithms for CFA 1.0 pattern at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is generated and before CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those
methods used in ATMF.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img1 PSNR 23.031 22.961 23.014 19.779 23.693 23.008 23.021 23.042 24.013 22.929 23.771 23.032 23.023 23.386 23.369 23.052 24.013
Cielab 5.318 5.428 5.309 7.827 7.040 5.368 5.294 5.346 6.847 5.353 5.998 5.297 5.319 6.179 5.434 5.284 5.284
SSIM 0.501 0.494 0.504 0.407 0.480 0.492 0.505 0.504 0.504 0.500 0.381 0.503 0.500 0.476 0.529 0.506 0.529
HVS 17.374 17.324 17.414 14.126 14.978 17.439 17.425 17.445 15.070 17.321 17.021 17.436 17.433 17.997 16.659 17.399 17.997

HVSm 17.467 17.425 17.513 14.189 15.066 17.545 17.525 17.543 15.123 17.420 17.120 17.535 17.535 18.101 16.730 17.494 18.101

Img2 PSNR 23.061 22.962 23.023 21.568 21.896 22.874 22.940 22.840 22.957 22.915 22.839 22.988 22.980 20.927 23.161 23.028 23.161
Cielab 4.484 4.673 4.501 5.453 6.499 4.700 4.603 4.924 5.157 4.572 6.777 4.580 4.591 5.615 4.484 4.511 4.484
SSIM 0.624 0.621 0.626 0.543 0.453 0.601 0.617 0.610 0.602 0.623 0.558 0.621 0.621 0.580 0.639 0.623 0.639
HVS 18.445 18.283 18.381 16.923 16.751 18.343 18.327 18.269 17.450 18.238 15.575 18.352 18.354 16.197 18.206 18.376 18.445

HVSm 18.709 18.564 18.657 17.189 17.187 18.650 18.622 18.591 17.692 18.510 15.751 18.634 18.637 16.378 18.442 18.649 18.709

Img3 PSNR 26.205 26.075 26.143 24.170 25.313 26.036 26.160 26.186 26.082 26.023 26.719 26.151 26.146 24.836 27.203 26.196 27.203
Cielab 4.161 4.340 4.173 5.661 9.242 4.498 4.174 4.254 8.926 4.222 7.740 4.204 4.199 4.825 5.062 4.179 4.161
SSIM 0.617 0.611 0.617 0.544 0.564 0.603 0.617 0.616 0.599 0.612 0.542 0.614 0.615 0.604 0.637 0.617 0.637
HVS 21.064 20.865 21.083 19.130 16.340 21.062 21.066 21.138 16.553 20.929 17.349 21.073 21.074 19.710 19.512 21.024 21.138

HVSm 21.321 21.135 21.354 19.388 16.514 21.362 21.343 21.417 16.648 21.194 17.488 21.350 21.354 19.907 19.668 21.288 21.417

Img4 PSNR 18.522 18.495 18.558 17.514 17.849 19.158 18.591 18.325 18.315 18.389 18.524 18.540 18.635 18.450 19.433 18.977 19.433
Cielab 9.012 11.186 10.105 11.512 15.350 11.747 11.023 12.891 10.496 10.645 10.966 11.573 11.634 8.903 7.756 10.041 7.756
SSIM 0.538 0.542 0.546 0.547 0.456 0.535 0.546 0.531 0.530 0.538 0.540 0.544 0.547 0.545 0.623 0.572 0.623
HVS 14.883 14.354 14.605 13.073 13.311 14.827 14.424 14.024 14.550 14.421 14.564 14.301 14.299 14.628 15.287 14.785 15.287

HVSm 15.548 15.043 15.284 13.557 14.097 15.510 15.113 14.776 15.238 15.087 15.283 15.010 14.989 15.252 15.834 15.429 15.834

Img5 PSNR 24.681 24.602 24.656 23.772 23.837 24.584 24.645 24.608 24.472 24.502 22.418 24.640 24.630 25.067 24.635 24.663 25.067
Cielab 3.977 4.080 4.001 4.702 5.727 4.095 3.993 4.167 5.292 4.075 5.401 4.020 4.031 3.866 4.065 3.983 3.866
SSIM 0.415 0.413 0.421 0.370 0.336 0.392 0.416 0.415 0.397 0.416 0.344 0.406 0.406 0.394 0.428 0.412 0.428
HVS 20.673 20.659 20.681 19.882 16.348 20.660 20.670 20.649 16.616 20.502 17.281 20.668 20.670 21.219 19.238 20.628 21.219

HVSm 20.894 20.894 20.909 20.132 16.537 20.909 20.906 20.897 16.719 20.732 17.413 20.901 20.903 21.455 19.389 20.852 21.455

Img6 PSNR 23.606 23.510 23.586 20.468 25.365 23.403 23.542 23.500 27.201 23.502 26.690 23.551 23.540 23.002 24.855 23.627 27.201
Cielab 5.342 5.521 5.285 7.780 6.148 5.620 5.342 5.721 4.787 5.359 7.655 5.390 5.403 5.678 4.785 5.291 4.785
SSIM 0.595 0.592 0.598 0.406 0.467 0.565 0.592 0.587 0.597 0.597 0.557 0.591 0.590 0.550 0.617 0.593 0.617
HVS 19.324 19.175 19.271 16.210 19.478 19.266 19.238 19.263 20.498 19.186 20.563 19.284 19.274 18.593 19.805 19.341 20.563

HVSm 19.623 19.500 19.594 16.473 20.168 19.632 19.569 19.609 20.928 19.507 21.046 19.606 19.599 18.872 20.129 19.659 21.046

Img7 PSNR 28.725 28.561 28.687 27.329 24.076 28.515 28.565 28.366 24.864 28.514 24.886 28.648 28.652 28.827 29.358 28.704 29.358
Cielab 3.263 3.415 3.257 4.451 11.499 3.408 3.330 3.539 11.094 3.331 9.514 3.324 3.319 3.142 5.056 3.290 3.142
SSIM 0.601 0.596 0.604 0.475 0.462 0.588 0.596 0.587 0.579 0.600 0.407 0.601 0.601 0.586 0.626 0.602 0.626
HVS 24.587 24.441 24.609 23.213 16.581 24.521 24.507 24.343 16.873 24.356 20.265 24.540 24.544 24.641 21.786 24.504 24.641

HVSm 25.159 25.030 25.203 23.881 16.766 25.137 25.126 25.019 16.975 24.924 20.596 25.136 25.140 25.264 22.046 25.081 25.264
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Table A6. Cont.

Image Metrics Demonet PCSD DLMMSE DDR Bilinear ARI LDI MHC AP AFD LT MLRI ECC SEM F3 ATMF Best Score

Img8 PSNR 24.792 24.692 24.780 22.092 24.479 24.635 24.725 24.511 26.672 24.650 26.793 24.747 24.746 23.793 25.558 24.812 26.793
Cielab 4.200 4.320 4.167 5.688 5.490 4.435 4.223 4.583 4.202 4.237 6.070 4.244 4.246 4.697 3.927 4.178 3.927
SSIM 0.596 0.591 0.598 0.493 0.471 0.568 0.593 0.588 0.583 0.595 0.545 0.592 0.592 0.546 0.614 0.594 0.614
HVS 20.000 19.812 19.967 17.224 18.150 19.952 19.943 19.735 19.380 19.800 18.576 19.990 20.000 19.052 19.902 19.999 20.000

HVSm 20.318 20.153 20.312 17.478 18.747 20.316 20.295 20.135 19.713 20.145 18.878 20.333 20.341 19.325 20.209 20.333 20.341

Img9 PSNR 21.624 21.556 21.595 18.278 21.949 21.543 21.590 21.569 22.360 21.458 22.404 21.589 21.583 22.138 21.896 21.616 22.404
Cielab 4.323 4.463 4.332 6.182 5.251 4.528 4.342 4.535 4.606 4.405 4.468 4.379 4.400 4.093 4.267 4.326 4.093
SSIM 0.360 0.356 0.361 0.328 0.298 0.341 0.358 0.357 0.347 0.355 0.328 0.357 0.356 0.341 0.368 0.359 0.368
HVS 17.121 16.974 17.084 13.731 16.856 17.079 17.086 17.083 17.138 16.935 16.651 17.081 17.081 17.601 17.156 17.101 17.601

HVSm 17.209 17.074 17.181 13.788 17.075 17.184 17.183 17.189 17.250 17.032 16.751 17.178 17.178 17.702 17.246 17.194 17.702

Img10 PSNR 23.095 22.963 23.061 22.382 22.952 22.890 23.019 22.958 24.480 22.951 22.681 23.022 23.013 22.416 23.634 23.075 24.480
Cielab 4.881 5.109 4.938 5.563 8.222 5.206 4.996 5.342 7.131 5.024 5.487 5.028 5.044 5.311 5.178 4.941 4.881
SSIM 0.522 0.518 0.524 0.458 0.411 0.492 0.519 0.517 0.509 0.521 0.483 0.515 0.514 0.495 0.537 0.520 0.537
HVS 19.394 19.277 19.362 18.804 17.217 19.334 19.318 19.298 17.888 19.234 17.825 19.331 19.335 18.595 18.998 19.350 19.394

HVSm 19.687 19.612 19.682 19.192 17.676 19.699 19.654 19.659 18.128 19.553 18.091 19.660 19.663 18.850 19.249 19.662 19.699

Img11 PSNR 24.544 24.443 24.524 20.347 22.336 24.367 24.513 24.455 22.866 24.406 23.946 24.513 24.501 21.471 24.031 24.515 24.544
Cielab 4.532 4.624 4.506 7.035 8.081 4.629 4.502 4.666 7.616 4.546 6.519 4.518 4.530 6.256 4.996 4.480 4.480
SSIM 0.570 0.570 0.575 0.414 0.444 0.535 0.570 0.573 0.542 0.572 0.497 0.567 0.564 0.488 0.586 0.569 0.586
HVS 19.508 19.360 19.494 15.217 14.201 19.469 19.486 19.496 14.371 19.367 15.829 19.516 19.511 16.348 17.637 19.439 19.516

HVSm 19.792 19.654 19.790 15.376 14.348 19.796 19.784 19.805 14.465 19.656 15.975 19.815 19.814 16.507 17.809 19.727 19.815

Img12 PSNR 21.912 21.776 21.850 18.824 19.853 21.620 21.785 21.759 20.630 21.774 20.338 21.815 21.804 21.224 21.573 21.851 21.912
Cielab 5.727 5.920 5.775 8.504 9.940 5.954 5.809 6.005 9.128 5.843 8.534 5.824 5.825 6.284 6.549 5.780 5.727
SSIM 0.670 0.664 0.671 0.536 0.522 0.637 0.667 0.666 0.639 0.668 0.553 0.664 0.664 0.645 0.685 0.668 0.685
HVS 17.331 17.150 17.290 14.096 14.131 17.304 17.230 17.277 14.443 17.203 14.933 17.239 17.265 16.562 16.377 17.251 17.331

HVSm 17.546 17.394 17.528 14.258 14.377 17.589 17.478 17.541 14.574 17.441 15.097 17.484 17.510 16.768 16.544 17.480 17.589

Average PSNR 23.650 23.550 23.623 21.377 22.800 23.553 23.591 23.510 23.743 23.501 23.501 23.603 23.604 22.961 24.059 23.676 24.059
Cielab 4.935 5.257 5.029 6.697 8.207 5.349 5.136 5.498 7.107 5.134 7.094 5.198 5.212 5.404 5.130 5.024 4.935
SSIM 0.551 0.547 0.554 0.460 0.447 0.529 0.550 0.546 0.536 0.550 0.478 0.548 0.547 0.521 0.574 0.553 0.574
HVS 19.142 18.973 19.103 16.802 16.195 19.105 19.060 19.002 16.736 18.958 17.203 19.068 19.070 18.429 18.380 19.100 19.142

HVSm 19.439 19.290 19.417 17.075 16.547 19.444 19.383 19.348 16.954 19.267 17.458 19.387 19.389 18.698 18.608 19.404 19.444
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Appendix C Performance Metrics of CFA 2.0 at 10 dBs. Three Cases: No Denoising, Denoising After Demosaicing, and Denoising Before Demosaicing

Table A7. Performance metrics of 15 algorithms for CFA 2.0 pattern at 10 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
No denoising. Red numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img1 PSNR 21.327 21.371 16.722 18.576 17.315 9.876 18.823 21.463 17.214 9.877 18.802 20.002 17.338 21.893 19.938 21.893
Cielab 7.452 9.952 12.503 9.702 11.123 30.621 9.273 6.961 11.274 30.620 9.340 8.400 12.501 7.409 8.175 6.961
SSIM 0.337 0.299 0.246 0.291 0.283 0.147 0.292 0.342 0.273 0.149 0.292 0.327 0.230 0.349 0.325 0.349
HVS 15.763 15.956 11.156 13.033 11.754 4.285 13.233 15.975 11.667 4.285 13.286 14.414 11.425 16.151 14.320 16.151

HVSm 15.921 16.135 11.216 13.127 11.828 4.299 13.331 16.118 11.739 4.299 13.386 14.531 11.495 16.306 14.431 16.306

Img2 PSNR 20.957 17.291 15.996 15.015 13.413 12.654 15.414 21.453 14.161 12.191 15.155 17.913 16.103 19.891 17.110 21.453
Cielab 6.463 8.846 10.993 11.972 14.656 16.164 11.191 5.249 13.324 17.214 11.539 8.693 10.649 6.492 9.044 5.249
SSIM 0.415 0.536 0.458 0.516 0.476 0.452 0.522 0.510 0.498 0.438 0.516 0.542 0.526 0.511 0.528 0.542
HVS 16.716 12.319 11.402 10.334 8.714 7.955 10.728 16.899 9.476 7.485 10.460 13.297 11.190 15.216 12.402 16.899

HVSm 17.166 12.449 11.500 10.412 8.771 8.004 10.812 17.274 9.542 7.530 10.542 13.448 11.282 15.475 12.528 17.274

Img3 PSNR 23.899 23.611 19.158 20.011 19.140 10.060 20.721 21.040 19.453 18.769 20.694 20.716 20.437 23.196 21.344 23.899
Cielab 6.467 7.470 10.150 8.644 9.589 30.741 8.007 7.253 9.164 9.821 8.035 8.171 8.749 6.536 7.458 6.467
SSIM 0.475 0.439 0.393 0.437 0.427 0.168 0.439 0.460 0.434 0.430 0.439 0.454 0.393 0.478 0.458 0.478
HVS 18.769 18.234 14.126 14.884 14.008 4.849 15.625 15.927 14.316 13.619 15.601 15.552 15.170 17.833 16.157 18.769

HVSm 19.176 18.621 14.268 15.060 14.155 4.873 15.836 16.109 14.473 13.752 15.812 15.748 15.368 18.130 16.374 19.176

Img4 PSNR 17.352 17.566 14.406 15.736 13.779 13.660 15.792 19.056 15.427 12.424 15.990 17.025 16.299 18.186 16.842 19.056
Cielab 10.586 9.224 14.240 12.510 14.807 14.916 11.881 7.034 12.962 17.082 11.713 11.173 10.988 8.377 10.361 7.034
SSIM 0.467 0.573 0.479 0.567 0.523 0.516 0.563 0.574 0.558 0.478 0.566 0.579 0.554 0.564 0.573 0.579
HVS 13.119 12.695 9.993 11.131 9.139 9.040 11.162 14.558 10.851 7.774 11.355 12.451 11.793 13.610 12.206 14.558

HVSm 13.700 13.134 10.225 11.411 9.329 9.228 11.457 15.209 11.118 7.922 11.664 12.833 12.112 14.157 12.578 15.209

Img5 PSNR 23.460 24.755 17.505 19.152 15.615 9.974 19.893 25.274 19.051 14.578 19.853 21.939 19.066 25.080 21.850 25.274
Cielab 5.178 5.052 9.497 7.598 11.255 24.178 6.970 3.781 7.699 12.790 7.004 5.897 7.755 4.280 5.653 3.781
SSIM 0.309 0.343 0.298 0.337 0.321 0.215 0.338 0.371 0.333 0.313 0.338 0.346 0.309 0.361 0.352 0.371
HVS 19.194 20.086 13.354 14.936 11.400 5.767 15.617 20.922 14.847 10.369 15.592 17.685 14.974 20.639 17.543 20.922

HVSm 19.615 20.603 13.454 15.085 11.467 5.790 15.793 21.385 14.999 10.423 15.769 17.958 15.135 21.135 17.790 21.385

Img6 PSNR 22.213 23.056 19.422 20.426 17.395 18.383 20.682 22.965 19.944 10.270 21.100 21.595 20.408 23.692 21.875 23.692
Cielab 8.079 8.951 10.903 9.271 12.172 10.907 8.928 5.931 9.684 33.056 8.707 8.539 9.035 6.924 7.739 5.931
SSIM 0.394 0.453 0.391 0.462 0.430 0.440 0.462 0.466 0.456 0.106 0.463 0.469 0.427 0.469 0.475 0.475
HVS 18.020 19.167 15.215 16.134 13.061 14.095 16.446 18.552 15.665 5.870 16.866 17.274 16.169 19.410 17.544 19.410

HVSm 18.602 19.849 15.460 16.455 13.218 14.293 16.801 19.069 15.959 5.914 17.254 17.695 16.493 20.090 17.977 20.090
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Table A7. Cont.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img7 PSNR 22.103 22.302 18.041 19.603 19.144 18.824 20.214 22.994 19.432 18.980 20.098 20.504 18.245 22.677 20.956 22.994
Cielab 6.815 6.217 10.421 8.445 8.893 9.120 7.833 5.017 8.597 8.982 7.915 7.800 9.344 5.714 7.085 5.017
SSIM 0.352 0.435 0.346 0.426 0.420 0.414 0.428 0.416 0.421 0.418 0.428 0.429 0.395 0.429 0.432 0.435
HVS 17.794 17.927 13.788 15.297 14.848 14.527 15.903 18.701 15.123 14.672 15.783 16.177 13.991 18.322 16.612 18.701

HVSm 18.092 18.219 13.893 15.459 14.990 14.665 16.088 18.997 15.286 14.817 15.964 16.372 14.105 18.606 16.815 18.997

Img8 PSNR 20.857 21.745 17.623 17.685 15.657 15.736 18.362 21.732 17.586 14.888 17.983 19.656 19.427 21.877 19.609 21.877
Cielab 7.110 7.104 10.341 9.807 12.411 12.212 8.912 5.550 9.964 13.532 9.270 8.123 8.154 6.049 7.643 5.550
SSIM 0.404 0.465 0.402 0.462 0.433 0.435 0.464 0.466 0.459 0.423 0.462 0.467 0.454 0.471 0.473 0.473
HVS 16.202 16.414 12.752 12.752 10.707 10.800 13.431 16.862 12.673 9.934 13.044 14.776 14.216 16.799 14.612 16.862

HVSm 16.618 16.785 12.896 12.895 10.799 10.894 13.601 17.241 12.816 10.014 13.202 15.007 14.415 17.198 14.834 17.241

Img9 PSNR 16.523 16.389 14.225 15.033 13.535 10.086 15.006 17.473 13.588 10.088 15.052 16.223 14.185 17.312 15.983 17.473
Cielab 7.848 10.368 10.320 9.088 10.806 16.781 8.970 6.704 10.743 16.796 8.921 8.024 10.382 7.451 8.009 6.704
SSIM 0.267 0.284 0.290 0.320 0.308 0.267 0.321 0.318 0.310 0.268 0.321 0.321 0.303 0.310 0.323 0.323
HVS 12.051 12.024 9.766 10.540 9.033 5.572 10.521 12.983 9.088 5.573 10.567 11.735 9.527 12.761 11.468 12.983

HVSm 12.140 12.117 9.810 10.595 9.074 5.592 10.577 13.061 9.129 5.594 10.624 11.808 9.574 12.853 11.534 13.061

Img10 PSNR 18.229 21.926 17.840 18.900 16.362 10.026 19.173 19.947 18.160 16.156 19.452 19.498 17.287 20.179 19.511 21.926
Cielab 8.997 6.476 9.942 8.558 11.191 26.220 8.129 6.807 9.285 11.406 7.936 8.087 9.885 6.875 7.676 6.476
SSIM 0.356 0.438 0.393 0.439 0.414 0.217 0.440 0.442 0.433 0.414 0.440 0.438 0.414 0.435 0.442 0.442
HVS 14.317 18.148 13.989 14.921 12.398 6.054 15.226 15.858 14.207 12.206 15.487 15.508 13.402 16.235 15.513 18.148

HVSm 14.579 18.675 14.163 15.147 12.527 6.100 15.480 16.137 14.401 12.330 15.754 15.774 13.569 16.567 15.777 18.675

Img11 PSNR 21.302 22.122 14.884 18.280 15.766 10.057 18.741 18.457 17.080 10.058 18.764 19.323 16.771 20.924 19.363 22.122
Cielab 7.307 7.607 14.732 9.731 12.895 28.725 9.109 8.890 11.083 28.726 9.084 8.749 11.725 7.189 8.449 7.189
SSIM 0.428 0.486 0.364 0.476 0.441 0.209 0.479 0.447 0.465 0.211 0.479 0.485 0.426 0.483 0.487 0.487
HVS 16.406 16.925 9.689 13.151 10.590 4.835 13.656 13.304 11.928 4.836 13.679 14.209 11.353 15.642 14.214 16.925

HVSm 16.685 17.215 9.745 13.270 10.656 4.857 13.790 13.426 12.019 4.858 13.814 14.360 11.435 15.848 14.361 17.215

Img12 PSNR 18.447 20.654 16.774 17.572 16.278 16.224 17.981 20.286 17.158 16.057 17.983 18.263 17.382 20.081 18.523 20.654
Cielab 8.810 6.320 11.277 10.028 11.656 11.690 9.220 7.070 10.550 11.940 9.221 9.272 10.087 6.672 8.588 6.320
SSIM 0.466 0.544 0.462 0.532 0.508 0.508 0.534 0.547 0.527 0.508 0.534 0.539 0.500 0.546 0.544 0.547
HVS 14.210 16.192 12.303 13.030 11.700 11.653 13.474 16.189 12.610 11.473 13.476 13.776 12.679 15.747 14.060 16.192

HVSm 14.478 16.541 12.433 13.187 11.817 11.771 13.652 16.488 12.755 11.586 13.654 13.966 12.819 16.053 14.260 16.541

Average PSNR 20.556 21.066 16.883 17.999 16.116 12.963 18.400 21.012 17.355 13.695 18.411 19.388 17.746 21.249 19.409 21.249
Cielab 7.593 7.799 11.277 9.613 11.788 19.356 9.035 6.354 10.361 17.664 9.057 8.411 9.938 6.664 7.990 6.354
SSIM 0.389 0.441 0.377 0.439 0.415 0.332 0.440 0.447 0.431 0.346 0.440 0.450 0.411 0.450 0.451 0.451
HVS 16.047 16.341 12.294 13.345 11.446 8.286 13.752 16.394 12.704 9.008 13.766 14.738 12.991 16.531 14.721 16.531

HVSm 16.398 16.695 12.422 13.509 11.553 8.364 13.935 16.710 12.853 9.086 13.953 14.958 13.150 16.868 14.938 16.868
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Table A8. Performance metrics of 15 algorithms for CFA 2.0 pattern at 10 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img1 PSNR 21.851 20.547 23.765 20.497 20.075 9.840 20.390 24.599 19.824 9.826 20.469 20.867 22.365 23.644 22.426 24.599
Cielab 6.748 7.632 5.524 7.672 7.990 30.675 7.599 5.214 8.266 30.756 7.596 7.397 8.142 6.065 6.259 5.214
SSIM 0.398 0.409 0.411 0.408 0.405 0.137 0.405 0.415 0.410 0.137 0.406 0.402 0.421 0.426 0.426 0.426
HVS 16.351 14.952 18.313 14.897 14.485 4.246 14.843 19.231 14.212 4.231 14.944 15.294 15.931 17.792 16.767 19.231

HVSm 16.469 15.035 18.467 14.978 14.558 4.260 14.924 19.427 14.279 4.245 15.026 15.383 16.040 17.934 16.881 19.427

Img2 PSNR 15.730 19.573 21.429 18.567 15.454 15.097 18.051 21.691 18.599 15.282 18.319 18.728 21.918 21.743 20.235 21.918
Cielab 10.739 7.161 5.416 7.929 11.187 11.712 8.218 5.245 7.944 11.457 7.986 7.805 5.653 5.197 6.188 5.197
SSIM 0.322 0.479 0.371 0.467 0.420 0.418 0.454 0.378 0.477 0.426 0.456 0.445 0.494 0.425 0.429 0.494
HVS 11.151 14.984 17.369 13.978 10.788 10.426 13.503 17.567 14.017 10.615 13.764 14.191 16.830 17.313 15.810 17.567

HVSm 11.262 15.201 17.736 14.144 10.879 10.506 13.654 17.967 14.179 10.697 13.925 14.368 17.153 17.674 16.063 17.967

Img3 PSNR 26.078 26.728 23.969 26.790 25.192 18.462 26.974 26.122 25.374 24.820 27.008 26.613 28.780 26.438 26.644 28.780
Cielab 5.262 5.023 5.716 4.990 5.528 9.799 4.964 4.700 5.462 5.687 4.964 5.085 4.703 4.742 4.658 4.658
SSIM 0.517 0.545 0.520 0.546 0.541 0.500 0.539 0.536 0.547 0.544 0.539 0.536 0.567 0.554 0.548 0.567
HVS 21.167 21.514 18.885 21.586 20.054 13.221 22.030 21.269 20.126 19.593 22.052 21.537 22.963 21.137 21.670 22.963

HVSm 21.673 22.024 19.162 22.097 20.397 13.310 22.603 21.731 20.484 19.900 22.630 22.046 23.671 21.576 22.166 23.671

Img4 PSNR 14.252 16.945 20.172 17.361 14.775 14.800 17.334 19.936 17.013 14.204 17.379 17.047 19.850 20.181 18.835 20.181
Cielab 14.137 11.781 7.479 11.548 13.706 13.768 11.124 7.672 11.942 14.507 11.095 11.502 7.645 6.877 8.577 6.877
SSIM 0.446 0.607 0.582 0.611 0.562 0.560 0.602 0.592 0.605 0.545 0.602 0.591 0.659 0.636 0.618 0.659
HVS 9.784 12.297 16.362 12.729 10.120 10.135 12.833 15.957 12.398 9.532 12.866 12.450 15.169 15.970 14.508 16.362

HVSm 10.009 12.613 17.067 13.070 10.330 10.347 13.189 16.607 12.717 9.722 13.226 12.782 15.684 16.573 14.976 17.067

Img5 PSNR 22.830 24.509 20.605 23.176 20.248 10.542 24.920 25.692 22.702 20.935 24.815 24.573 26.029 23.911 25.078 26.029
Cielab 5.195 4.507 6.070 5.023 6.580 22.041 4.356 3.637 5.271 6.190 4.384 4.498 4.002 4.304 3.961 3.637
SSIM 0.304 0.349 0.303 0.345 0.336 0.188 0.343 0.319 0.349 0.343 0.342 0.339 0.354 0.333 0.343 0.354
HVS 18.698 20.201 16.401 18.902 16.003 6.330 20.739 21.590 18.438 16.685 20.605 20.334 21.581 19.681 20.900 21.590

HVSm 18.962 20.509 16.539 19.129 16.132 6.355 21.082 22.020 18.637 16.821 20.943 20.654 22.016 19.956 21.249 22.020

Img6 PSNR 22.651 22.136 21.996 21.806 21.656 20.947 22.115 23.827 21.035 10.433 22.211 22.129 24.748 23.591 22.978 24.748
Cielab 7.369 7.523 6.774 7.672 7.773 8.175 7.713 5.605 8.191 31.690 7.667 7.542 5.873 5.684 6.342 5.605
SSIM 0.345 0.405 0.308 0.402 0.399 0.399 0.392 0.326 0.406 0.068 0.391 0.384 0.412 0.359 0.371 0.412
HVS 18.615 17.813 17.734 17.448 17.396 16.631 17.931 19.850 16.675 6.031 18.043 17.841 20.048 19.308 18.825 20.048

HVSm 19.162 18.241 18.142 17.859 17.763 16.952 18.391 20.526 17.015 6.079 18.514 18.292 20.761 19.890 19.361 20.761

Img7 PSNR 25.449 27.122 26.669 27.072 26.753 26.654 26.864 28.644 26.730 26.622 26.974 26.554 29.734 28.787 28.143 29.734
Cielab 5.218 4.671 3.782 4.686 4.720 4.787 4.705 3.199 4.792 4.794 4.683 4.861 3.095 2.924 3.618 2.924
SSIM 0.340 0.430 0.352 0.429 0.429 0.431 0.419 0.354 0.435 0.434 0.419 0.409 0.468 0.409 0.412 0.468
HVS 21.471 22.793 23.044 22.768 22.505 22.386 22.753 25.676 22.430 22.366 22.839 22.359 25.838 25.405 24.467 25.838

HVSm 22.058 23.523 23.774 23.485 23.161 23.020 23.473 27.150 23.083 22.990 23.576 23.017 27.274 26.696 25.504 27.274
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Table A8. Cont.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img8 PSNR 19.788 22.457 26.111 22.267 20.561 20.092 21.649 23.797 22.039 16.385 21.651 22.745 26.636 25.708 23.643 26.636
Cielab 7.727 6.147 3.900 6.237 7.217 7.535 6.452 4.757 6.406 11.124 6.463 6.041 4.216 3.969 4.942 3.900
SSIM 0.388 0.472 0.400 0.470 0.457 0.459 0.453 0.397 0.477 0.413 0.453 0.454 0.484 0.439 0.444 0.484
HVS 15.132 17.547 22.356 17.389 15.676 15.180 16.912 19.571 17.168 11.416 16.891 18.001 20.985 21.119 19.045 22.356

HVSm 15.369 17.881 23.276 17.697 15.888 15.368 17.199 20.087 17.457 11.512 17.179 18.364 21.683 21.813 19.484 23.276

Img9 PSNR 15.221 17.637 21.888 18.082 15.285 10.088 18.038 20.030 18.123 9.973 17.912 18.294 24.056 21.906 19.581 24.056
Cielab 8.890 6.846 4.484 6.556 8.739 16.634 6.524 5.255 6.596 16.903 6.600 6.448 4.382 4.521 5.456 4.382
SSIM 0.248 0.299 0.282 0.301 0.285 0.226 0.299 0.280 0.305 0.225 0.299 0.291 0.306 0.295 0.289 0.306
HVS 10.748 13.145 17.581 13.592 10.786 5.568 13.596 15.636 13.634 5.451 13.468 13.816 18.994 17.351 15.147 18.994

HVSm 10.797 13.213 17.737 13.666 10.829 5.587 13.670 15.742 13.705 5.470 13.540 13.894 19.224 17.501 15.243 19.224

Img10 PSNR 18.844 19.638 20.696 20.101 19.045 10.169 20.051 21.779 19.183 18.838 20.062 19.812 21.276 21.318 20.819 21.779
Cielab 8.429 7.793 6.539 7.470 8.233 25.440 7.410 5.726 8.236 8.422 7.404 7.655 6.338 5.923 6.407 5.726
SSIM 0.341 0.409 0.355 0.413 0.403 0.169 0.403 0.361 0.415 0.410 0.402 0.392 0.408 0.382 0.392 0.415
HVS 14.989 15.641 16.837 16.072 15.084 6.192 16.136 18.021 15.169 14.861 16.154 15.841 17.321 17.471 16.957 18.021

HVSm 15.241 15.900 17.133 16.370 15.302 6.242 16.442 18.449 15.409 15.070 16.460 16.127 17.705 17.834 17.298 18.449

Img11 PSNR 17.733 20.639 17.751 20.587 16.904 10.118 20.714 19.417 20.477 10.101 20.720 20.593 21.200 19.397 20.087 21.200
Cielab 9.974 7.458 9.812 7.494 10.969 28.241 7.313 7.958 7.618 28.326 7.308 7.488 7.318 8.114 7.466 7.308
SSIM 0.326 0.411 0.281 0.411 0.362 0.132 0.401 0.298 0.424 0.132 0.401 0.391 0.390 0.332 0.367 0.424
HVS 12.648 15.568 12.798 15.515 11.750 4.896 15.759 14.422 15.393 4.879 15.764 15.567 15.544 14.223 15.047 15.764

HVSm 12.755 15.754 12.903 15.698 11.831 4.920 15.954 14.575 15.568 4.903 15.960 15.754 15.741 14.366 15.215 15.960

Img12 PSNR 17.845 18.769 18.577 18.853 17.887 17.786 19.128 18.183 18.279 17.866 19.141 18.931 22.005 19.522 18.943 22.005
Cielab 9.365 8.497 9.235 8.423 9.341 9.485 7.940 9.671 9.021 9.410 7.931 8.355 5.750 7.872 8.329 5.750
SSIM 0.424 0.507 0.451 0.508 0.492 0.496 0.500 0.454 0.508 0.500 0.500 0.496 0.543 0.493 0.488 0.543
HVS 13.559 14.290 14.472 14.382 13.389 13.262 14.773 14.080 13.772 13.343 14.786 14.531 17.480 15.304 14.691 17.480

HVSm 13.753 14.499 14.655 14.595 13.557 13.428 15.007 14.250 13.957 13.510 15.020 14.752 17.868 15.524 14.898 17.868

Average PSNR 19.856 21.392 21.969 21.263 19.486 15.383 21.352 22.810 20.781 16.274 21.388 21.407 24.050 23.012 22.284 24.050
Cielab 8.254 7.087 6.228 7.142 8.499 15.691 7.027 5.720 7.479 14.939 7.007 7.056 5.593 5.516 6.017 5.516
SSIM 0.367 0.443 0.385 0.443 0.424 0.343 0.434 0.393 0.447 0.348 0.434 0.427 0.459 0.423 0.427 0.459
HVS 15.360 16.729 17.679 16.605 14.836 10.706 16.817 18.572 16.119 11.584 16.848 16.813 19.057 18.506 17.820 19.057

HVSm 15.626 17.033 18.049 16.899 15.052 10.858 17.132 19.044 16.374 11.743 17.167 17.119 19.568 18.945 18.195 19.568
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Table A9. Performance metrics of 15 algorithms for CFA 2.0 pattern at 10 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is generated and before CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those
methods used in ATMF.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img1 PSNR 23.140 23.351 29.936 23.350 23.323 22.236 23.196 23.016 23.381 22.135 23.206 23.285 19.638 25.894 23.374 29.936
Cielab 5.428 5.387 3.648 5.389 5.438 5.496 5.311 5.904 5.402 5.502 5.381 5.397 10.881 4.378 5.379 3.648
SSIM 0.427 0.444 0.413 0.444 0.438 0.444 0.441 0.420 0.445 0.443 0.442 0.437 0.337 0.440 0.441 0.445
HVS 17.803 17.885 25.070 17.887 17.875 17.889 17.628 17.558 17.897 17.895 17.767 17.871 13.116 20.540 17.919 25.070

HVSm 17.978 18.023 26.012 18.025 18.015 18.031 17.760 17.705 18.039 18.037 17.903 18.019 13.183 20.795 18.057 26.012

Img2 PSNR 23.275 24.463 25.608 24.451 24.432 24.396 24.207 23.964 24.410 24.406 24.249 24.288 19.799 25.211 24.440 25.608
Cielab 4.368 4.009 3.489 4.037 4.078 4.085 4.062 4.071 4.065 4.089 4.050 4.106 8.996 3.683 4.032 3.489
SSIM 0.371 0.501 0.365 0.500 0.499 0.499 0.497 0.449 0.500 0.499 0.496 0.482 0.485 0.466 0.495 0.501
HVS 19.601 20.444 21.742 20.508 20.469 20.527 20.216 19.815 20.528 20.519 20.239 20.413 14.253 21.368 20.502 21.742

HVSm 20.483 21.144 23.258 21.186 21.154 21.216 20.851 20.573 21.226 21.215 20.887 21.130 14.425 22.351 21.202 23.258

Img3 PSNR 29.219 30.272 27.457 30.264 30.148 29.947 30.211 30.022 29.956 29.922 30.212 30.028 24.983 29.616 30.194 30.272
Cielab 4.215 4.092 4.625 4.096 4.206 4.034 4.126 4.229 4.096 4.038 4.127 4.149 9.293 4.121 4.101 4.034
SSIM 0.553 0.581 0.533 0.581 0.577 0.577 0.578 0.574 0.577 0.576 0.578 0.574 0.534 0.573 0.578 0.581
HVS 25.352 25.676 22.765 25.668 25.651 25.077 25.763 25.573 24.940 24.999 25.765 25.646 18.079 25.083 25.671 25.765

HVSm 26.827 26.969 23.507 26.957 26.949 26.360 27.040 26.766 26.218 26.278 27.043 26.964 18.303 26.158 26.952 27.043

Img4 PSNR 18.902 20.448 20.769 20.445 20.421 20.400 20.007 19.808 20.367 20.419 20.016 20.298 18.256 20.826 20.427 20.826
Cielab 8.187 7.609 5.978 7.608 7.607 7.574 7.597 6.533 7.788 7.583 7.597 7.598 9.116 6.567 7.454 5.978
SSIM 0.496 0.659 0.556 0.659 0.656 0.649 0.648 0.612 0.650 0.649 0.648 0.644 0.622 0.645 0.654 0.659
HVS 15.009 15.892 16.480 15.904 15.904 15.960 15.452 15.292 15.918 15.956 15.446 15.819 13.382 16.408 15.919 16.480

HVSm 15.823 16.474 17.450 16.483 16.483 16.571 16.010 15.948 16.527 16.574 16.008 16.435 13.760 17.109 16.516 17.450

Img5 PSNR 25.741 26.541 29.484 26.539 26.510 26.526 26.254 26.142 26.529 26.529 26.286 26.421 24.706 28.499 26.559 29.484
Cielab 4.111 3.984 3.170 3.977 3.981 3.977 4.069 4.165 3.976 3.979 4.040 3.983 5.784 3.448 3.948 3.170
SSIM 0.311 0.359 0.309 0.359 0.357 0.359 0.356 0.342 0.357 0.357 0.355 0.351 0.343 0.347 0.357 0.359
HVS 22.246 22.884 25.186 22.907 22.880 22.966 22.427 22.240 22.976 22.968 22.517 22.828 20.680 24.907 22.933 25.186

HVSm 22.971 23.402 26.502 23.418 23.398 23.478 22.904 22.795 23.493 23.486 23.010 23.379 21.042 25.840 23.459 26.502

Img6 PSNR 23.088 23.723 25.583 23.724 23.703 23.731 23.508 23.441 23.737 23.737 23.512 23.615 22.754 25.854 23.734 25.854
Cielab 6.132 5.875 5.483 5.875 5.946 5.885 5.964 5.892 5.904 5.896 5.943 5.955 8.990 5.051 5.850 5.051
SSIM 0.343 0.419 0.334 0.419 0.416 0.420 0.415 0.395 0.421 0.420 0.413 0.404 0.392 0.399 0.416 0.421
HVS 19.339 19.793 21.154 19.754 19.821 19.854 19.640 19.349 19.823 19.861 19.560 19.677 17.537 21.913 19.819 21.913

HVSm 20.049 20.382 22.268 20.358 20.396 20.451 20.239 19.947 20.428 20.460 20.149 20.310 17.896 23.013 20.428 23.013

Img7 PSNR 27.573 28.663 26.642 28.670 28.651 28.567 28.713 28.442 28.549 28.538 28.704 28.551 27.221 28.140 28.634 28.713
Cielab 4.093 3.913 4.282 3.917 3.932 3.940 3.901 3.823 3.940 3.945 3.895 3.946 6.245 3.955 3.921 3.823
SSIM 0.383 0.471 0.352 0.471 0.470 0.470 0.468 0.439 0.470 0.470 0.468 0.461 0.472 0.442 0.467 0.472
HVS 24.417 25.300 23.045 25.310 25.323 25.248 25.407 25.044 25.210 25.200 25.335 25.221 23.141 24.774 25.293 25.407

HVSm 25.705 26.503 23.985 26.510 26.525 26.464 26.643 26.298 26.426 26.412 26.550 26.441 23.815 25.906 26.501 26.643
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Table A9. Cont.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img8 PSNR 25.700 28.638 25.487 28.631 28.541 28.305 28.019 27.100 28.254 28.110 28.066 28.153 23.487 29.044 28.590 29.044
Cielab 3.818 3.430 3.979 3.435 3.512 3.483 3.532 3.533 3.486 3.499 3.538 3.546 6.829 3.196 3.431 3.196
SSIM 0.419 0.500 0.402 0.500 0.498 0.499 0.492 0.466 0.499 0.497 0.493 0.487 0.488 0.477 0.496 0.500
HVS 22.587 25.014 21.187 25.085 25.115 24.804 24.412 23.380 24.681 24.560 24.407 24.743 17.232 25.593 25.156 25.593

HVSm 24.272 26.535 22.111 26.573 26.612 26.410 25.715 24.853 26.283 26.178 25.723 26.347 17.518 27.576 26.722 27.576

Img9 PSNR 24.641 25.350 28.287 25.359 25.324 23.294 25.127 25.085 25.343 23.057 25.122 25.281 20.685 26.471 25.354 28.287
Cielab 3.622 3.439 2.892 3.437 3.461 3.627 3.485 3.565 3.458 3.716 3.487 3.450 6.556 3.151 3.425 2.892
SSIM 0.262 0.308 0.269 0.308 0.307 0.303 0.308 0.297 0.303 0.299 0.308 0.301 0.335 0.298 0.306 0.335
HVS 20.756 21.185 24.488 21.190 21.198 21.232 20.970 20.898 21.222 21.235 20.961 21.139 15.254 22.422 21.207 24.488

HVSm 21.273 21.507 25.499 21.516 21.510 21.557 21.284 21.256 21.548 21.563 21.275 21.492 15.357 22.890 21.535 25.499

Img10 PSNR 21.019 21.559 23.828 21.557 21.546 21.588 21.373 21.344 21.588 21.593 21.369 21.452 21.136 22.418 21.562 23.828
Cielab 6.424 6.203 4.859 6.204 6.245 6.217 6.219 6.175 6.258 6.221 6.222 6.257 7.717 5.596 6.179 4.859
SSIM 0.344 0.416 0.329 0.416 0.414 0.420 0.413 0.392 0.420 0.419 0.410 0.401 0.423 0.394 0.412 0.423
HVS 17.573 17.999 20.172 17.959 18.028 18.099 17.820 17.699 18.056 18.105 17.767 17.885 17.069 18.855 18.005 20.172

HVSm 18.098 18.390 21.151 18.367 18.405 18.479 18.230 18.128 18.450 18.486 18.173 18.323 17.389 19.402 18.416 21.151

Img11 PSNR 22.208 22.587 26.803 22.587 22.561 22.576 22.449 22.376 22.609 22.503 22.445 22.508 21.889 24.400 22.597 26.803
Cielab 5.871 5.763 4.455 5.768 5.804 5.790 5.760 5.890 5.774 5.791 5.758 5.778 8.237 4.967 5.747 4.455
SSIM 0.345 0.401 0.314 0.401 0.398 0.407 0.397 0.379 0.409 0.408 0.396 0.387 0.392 0.379 0.398 0.409
HVS 17.820 18.015 22.732 18.015 18.026 18.051 17.882 17.794 18.050 18.052 17.875 17.980 15.775 20.053 18.047 22.732

HVSm 18.187 18.323 24.017 18.323 18.329 18.358 18.184 18.119 18.358 18.361 18.177 18.303 15.971 20.588 18.357 24.017

Img12 PSNR 21.005 21.728 23.810 21.721 21.694 21.713 21.518 21.493 21.726 21.730 21.519 21.624 18.447 22.610 21.726 23.810
Cielab 6.388 6.222 4.853 6.227 6.251 6.226 6.149 6.024 6.257 6.226 6.150 6.237 11.058 5.558 6.196 4.853
SSIM 0.457 0.543 0.448 0.543 0.541 0.544 0.536 0.519 0.545 0.544 0.536 0.532 0.530 0.519 0.539 0.545
HVS 17.545 17.859 20.616 17.852 17.865 17.880 17.635 17.704 17.876 17.890 17.636 17.828 12.909 18.969 17.889 20.616

HVSm 18.103 18.298 21.697 18.290 18.298 18.331 18.061 18.149 18.327 18.342 18.062 18.284 13.036 19.556 18.331 21.697

Average PSNR 23.793 24.777 26.141 24.775 24.738 24.440 24.548 24.353 24.704 24.390 24.559 24.625 21.917 25.749 24.766 26.141
Cielab 5.221 4.994 4.310 4.997 5.038 5.028 5.014 4.984 5.034 5.040 5.016 5.033 8.309 4.473 4.972 4.310
SSIM 0.393 0.467 0.385 0.467 0.464 0.466 0.462 0.440 0.466 0.465 0.462 0.455 0.446 0.448 0.463 0.467
HVS 20.004 20.662 22.053 20.670 20.679 20.632 20.438 20.196 20.598 20.603 20.440 20.587 16.536 21.741 20.696 22.053

HVSm 20.814 21.329 23.121 21.334 21.339 21.309 21.077 20.878 21.277 21.283 21.080 21.286 16.808 22.599 21.373 23.121
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Appendix D Performance Metrics of CFA 2.0 at 20 dBs. Three Cases: No Denoising, Denoising After Demosaicing, and Denoising Before Demosaicing

Table A10. Performance metrics of 15 algorithms for CFA 2.0 pattern at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
No denoising. Red numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img1 PSNR 22.120 22.858 20.035 20.244 20.216 20.145 20.137 22.578 20.228 20.156 20.194 20.885 19.714 23.149 21.335 23.149
Cielab 6.263 8.793 8.357 7.663 7.736 7.960 7.586 6.146 7.742 7.963 7.593 7.127 9.542 6.363 6.866 6.146
SSIM 0.435 0.416 0.358 0.411 0.402 0.383 0.412 0.443 0.391 0.386 0.412 0.441 0.331 0.459 0.455 0.459
HVS 16.684 17.620 14.567 14.719 14.701 14.710 14.536 17.109 14.719 14.710 14.691 15.359 13.660 17.448 15.702 17.620

HVSm 16.830 17.797 14.655 14.804 14.793 14.803 14.618 17.254 14.810 14.804 14.777 15.455 13.742 17.603 15.802 17.797

Img2 PSNR 21.849 20.770 20.149 20.295 20.275 20.256 20.071 23.069 20.268 20.274 20.099 20.250 20.415 22.250 21.080 23.069
Cielab 5.661 6.576 7.041 6.660 6.756 6.719 6.613 4.394 6.707 6.716 6.600 6.697 6.489 5.068 5.728 4.394
SSIM 0.446 0.596 0.552 0.619 0.615 0.610 0.617 0.560 0.614 0.613 0.616 0.606 0.625 0.558 0.616 0.625
HVS 17.738 15.573 15.792 15.694 15.683 15.702 15.455 18.511 15.690 15.698 15.461 15.670 15.424 17.541 16.370 18.511

HVSm 18.269 15.812 15.993 15.890 15.880 15.904 15.640 19.009 15.896 15.903 15.652 15.878 15.595 17.946 16.614 19.009

Img3 PSNR 25.681 26.436 20.258 22.666 20.559 20.442 23.425 21.575 20.978 20.455 23.432 24.301 24.496 25.431 24.369 26.436
Cielab 4.951 6.180 8.299 6.281 7.863 7.899 5.800 6.772 7.425 7.900 5.807 5.537 5.829 5.274 5.337 4.951
SSIM 0.550 0.530 0.487 0.537 0.522 0.523 0.538 0.546 0.529 0.526 0.538 0.550 0.491 0.565 0.568 0.568
HVS 20.815 21.860 15.194 17.522 15.402 15.276 18.318 16.395 15.807 15.281 18.336 19.201 19.161 20.038 19.112 21.860

HVSm 21.308 22.461 15.314 17.713 15.525 15.391 18.554 16.552 15.937 15.396 18.574 19.482 19.460 20.400 19.369 22.461

Img4 PSNR 17.977 18.314 18.351 18.932 18.889 18.896 18.506 20.318 18.887 18.936 18.515 18.915 18.738 19.088 19.116 20.318
Cielab 10.000 8.738 10.608 9.977 9.885 9.784 9.759 6.354 10.130 9.769 9.769 9.788 8.879 7.796 8.445 6.354
SSIM 0.482 0.598 0.542 0.615 0.611 0.605 0.608 0.601 0.609 0.609 0.608 0.612 0.589 0.588 0.623 0.623
HVS 13.822 13.437 14.596 14.416 14.403 14.476 13.925 15.894 14.429 14.469 13.915 14.371 14.530 14.551 14.540 15.894

HVSm 14.491 13.925 15.165 14.955 14.950 15.048 14.430 16.726 14.996 15.044 14.421 14.922 15.068 15.195 15.100 16.726

Img5 PSNR 23.955 26.083 20.339 20.444 20.428 20.431 21.030 26.187 20.437 20.441 20.711 22.974 22.212 26.486 23.352 26.486
Cielab 4.549 4.410 6.857 6.396 6.427 6.420 5.956 3.410 6.429 6.420 6.152 5.030 5.479 3.671 4.606 3.410
SSIM 0.349 0.406 0.367 0.403 0.400 0.395 0.403 0.433 0.397 0.397 0.403 0.409 0.374 0.420 0.437 0.437
HVS 19.830 21.245 16.261 16.225 16.219 16.244 16.742 21.793 16.239 16.243 16.449 18.746 18.136 22.027 19.084 22.027

HVSm 20.246 21.775 16.400 16.365 16.358 16.383 16.902 22.258 16.382 16.385 16.602 18.991 18.370 22.597 19.329 22.597

Img6 PSNR 24.142 23.857 20.521 23.503 20.397 20.656 23.702 26.235 22.280 20.440 24.036 23.800 21.880 26.350 24.788 26.350
Cielab 5.846 8.168 8.534 6.273 8.343 8.032 6.138 4.307 7.008 8.218 6.003 6.172 7.186 5.473 5.263 4.307
SSIM 0.485 0.594 0.548 0.632 0.604 0.604 0.631 0.603 0.621 0.605 0.631 0.621 0.608 0.593 0.636 0.636
HVS 20.412 20.226 16.301 19.221 16.100 16.391 19.528 21.755 18.024 16.162 19.832 19.542 17.328 22.378 20.485 22.378

HVSm 21.252 20.830 16.513 19.637 16.303 16.608 19.996 22.592 18.342 16.369 20.327 20.034 17.588 23.448 21.068 23.448
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Table A10. Cont.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img7 PSNR 26.192 26.243 21.911 23.304 23.009 22.482 24.012 25.399 23.010 22.325 23.871 24.285 22.949 26.341 24.828 26.341
Cielab 4.405 4.187 6.587 5.524 5.722 5.962 5.105 3.845 5.683 6.053 5.168 5.117 5.346 3.871 4.482 3.845
SSIM 0.441 0.557 0.478 0.554 0.549 0.541 0.554 0.519 0.547 0.544 0.554 0.553 0.538 0.539 0.565 0.565
HVS 22.312 21.923 17.856 19.015 18.738 18.219 19.724 21.167 18.727 18.041 19.577 20.006 18.760 22.152 20.545 22.312

HVSm 23.023 22.398 18.029 19.250 18.956 18.422 20.002 21.591 18.962 18.238 19.848 20.309 18.964 22.677 20.865 23.023

Img8 PSNR 22.492 22.687 21.206 20.286 20.258 20.273 19.996 24.895 20.278 20.280 20.011 21.187 21.044 24.037 22.029 24.895
Cielab 5.680 6.526 6.935 7.239 7.401 7.290 7.232 3.955 7.298 7.292 7.231 6.686 6.656 4.831 5.701 3.955
SSIM 0.472 0.545 0.509 0.563 0.556 0.555 0.559 0.554 0.559 0.556 0.559 0.556 0.553 0.551 0.586 0.586
HVS 18.089 17.438 16.643 15.379 15.391 15.436 15.068 20.183 15.412 15.430 15.084 16.339 15.746 19.029 16.942 20.183

HVSm 18.671 17.846 16.889 15.567 15.574 15.624 15.254 20.876 15.607 15.622 15.275 16.595 15.950 19.617 17.235 20.876

Img9 PSNR 20.401 17.187 20.507 20.539 20.513 20.439 20.378 20.617 20.516 20.448 20.375 20.547 20.342 19.997 20.477 20.617
Cielab 5.412 9.819 5.721 5.263 5.356 5.709 5.254 4.904 5.336 5.729 5.253 5.268 5.537 6.071 5.026 4.904
SSIM 0.289 0.303 0.330 0.353 0.348 0.340 0.353 0.344 0.348 0.341 0.353 0.350 0.341 0.331 0.363 0.363
HVS 16.033 12.906 16.285 16.124 16.113 16.130 15.973 16.158 16.120 16.129 15.970 16.117 15.711 15.494 15.976 16.285

HVSm 16.229 13.008 16.429 16.279 16.269 16.288 16.125 16.296 16.279 16.289 16.122 16.277 15.861 15.643 16.114 16.429

Img10 PSNR 21.329 23.641 20.094 20.623 20.205 20.222 20.799 22.422 20.226 20.236 21.181 21.614 20.558 22.756 21.798 23.641
Cielab 6.353 5.401 7.601 6.930 7.273 7.195 6.637 5.165 7.286 7.194 6.416 6.330 6.869 5.207 5.789 5.165
SSIM 0.414 0.509 0.473 0.512 0.505 0.503 0.512 0.514 0.506 0.505 0.512 0.509 0.500 0.504 0.528 0.528
HVS 17.660 19.949 16.352 16.684 16.316 16.372 16.911 18.373 16.333 16.375 17.266 17.701 16.690 18.949 17.867 19.949

HVSm 18.160 20.582 16.573 16.944 16.538 16.598 17.202 18.793 16.568 16.602 17.577 18.051 16.933 19.472 18.216 20.582

Img11 PSNR 22.033 23.556 20.196 20.383 20.351 20.365 20.208 20.147 20.376 20.374 20.207 20.764 20.243 22.505 21.050 23.556
Cielab 6.269 6.889 8.034 7.476 7.594 7.531 7.448 7.319 7.526 7.530 7.444 7.166 7.893 5.999 6.758 5.999
SSIM 0.489 0.584 0.525 0.592 0.583 0.584 0.589 0.543 0.589 0.588 0.589 0.586 0.562 0.567 0.604 0.604
HVS 17.293 18.697 15.217 15.287 15.283 15.307 15.140 15.041 15.299 15.306 15.136 15.701 14.772 17.264 15.864 18.697

HVSm 17.584 19.038 15.352 15.422 15.420 15.444 15.274 15.195 15.438 15.445 15.271 15.857 14.898 17.513 16.021 19.038

Img12 PSNR 19.719 20.477 20.205 20.361 20.331 20.349 20.120 22.655 20.363 20.373 20.123 20.302 20.532 21.091 20.661 22.655
Cielab 7.257 5.993 7.455 7.147 7.217 7.157 6.982 4.881 7.190 7.155 6.983 7.144 6.993 5.643 6.389 4.881
SSIM 0.528 0.625 0.589 0.645 0.640 0.638 0.640 0.635 0.642 0.641 0.640 0.640 0.627 0.621 0.654 0.654
HVS 15.734 15.938 16.036 15.985 15.991 16.031 15.748 18.734 16.014 16.036 15.750 15.970 15.821 16.883 16.288 18.734

HVSm 16.083 16.223 16.255 16.224 16.229 16.276 15.985 19.221 16.261 16.283 15.988 16.222 16.022 17.239 16.552 19.221

Average PSNR 22.324 22.676 20.314 20.965 20.452 20.413 21.032 23.008 20.654 20.395 21.063 21.652 21.094 23.290 22.074 23.290
Cielab 6.054 6.807 7.669 6.903 7.298 7.305 6.709 5.121 7.147 7.328 6.702 6.505 6.892 5.439 5.866 5.121
SSIM 0.448 0.522 0.480 0.536 0.528 0.523 0.535 0.525 0.529 0.526 0.535 0.536 0.512 0.525 0.553 0.553
HVS 18.035 18.068 15.925 16.356 15.862 15.858 16.422 18.426 16.068 15.823 16.456 17.060 16.312 18.646 17.398 18.646

HVSm 18.512 18.475 16.131 16.588 16.066 16.066 16.665 18.864 16.290 16.032 16.703 17.340 16.538 19.112 17.690 19.112
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Table A11. Performance metrics of 15 algorithms for CFA 2.0 pattern at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those methods used in ATMF.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img1 PSNR 19.958 20.013 25.372 21.905 20.740 19.856 21.956 23.122 21.315 19.294 21.985 21.558 21.859 23.282 22.331 25.372
Cielab 8.398 8.225 4.710 6.304 7.124 8.071 6.143 5.744 6.760 8.586 6.181 6.521 7.921 5.523 6.057 4.710
SSIM 0.367 0.374 0.466 0.491 0.481 0.480 0.488 0.461 0.495 0.475 0.489 0.476 0.472 0.475 0.491 0.495
HVS 14.560 14.581 19.961 16.366 15.200 14.330 16.461 17.683 15.753 13.755 16.514 16.055 15.497 17.828 16.745 19.961

HVSm 14.655 14.668 20.152 16.453 15.269 14.389 16.551 17.804 15.827 13.807 16.605 16.140 15.584 17.947 16.839 20.152

Img2 PSNR 19.721 20.118 22.562 20.649 20.507 19.996 20.437 21.593 20.516 20.139 20.653 20.154 23.856 21.449 21.207 23.856
Cielab 8.110 7.447 4.807 6.372 6.473 6.832 6.379 5.284 6.496 6.738 6.250 6.684 4.604 5.445 5.663 4.604
SSIM 0.492 0.610 0.448 0.555 0.553 0.553 0.547 0.447 0.562 0.557 0.547 0.525 0.591 0.480 0.529 0.610
HVS 15.455 15.545 18.616 16.063 15.911 15.400 15.923 17.333 15.939 15.550 16.124 15.618 18.715 17.163 16.743 18.715

HVSm 15.681 15.740 19.006 16.271 16.119 15.574 16.126 17.647 16.135 15.726 16.339 15.815 19.078 17.443 16.986 19.078

Img3 PSNR 20.073 20.164 23.412 24.806 24.165 20.790 24.579 22.806 24.469 24.163 24.599 24.526 29.201 23.596 24.425 29.201
Cielab 8.776 8.469 5.680 5.080 5.455 7.469 5.150 5.983 5.280 5.492 5.154 5.255 4.237 5.509 5.142 4.237
SSIM 0.487 0.501 0.575 0.610 0.605 0.589 0.604 0.579 0.613 0.611 0.604 0.598 0.622 0.591 0.604 0.622
HVS 15.031 15.063 18.323 19.596 19.012 15.551 19.496 17.672 19.233 18.942 19.513 19.401 23.139 18.480 19.278 23.139

HVSm 15.159 15.181 18.516 19.833 19.209 15.655 19.732 17.843 19.441 19.130 19.750 19.630 23.654 18.672 19.499 23.654

Img4 PSNR 17.934 18.585 20.135 19.161 19.049 18.939 18.866 20.229 18.961 18.856 18.845 18.962 20.443 19.906 19.574 20.443
Cielab 13.430 12.433 8.312 11.006 10.838 11.004 10.793 8.352 11.268 11.029 10.807 10.862 7.647 8.639 9.339 7.647
SSIM 0.501 0.586 0.590 0.634 0.632 0.627 0.627 0.612 0.629 0.628 0.626 0.624 0.655 0.623 0.642 0.655
HVS 14.087 14.301 16.401 14.590 14.499 14.396 14.432 16.282 14.433 14.297 14.393 14.409 15.963 15.791 15.193 16.401

HVSm 14.687 14.846 17.126 15.090 14.990 14.881 14.926 16.978 14.919 14.769 14.885 14.903 16.568 16.409 15.732 17.126

Img5 PSNR 20.078 20.183 21.414 22.639 22.020 21.653 24.393 24.510 21.995 21.151 23.655 25.293 25.517 23.641 23.999 25.517
Cielab 7.398 7.109 5.498 5.021 5.331 5.568 4.251 3.998 5.389 5.866 4.525 3.965 4.033 4.353 4.252 3.965
SSIM 0.340 0.382 0.334 0.383 0.381 0.383 0.382 0.349 0.387 0.383 0.380 0.379 0.389 0.360 0.380 0.389
HVS 15.999 16.041 17.278 18.399 17.783 17.421 20.224 20.365 17.762 16.921 19.466 21.111 21.105 19.507 19.802 21.111

HVSm 16.154 16.181 17.424 18.567 17.936 17.551 20.472 20.643 17.905 17.039 19.682 21.415 21.416 19.726 20.026 21.416

Img6 PSNR 19.921 20.211 21.685 24.062 21.957 22.210 24.047 23.042 23.521 21.816 24.221 24.577 24.276 23.094 23.875 24.577
Cielab 9.807 9.112 6.808 5.812 6.994 6.807 6.037 5.853 6.168 7.058 5.963 5.648 5.651 5.898 5.607 5.607
SSIM 0.492 0.595 0.420 0.558 0.535 0.547 0.545 0.445 0.564 0.546 0.543 0.531 0.561 0.474 0.533 0.595
HVS 15.823 15.893 17.501 19.741 17.697 17.917 19.898 18.913 19.210 17.514 20.087 20.399 19.543 18.949 19.646 20.399

HVSm 16.043 16.092 17.795 20.226 17.977 18.219 20.403 19.312 19.627 17.790 20.611 20.965 19.979 19.345 20.104 20.965

Img7 PSNR 19.930 20.073 29.064 30.268 30.455 28.686 30.465 30.207 29.173 27.927 30.512 30.350 32.025 30.151 30.727 32.025
Cielab 8.622 8.182 2.845 3.377 3.336 3.678 3.333 2.666 3.586 3.836 3.329 3.383 2.476 2.773 2.890 2.476
SSIM 0.430 0.519 0.464 0.565 0.566 0.565 0.559 0.475 0.569 0.564 0.560 0.547 0.597 0.508 0.554 0.597
HVS 15.760 15.798 26.190 26.153 26.449 24.551 26.596 27.693 25.035 23.770 26.608 26.524 28.267 27.224 27.234 28.267

HVSm 15.887 15.913 27.330 27.291 27.644 25.289 27.877 29.430 25.884 24.374 27.899 27.801 29.995 28.684 28.666 29.995
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Table A11. Cont.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img8 PSNR 19.643 20.065 24.845 21.582 20.249 19.783 20.927 23.512 20.636 19.399 21.105 21.397 24.921 23.263 22.392 24.921
Cielab 8.712 8.042 4.286 6.304 7.222 7.564 6.598 4.862 6.961 7.875 6.500 6.457 4.602 5.024 5.502 4.286
SSIM 0.464 0.544 0.460 0.541 0.528 0.529 0.523 0.465 0.543 0.527 0.526 0.516 0.566 0.488 0.526 0.566
HVS 15.105 15.211 20.808 16.679 15.355 14.869 16.128 19.231 15.726 14.479 16.298 16.584 19.305 18.784 17.603 20.808

HVSm 15.325 15.399 21.351 16.906 15.525 15.021 16.339 19.634 15.912 14.620 16.517 16.817 19.698 19.138 17.875 21.351

Img9 PSNR 20.246 20.344 21.544 20.413 20.144 20.134 20.032 21.561 20.285 20.360 20.124 20.191 22.623 21.102 20.782 22.623
Cielab 6.468 6.038 4.567 5.217 5.357 5.698 5.344 4.554 5.344 5.614 5.300 5.341 4.589 4.719 4.857 4.554
SSIM 0.301 0.343 0.300 0.327 0.324 0.323 0.325 0.300 0.331 0.324 0.325 0.314 0.331 0.302 0.319 0.343
HVS 16.000 16.036 17.246 15.943 15.693 15.721 15.616 17.209 15.818 15.954 15.711 15.737 17.688 16.731 16.351 17.688

HVSm 16.175 16.196 17.378 16.048 15.787 15.820 15.716 17.340 15.917 16.056 15.812 15.841 17.839 16.849 16.461 17.839

Img10 PSNR 19.721 20.025 22.216 22.350 20.775 21.185 22.303 23.547 21.743 20.217 22.502 21.546 24.583 22.456 22.648 24.583
Cielab 8.664 8.030 5.522 5.911 6.814 6.570 5.865 4.843 6.345 7.199 5.760 6.331 4.711 5.407 5.363 4.711
SSIM 0.428 0.497 0.420 0.486 0.474 0.484 0.479 0.431 0.490 0.479 0.478 0.461 0.490 0.443 0.471 0.497
HVS 16.036 16.119 18.570 18.372 16.870 17.268 18.464 19.937 17.788 16.289 18.674 17.648 20.645 18.737 18.826 20.645

HVSm 16.286 16.340 18.907 18.751 17.112 17.532 18.855 20.421 18.109 16.506 19.080 17.978 21.185 19.107 19.216 21.185

Img11 PSNR 19.938 20.155 20.316 20.822 20.353 19.909 20.972 20.487 20.758 19.813 20.907 21.197 21.396 20.685 20.875 21.396
Cielab 8.632 8.186 7.219 6.991 7.356 7.718 6.800 7.033 7.090 7.798 6.843 6.734 6.950 6.872 6.752 6.734
SSIM 0.492 0.570 0.388 0.507 0.499 0.508 0.499 0.402 0.522 0.510 0.498 0.483 0.499 0.432 0.479 0.570
HVS 15.085 15.124 15.381 15.744 15.295 14.805 15.994 15.535 15.671 14.707 15.924 16.203 15.814 15.727 15.835 16.203

HVSm 15.230 15.257 15.533 15.899 15.428 14.927 16.159 15.694 15.820 14.825 16.087 16.375 15.979 15.886 15.994 16.375

Img12 PSNR 19.741 20.216 20.020 20.200 19.781 20.054 19.809 20.266 20.171 19.998 19.828 19.960 21.988 20.118 20.178 21.988
Cielab 8.553 8.014 7.113 7.146 7.470 7.284 7.220 6.892 7.227 7.336 7.207 7.365 5.791 7.007 6.923 5.791
SSIM 0.545 0.624 0.544 0.615 0.609 0.617 0.599 0.558 0.623 0.619 0.599 0.597 0.641 0.572 0.597 0.641
HVS 15.754 15.832 15.914 15.789 15.376 15.647 15.467 16.179 15.760 15.581 15.488 15.615 17.308 15.937 15.865 17.308

HVSm 16.005 16.059 16.133 16.024 15.583 15.869 15.691 16.415 15.989 15.798 15.713 15.843 17.594 16.161 16.092 17.594

Average PSNR 19.742 20.013 22.715 22.405 21.683 21.100 22.399 22.907 21.962 21.095 22.411 22.476 24.391 22.729 22.751 24.391
Cielab 8.798 8.274 5.614 6.212 6.647 7.022 6.160 5.505 6.493 7.036 6.152 6.212 5.268 5.597 5.696 5.268
SSIM 0.445 0.512 0.451 0.523 0.516 0.517 0.515 0.460 0.527 0.519 0.515 0.504 0.535 0.479 0.510 0.535
HVS 15.391 15.462 18.516 17.786 17.095 16.490 17.892 18.669 17.344 16.480 17.900 17.942 19.416 18.405 18.260 19.416

HVSm 15.607 15.656 18.888 18.113 17.382 16.727 18.237 19.097 17.624 16.703 18.248 18.294 19.881 18.781 18.624 19.881



Electronics 2019, 8, 1444 53 of 58

Table A12. Performance metrics of 15 algorithms for CFA 2.0 pattern at 20 dBs SNR (Poisson noise). Bold numbers indicate the best performing method in each row.
Denoising is applied after CFA is generated and before CFA is demosaiced. Red numbers indicate those methods used in F3 and red and green numbers indicate those
methods used in ATMF.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img1 PSNR 29.724 30.928 29.456 30.932 30.778 30.726 30.500 29.501 30.930 30.710 30.652 30.540 24.153 30.625 30.934 30.934
Cielab 2.927 2.835 3.511 2.832 2.921 2.954 2.810 3.568 2.850 2.968 2.841 2.867 6.913 3.009 2.852 2.810
SSIM 0.495 0.521 0.460 0.521 0.513 0.522 0.519 0.490 0.523 0.519 0.519 0.510 0.427 0.512 0.519 0.523
HVS 25.445 25.963 24.272 26.010 25.955 25.949 25.283 24.279 25.912 25.945 25.753 25.885 17.493 25.707 26.015 26.015

HVSm 26.379 26.674 24.933 26.706 26.663 26.668 25.871 24.857 26.650 26.671 26.416 26.653 17.630 26.359 26.701 26.706

Img2 PSNR 24.943 27.240 26.728 27.222 27.183 27.078 26.888 26.257 27.091 27.072 26.936 26.892 23.680 27.033 27.171 27.240
Cielab 3.672 3.182 3.050 3.205 3.262 3.269 3.249 3.244 3.246 3.277 3.244 3.298 6.049 3.131 3.203 3.050
SSIM 0.410 0.571 0.435 0.570 0.568 0.567 0.566 0.506 0.567 0.566 0.565 0.549 0.597 0.553 0.567 0.597
HVS 21.777 23.458 22.971 23.590 23.514 23.613 23.210 22.237 23.574 23.555 23.186 23.391 17.992 23.292 23.593 23.613

HVSm 23.241 24.670 24.739 24.760 24.699 24.824 24.275 23.482 24.801 24.781 24.271 24.635 18.269 24.537 24.786 24.824

Img3 PSNR 30.682 32.961 29.663 32.961 32.704 32.661 32.649 31.937 32.673 32.635 32.664 32.403 27.452 32.815 32.919 32.961
Cielab 3.116 2.915 3.597 2.898 3.069 2.922 2.973 3.219 2.921 2.929 2.978 2.993 6.176 2.945 2.880 2.880
SSIM 0.593 0.635 0.593 0.635 0.630 0.632 0.631 0.621 0.631 0.630 0.631 0.625 0.586 0.630 0.632 0.635
HVS 27.776 29.116 25.480 29.134 29.130 28.603 28.866 27.910 28.387 28.496 28.917 28.915 21.017 29.155 29.070 29.155

HVSm 30.276 31.268 26.504 31.276 31.262 30.683 30.851 29.557 30.443 30.564 30.935 31.156 21.333 31.219 31.187 31.276

Img4 PSNR 19.967 22.076 20.468 22.075 22.017 21.948 21.538 21.363 21.908 21.968 21.549 21.889 19.852 22.046 22.021 22.076
Cielab 8.181 7.620 6.037 7.617 7.602 7.537 7.584 5.768 7.812 7.543 7.590 7.577 8.145 6.559 7.341 5.768
SSIM 0.506 0.673 0.577 0.672 0.668 0.662 0.664 0.634 0.662 0.662 0.664 0.659 0.627 0.670 0.669 0.673
HVS 16.299 17.490 16.161 17.504 17.500 17.536 16.953 16.915 17.458 17.513 16.928 17.390 15.369 17.628 17.530 17.628

HVSm 17.442 18.377 17.036 18.388 18.390 18.481 17.772 17.870 18.400 18.467 17.749 18.316 15.933 18.554 18.434 18.554

Img5 PSNR 28.688 30.635 30.203 30.634 30.557 30.523 30.105 29.738 30.521 30.508 30.203 30.334 25.785 30.459 30.601 30.635
Cielab 2.683 2.504 2.527 2.470 2.509 2.498 2.615 2.710 2.496 2.503 2.570 2.509 5.033 2.508 2.474 2.470
SSIM 0.337 0.395 0.343 0.395 0.393 0.394 0.391 0.375 0.392 0.392 0.391 0.386 0.384 0.390 0.393 0.395
HVS 25.536 27.063 26.123 27.111 27.057 27.129 26.237 25.614 27.129 27.098 26.412 26.916 21.748 26.800 27.136 27.136

HVSm 27.059 28.186 27.557 28.215 28.178 28.283 27.170 26.676 28.294 28.275 27.406 28.118 22.100 27.922 28.236 28.294

Img6 PSNR 26.197 28.327 28.089 28.329 28.231 28.250 27.917 27.451 28.264 28.229 27.947 27.926 25.403 28.140 28.277 28.329
Cielab 4.317 3.858 3.998 3.831 3.971 3.880 4.055 4.001 3.907 3.900 4.034 3.991 5.965 3.818 3.843 3.818
SSIM 0.431 0.563 0.459 0.563 0.559 0.562 0.556 0.519 0.563 0.561 0.555 0.537 0.568 0.551 0.560 0.568
HVS 23.109 24.628 23.998 24.501 24.699 24.752 24.189 23.269 24.655 24.730 24.129 24.196 20.400 24.429 24.659 24.752

HVSm 24.767 26.010 25.595 25.927 26.046 26.175 25.561 24.490 26.110 26.165 25.476 25.712 20.870 25.766 26.049 26.175

Img7 PSNR 27.618 29.204 26.938 29.230 29.205 29.105 29.350 28.804 29.074 29.053 29.343 29.045 30.462 29.202 29.203 30.462
Cielab 3.383 3.076 3.513 3.083 3.114 3.116 3.062 3.034 3.111 3.125 3.056 3.135 4.477 3.009 3.077 3.009
SSIM 0.447 0.580 0.455 0.579 0.577 0.577 0.576 0.530 0.576 0.575 0.576 0.565 0.597 0.566 0.575 0.597
HVS 24.572 25.731 23.408 25.788 25.806 25.720 25.991 25.418 25.651 25.641 25.919 25.670 26.640 25.877 25.822 26.640

HVSm 25.752 26.673 24.202 26.735 26.755 26.700 26.993 26.492 26.639 26.627 26.910 26.659 27.666 26.876 26.786 27.666
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Table A12. Cont.

Image Metrics Baseline Standard Demonet +
GFPCA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD F3 ATMF Best Score

Img8 PSNR 26.293 30.413 26.824 30.449 30.321 29.967 29.950 28.169 29.880 29.827 29.996 29.695 24.839 30.110 30.305 30.449
Cielab 3.364 2.883 3.389 2.861 2.983 2.951 2.972 3.016 2.943 2.966 2.958 3.020 5.555 2.844 2.878 2.844
SSIM 0.468 0.571 0.470 0.571 0.568 0.570 0.562 0.529 0.570 0.568 0.563 0.553 0.582 0.562 0.568 0.582
HVS 23.275 26.619 22.833 26.889 26.992 26.768 26.396 24.370 26.446 26.540 26.313 26.225 18.788 26.728 26.987 26.992

HVSm 25.221 28.505 24.043 28.807 28.953 28.877 28.181 26.080 28.520 28.674 28.094 28.247 19.105 28.840 28.999 28.999

Img9 PSNR 27.260 28.742 28.454 28.758 28.686 28.489 28.421 28.220 28.686 28.409 28.415 28.576 24.590 28.648 28.730 28.758
Cielab 2.872 2.662 2.744 2.636 2.688 2.894 2.699 2.792 2.683 2.992 2.702 2.674 4.780 2.639 2.649 2.636
SSIM 0.274 0.327 0.284 0.327 0.324 0.321 0.326 0.313 0.321 0.316 0.326 0.318 0.363 0.323 0.325 0.363
HVS 23.889 24.849 24.605 24.857 24.896 24.937 24.495 24.263 24.900 24.935 24.486 24.726 19.019 24.809 24.915 24.937

HVSm 24.975 25.549 25.544 25.565 25.575 25.651 25.154 24.998 25.621 25.655 25.145 25.496 19.203 25.507 25.608 25.655

Img10 PSNR 25.285 27.333 26.465 27.325 27.268 27.284 26.879 26.676 27.264 27.274 26.910 26.917 22.731 27.226 27.321 27.333
Cielab 3.987 3.611 3.507 3.605 3.664 3.617 3.705 3.525 3.696 3.624 3.668 3.687 6.165 3.472 3.562 3.472
SSIM 0.394 0.489 0.412 0.489 0.486 0.490 0.484 0.461 0.489 0.489 0.483 0.471 0.493 0.482 0.489 0.493
HVS 22.447 24.038 22.945 23.897 24.129 24.223 23.353 23.163 24.068 24.183 23.402 23.597 18.772 24.029 24.128 24.223

HVSm 24.034 25.251 24.387 25.171 25.303 25.461 24.539 24.416 25.348 25.432 24.596 24.980 19.102 25.261 25.354 25.461

Img11 PSNR 25.778 26.949 27.429 26.950 26.882 26.935 26.704 26.357 26.956 26.937 26.699 26.705 23.542 26.814 26.936 27.429
Cielab 4.243 4.045 4.024 4.034 4.108 4.077 4.045 4.296 4.057 4.078 4.044 4.077 6.463 4.056 4.038 4.024
SSIM 0.424 0.513 0.401 0.514 0.509 0.519 0.509 0.479 0.521 0.519 0.508 0.491 0.529 0.503 0.515 0.529
HVS 22.250 22.926 23.434 22.939 22.970 23.032 22.657 22.236 23.014 23.022 22.647 22.807 17.565 22.848 22.983 23.434

HVSm 23.204 23.698 24.708 23.704 23.721 23.796 23.387 23.013 23.789 23.791 23.375 23.624 17.783 23.610 23.738 24.708

Img12 PSNR 22.074 23.210 24.864 23.205 23.156 23.185 22.937 22.843 23.207 23.210 22.937 23.047 22.082 23.161 23.186 24.864
Cielab 5.421 5.192 4.093 5.191 5.227 5.189 5.107 4.953 5.225 5.189 5.108 5.209 7.283 5.017 5.151 4.093
SSIM 0.512 0.632 0.540 0.632 0.629 0.631 0.623 0.597 0.632 0.631 0.623 0.616 0.661 0.622 0.629 0.661
HVS 19.141 19.721 22.032 19.718 19.745 19.797 19.387 19.439 19.779 19.807 19.390 19.655 16.519 19.764 19.751 22.032

HVSm 19.932 20.298 23.286 20.292 20.305 20.378 19.939 20.037 20.365 20.389 19.942 20.265 16.733 20.331 20.319 23.286

Average PSNR 26.209 28.168 27.132 28.172 28.082 28.013 27.820 27.276 28.038 27.986 27.854 27.831 24.548 28.023 28.134 28.172
Cielab 4.014 3.699 3.666 3.689 3.760 3.742 3.740 3.677 3.746 3.758 3.733 3.753 6.084 3.584 3.662 3.584
SSIM 0.441 0.539 0.452 0.539 0.535 0.537 0.534 0.505 0.537 0.536 0.534 0.523 0.534 0.530 0.537 0.539
HVS 22.960 24.300 23.189 24.328 24.366 24.338 23.918 23.259 24.248 24.289 23.957 24.114 19.277 24.255 24.382 24.382

HVSm 24.357 25.430 24.378 25.462 25.488 25.498 24.974 24.331 25.415 25.458 25.026 25.322 19.644 25.398 25.516 25.516
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