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Abstract: The paper deals with the generation of optimal trajectories for industrial robots in
machining and additive manufacturing applications. The proposed method uses an Ant Colony
algorithm to solve a kinodynamic motion planning problem. It exploits the kinematic redundancy
that is often present in these applications to optimize the execution of trajectory. At the same
time, the robot kinematics and dynamics constraints are respected and robot collisions are avoided.
To reduce the computational burden, the task workspace is discretized enabling the use of efficient
network solver based on Ant Colony theory. The proposed method is validated in robotic milling
and additive manufacturing real-world scenarios.

Keywords: kino-dynamics motion planning; ant-colony optimization; advanced industrial applications

1. Introduction

The growing demand for advanced industrial robotic applications such as machining and
additive manufacturing highlights the importance of motion planning algorithms in this field [1,2].
As a consequence of this trend, a strong effort has been put into the improvement of the algorithm
efficiency, especially in terms of reduction of the computing time. Moreover, researchers have
investigated path and/or trajectory planners that are able to avoid collisions also taking into account
the robot dynamics constraints [3–6].

The easiest motion planning problem consists in finding a collision-free point-to-point trajectory
from a starting configuration to an end configuration without any constraints on the intermediate
points. This problem is often addressed by means of path planning algorithms, which compute
a suitable path between the points without taking into account constraints on velocity, accelerations,
and torques [7–10]. The trajectory is then obtained by using a suitable time parametrization of the
path [11,12]. Other approaches also consider constraints on velocity, acceleration and motor torque during
the planning phase [13,14]. This class of problems is known as kinodynamic motion planning [15].

The lack of constraints on the intermediate points is an important drawback in many applications.
For example, one might want to keep the robot tool oriented toward the floor during the whole
trajectory for safety reasons. Recent works addresssed problem of this kind when the closed form
of the constraints is not known a priori [16,17]. In this paper, we consider a more specific but still
important class of trajectories, in which the number of degrees of freedom of the task is smaller than
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the one of the robot. This is a common scenario, as technological tasks often require to constrain only
some of the Cartesian coordinates and velocities. Thus, the kinematic redundancy of the robot with
respect to the task can be exploited to optimize a desired criterion [18–21]. It is worth stressing that,
in this kind of tasks, path constraints are known a priori. This is a fundamental difference with respect
to [16], because the dimension of the problem can be reduced by only exploring the subspace given by
the kinematic redundancy.

The robotic machining and the additive manufacturing tasks are two significant technological
examples where the use of industrial robots has become important and the motion planning strategies
cover a crucial role [20,21]. However, the use of dedicated motion planning algorithms for these kind
of applications is not common in the literature and in industry.

Thank to the improvements of robots kinematics and dynamics performance, the use of industrial
robots in the field of machining applications has profitably increased during the last years [22].
However, industrial robots still have low kinematics and dynamics performance if compared to CNC
machines, hence a kinodynamic motion planning can be a suitable solution to tackle such limitations.
In machining tasks, kinematics constraints strictly depend on the process and hence by the adopted
tool. In general, all the machining processes using a rotating tool have at least one redundant degree of
freedom (DoF). The redundancy permits to choose an optimized robot configuration among an infinite
set of solutions, as also clarified in Figure 1. Depending on the technological requirements of the
specific machining task the redundant DoF/DoFs can be optimized to improve the process results [23].

Figure 1. Example of machining tasks with the free DoFs.

Another emerging field for industrial robots is represented by the additive manufacturing and
laser cladding, that is, metal material deposition with techniques such as laser metal deposition
or electron beam melting [24–26]. The kinematic constraints with laser metal deposition technique
consists in keeping the translation speed constant and identifying the best tilt of the laser head with
respect to the underlying surface. [27–30] highlight that the process is feasible, although not optimal,
for a large range of relative orientations between the deposition axis and the line perpendicular to the
surface. Thus, it is possible to optimize the trajectory in order to keep the tilt angle as small as possible
and respecting also kinodynamic constraints at the same time.

In particular, the main axis of the operating tool and the axis perpendicular to the surface to be
machined/coated define an angle that should be always kept within certain limits depending on the
specific process. As consequence, there is always (i) an operative redundancy (the rotation around the
main axis of the operating tool) and (ii) a range of permitted angles around the axis perpendicular
to the surface. The operative redundancy, namely the allowed cone around the axis perpendicular
to the surface, can be exploited to find an optimal orientation able to satisfy both the technological
constraints and the robot kinematics/dynamics limits. Figure 2 describes the general idea of these
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motion planning issues in additive manufacturing. Pipe welding [20] and gluing [31] applications can
also be described with a similar optimization problem.

Figure 2. Scheme of kinodynamic constraints and desired targets for the residual DoFs optimization in
defining a laser head or deburring tool orientation.

Although a-priori knowledge of closed-form Cartesian constraints reduces the complexity of the
problem, it is not trivial to find the solution of the optimization problem. Indeed, the problem is
PSPACE-hard [32], highly nonlinear and the constraints make the feasible subset of the configuration
space disconnected due to direct kinematics is surjective but not necessary injective. Moreover,
to obtain an effective obstacles avoidance, collision checks are mandatory with a consequent
increment of the computing time. Thus, solvers face local minima and computational burden issues.
Many works proposed tailored solutions on the specific application or the number of redundant DoFs:
welding [20,33], machining and 5-axes applications [34,35], additive manufacturing [21]. However,
there is a lack of a general solution for the entire family of problems. Looking at the 5-axes CNC
machines, some works deal with a simplified version (because of the lower number of DoFsand
the particular structure of CNC machines) of the technologically constrained planning problem.
In [36] a complete overview of motion planning for CNC machines is presented. In particular, the focus
of the paper is on the definition of the tool orientation in order to: avoid collisions with gauges,
preserve the position within joints limits, and get smooth speed profiles. Moreover, [37] investigated
the optimization of the orientation of the cutting tools in 5-axes machines. Unfortunately, most of the
assumptions valid for a 5-axes CNC machine do not hold for industrial robots, where high rotation
speed leads to high dynamic effort with resulting motion inaccuracies and vibrations.

This work proposes a unified framework to deal with kinodynamic motion planning applied to
machining, welding, gluing, and additive manufacturing tasks. This allows us to cope with different
technological constraints and objectives, avoiding the need of tailored solutions.

The approach is based on the formulation of the redundant task as a net, whose vertices are
the admissible joint configurations and the edges are the movements between two subsequent
configurations. In this formulation, path constraints define the set of admissible joint configurations,
that is, the vertices of the net. Then, kinodynamics constraints determine the admissible edges.
The resulting net represents the constrained motion planning problem.

The paper shows examples of industrial processes that can be expressed in this framework. It is
worth noticing that also complex tasks can be addressed, such as the minimization of elastic deformations
during milling processes. Moreover, the discrete nature of the approach also permits to set a trade-off
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between the quality of the solution and the computational time. This is especially true considering that
the granularity of the discretization directly affects the number of collision checks that the algorithm
needs to perform, which represent the main bottleneck from the computational point of view.

To solve the discrete motion planning problem, we propose a modified Ant Colony Optimization
algorithm. Ant colony optimization is a meta-heuristic technique to find optimal path through graphs [38].
It is inspired by the behavior of some species of ants to find the optimal route from the anthill to food
resources. The idea behind the algorithm is that the ants release a pheromone track on the nodes,
which attracts other ants. This track evaporates through iterations but is reinforced by other ants if the
nodes belong to good paths. In the end, the high-pheromone tracks converge to the optimal route from the
starting point to the goal. Ant colony optimization is particularly suitable for nonlinear high-dimensional
discrete optimization problems, which makes it a good candidate for the problem at hand. Different
variants of the ant colony algorithm have been proposed in the literature, as detailed in [39]. In this
paper, we combine two strategies to develop an improved Ant Colony solver. First, we exploit the
rank-based ant-colony strategy proposed in [40], in which only the best ants of each iteration are selected
to update the pheromone trails. This approach is very promising for the problem considered in this paper,
because it makes possible to dramatically reduce the computational burden by performing lazy collision
checking (namely, to check collisions only for the most promising vertexes). Then, we use the modified
version of the Ant Colony algorithm proposed in [41] to avoid premature convergence to local minima,
which is a typical issue in motion planning problems. In the proposed approach, a rank-based ant-colony
with pheromone saturation is used to solve the planing problem. Comparison with other ant-colony
approaches shows its effectiveness to manage redundancy in technological trajectories.

The proposed approach is applied to a real-work milling and additive manufacturing scenarios,
where the deflection of the robot tool is successfully minimized throughout the process. Moreover,
the proposed algorithm shows faster convergence rate compared to other Ant Colony Optimization solvers.

The paper is organized as follows. Section 7 introduces the notation used in the paper. Definitions
related to the technological processes and constraints are given in Section 2. Section 3 describes the
proposed framework and the definition of the motion planning problem as a discrete optimization
problem. Section 4 focuses on the application of the proposed framework to common technological
tasks in industrial processes. Section 5 describes the modified Ant Colony Optimization solver used in
this work. Then, case study on machining applications is discussed in Section 6, where the proposed
solver is compared with other ant-colony strategies. Conclusions are drawn in 7.

2. Technological Trajectories And Constraints

Technological trajectories are typically generated by CAM software as an ordered set of couples
containing tool center point coordinates and the tool z-axis orientations, and the corresponding time
instant. Therefore, it is possible to define:

Definition 1. A technological path is a set of N desired transformation matrices, each denoted as Tw ck
,

k = 1, . . . , N.

Definition 2. A technological trajectory is a technological path where an execution time instant tk is assigned
to each kth pose.

Definitions 1 and 2 define the user input to the optimization problem. Given a technological
trajectory, the desired velocity and acceleration twist vectors Ww ck

and Ẇw ck
can be derived through

numerical differentiation.
Notice that a technological trajectory does not define a unique Cartesian trajectories, but it

corresponds to a family of possible Cartesian trajectories that have to satisfy some hard constraints
(for example, the position of the tool center point) and some soft constraints (for example, limitations
of the maximum tilt of a laser with respect to the surface). Hard constraints are mathematically
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represented as a set of equalities, whereas soft constraints can be modeled as a set of inequalities. It is
worth stressing that time parametrization is an input for the motion planner, as well as the number of
trajectory steps N.

Definition 3. The path hard constraints HCpos are a set of equality constraints that limit the pose of the tool
with respect to the base such that, for all k = 1, . . . , N:

HCpos( Tw ck
, Tw ee) = 0 . (1)

The path soft constraints SCpos are a set of inequality constraints that limit the pose of the tool with respect
to the base such that, for all k = 1, . . . , N:

SCpos( Tw ck
, Tw ee) ≤ 0 . (2)

Definition 4. Kinodynamics hard constraints are defined as a set of equality constraints that limit the tool
velocity and acceleration with respect to the base such that, for all k = 1, . . . , N:{

HCvel( Ww ck
, Ww ee) = 0

HCacc( Ẇw ck
, Ẇw ee) = 0

(3)

Definition 5. Kinodynamics soft constraints are defined as a set of inequality constraints that limit the tool
velocity and acceleration with respect to the base such that, for all k = 1, . . . , N:{

SCvel( Ww ck
, Ww ee) ≤ 0

SCacc( Ẇw ck
, Ẇw ee) ≤ 0

(4)

3. Proposed Framework for Task Formalization

By considering constraints (1)–(2), the set Xw eek
of feasibile Cartesian paths can be defined as the

set of all possible transformation matrices Tw ee that satisfy (1) and (2) at each step k, that is:

Xw eek
= { Tw ee : HCpos( Tw ck

, Tw ee) = 0 ∧ SCpos( Tw ck
, Tw ee) ≤ 0} . (5)

Technological tasks typically have a small number of redundant DoFs. For example, milling and
deburring tasks require 5 DoFs and are typically performed by a 6-DoF manipulator. The exploration
of the subset of Cartesian given by the redundancy is therefore practical. In particular, such space
can be discretized and, for each sample, the closed-form inverse kinematics of the manipulator can be
solved. We therefore refer to Xw eek

as the discretization of the continuous set Xw eek
. Inverse kinematic

problem is then solved for all the elements of Xw eek
. Details about the discretization process for different

technological tasks are described in Sections 4.1 and 4.2.

Definition 6. For each k, the feasible configuration set Qk is the set of all joint configurations which correspond
to a transformation matrix in Xw eek

and that respect the joint limits, that is:

Qk =
{

q ∈ Ip : ∀ Tw ee ∈ Xw eek
, fkin,p(q) = Tw ee

}
. (6)

The elements of each set Qk are the net vertex. The joint configuration qik is the element ik of set Qk,
while Tw ee(ik) = fkin,p(qik ) is the corresponding transformation matrix. The transition between the
element ik of set Qk to the element ik+1 of set Qk+1 is the net edge.

In order to check if constraints (3)–(4) are satisfied, it is necessary to know the edges that connect
Q1 to QN . We therefore define a network path as follows.
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Definition 7. A network path p is an ordered sequence {qi1 , · · · , qiN} that connects the configuration sets
Q1, . . . , QN .

This idea is also clarified in Figure 3. Given a network path p, it is possible to compute the
finite-difference approximations of Cartesian velocities, joint velocities, joint accelerations, and joint
efforts. Joint velocity and acceleration at step k are computed as:

q̇k(ik, ik−1) =
qik − qik−1

tk − tk−1

q̈k(ik+1, ik, ik−1) =
q̇k(ik+1, ik)− q̇k(ik, ik−1)

tk+1 − tk−1

Q
k Q

k+1Q
k−1

i k+1i k−1

i k

k
k−1

k+1

Figure 3. Network representation of the possible joint configuration evolution.

Joint effort can be computed using inverse dynamics:

τk(ik+1, ik, ik−1) = fdyn
(
qk, q̇k(ik, ik−1), q̈k(ik+1, ik, ik−1)

)
Velocity and acceleration twists are computed as:

Ww eek
(ik, ik−1) = fkin,v(qk, q̇k(ik, ik−1))

Ẇw eek
(ik+1, ik, ik−1) = fkin,a(qk, q̇k(ik, ik−1), q̈k(ik+1, ik, ik−1))

A path is feasible if these values are inside the joint limits and Equations (3) and (4) hold.
In order to evaluate the goodness of the paths, it is necessary to define a cost function which

depends on both the vertices and the edges. Vertex costs depend only on the path, while edge costs
depend on kinodynamics quantities. The following definition of the trajectory planning problem
therefore can be applied:

Definition 8. The robot trajectory optimization is a minimization problem defined as follows:

min
p∈P

Γ(p) (7)

where:

Γ(p) =
N

∑
k=1

fV(ik) +
N−1

∑
k=1

fE(ik+1, ik, ik−1) (8)
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P =
{

p : HCvel( Ww ck
, Ww eek

(ik, ik−1)) = 0,

HCacc( Ẇw ck
, Ẇw eek

(ik+1, ik, ik−1)) = 0,

SCvel( Ww ck
, Ww eek

(ik, ik−1)) = 0,

SCacc( Ẇw ck
, Ẇw eek

(ik+1, ik, ik−1)) = 0,

qik ∈ Ip,

q̇k(ik, ik−1) ∈ Iv,

q̈k(ik+1, ik, ik−1) ∈ Ia,

τk(ik+1, ik, ik−1) ∈ Ie,

Ww eek
(ik, ik−1) ∈ Cv,

fcol(qik ) = 0
}

(9)

and where fV and fE are cost functions depending respectively on the vertices and the edges of the network path.

4. Examples of Common Technological Tasks

Based on the definitions given above, two typical problems of additive manufacturing, welding,
and gluing applications are discussed in details: (i) a 5-DoF task, typical of machining applications,
where the goal is to execute the trajectory by minimizing the deflections caused by the material
removing forces; (ii) a 3-DoF task, where the goal is to reduced the angle between the end-effector and
the surface normal to the tool z-axis.

4.1. 5-DoF Tasks

In 5-DoF tasks (such as deburring and milling), path hard constraints are related to the end-effector
position and its z-axis orientation, while there are no soft path constraints. Path constraints are therefore
given by:

HCpos =


(

Tw ck − Tw ee
)
[0, 0, 0, 1]T = 0(

Tw ck − Tw ee
)
[0, 0, 1, 0]T = 0

. (10)

Moreover, machining tasks require hard constraints on end-effector Cartesian linear velocity, that
is, for all k = 1, . . . , N:

HCvel =
(

Ww ck − Ww ee
)
[0, 0, 0, 1]T = 0 . (11)

The redundancy can be exploited to optimize the manipulator stiffness along the direction of the
cutting forces of the milling process. A possible choice of fV(qk) is therefore the squared norm of the
so-called Cartesian Compliance Index, that is:

fV(ik) =
∥∥ wδxee(ik)

∥∥2
M (12)

where ‖·‖M is the `2-norm weighted by vector M, and wδxee ∈ R6 is a vector representing angular and
linear deflections of the end-effector due to the milling force. The Cartesian Compliance Index is a scalar
measure that represents the weighted norm of deflections introduced by robot elasticity. Minimizing
this index improves quality of the technological task.

Deflection wδxee is computed as

wδxee(ik) = J(qik )K−1 J(qik )
T We(k) (13)

where We(k) ∈ R6 is the wrench vector given by the torque and the force generated by the milling
process at the step k, J is the geometric Jacobian matrix, and K is the joint stiffness matrix. Milling force
is computed by using model proposed in [42], force application point is the end-effector frame origin
the milling torque is null.
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The edge cost function fE is chosen as the sum of the squared norms of the joint velocity and
acceleration vectors, that is:

fE(ik+1, ik, ik−1) = λv
∥∥q̇k(ik, ik − 1)

∥∥2
+ λa

∥∥q̈k(ik+1, ik, ik−1)
∥∥2. (14)

where λv > 0 and λa > 0 are weighting constants.
Since there is only one redundant DoF, uniform gridding can be applied without curse of

dimensionality. As mentioned in Section 3, the redundant degree of freedom is uniformly sampled
between its limits obtaining a set of transformation matrices. Inverse kinematics is then computed to
compute sets Q1, · · · , QN . The discretization step can be chosen as a trade-off between the computational
burden and the quality of the solution.

4.2. 3-DoF Tasks

In 3-DoF tasks (such as additive manufacturing, welding and gluing), path hard constraints are
related to the end-effector position and its z-axis orientation. The following path constraints should
therefore hold for all k = 1, . . . , N:

HCpos =


(

Tw ck − Tw ee
)
[0, 0, 0, 1]T = 0(

Tw ck − Tw ee
)
[0, 0, 1, 0]T = 0

. (15)

Soft path constraints consist in imposing the z-axis of Tw ee to be inside a cone with aperture equal
to 2θ such that, for all k = 1, . . . , N:

SCpos = cos θ −
(

Tw ck
[0, 0, 1, 0]T

)T (
Tw ee [0, 0, 1, 0]T

)
≤ 0 . (16)

These tasks also require hard constraints on end-effector Cartesian linear velocity, that is, for all
k = 1, . . . , N:

HCvel =
(

Ww ck − Ww ee
)
[0, 0, 0, 1]T = 0 . (17)

Vertex cost fV is the norm of the angle between the z-axis of the end effector and the z-axis of the
desired pose, that is:

fV(ik) =

∥∥∥∥ arccos
((

Tw ck
[0, 0, 1, 0]T

)T (
Tw eek

(ik) [0, 0, 1, 0]T
))∥∥∥∥2

(18)

Edge cost term fE minimizes the sum of squared norms of the joint velocity and acceleration
vectors as in the 5-DoF case (14).

Since redundancy subspace is three-dimensional, memory footprint can be a limit factor. In this
case, uniform random sampling can be used. By using ZYX Euler angles coordinates, the y- and x-axis
are rotated by a randomly sampled angle in [−θ, θ], while the z-axis angle is randomly sampled in
[−π, π]. Then, the resulting transformation matrix is stored if (16) is respected. In order to avoid
oversampling in some regions of the redundant subspace, a new sample is discarded if the distance
with the closest sample is smaller than a chosen threshold. The number of samples can be chosen as
a trade-off between computational burden and the quality of the solution.

5. Ant Colony Optimization Algorithm

The robot trajectory optimization stated in Definition 8 is a discrete optimization problem that
can be solve by means of an Ant Colony Optimization solver. The proposed solver uses a Max−Min
strategy [41], where a rank-based selection of the best m ants contribute to pheromone updates [40].

The quantity of pheromone added to the vertex depends on the quality of the ant network path
(namely, it is inversely proportional to the related cost function). The pheromone evaporation is
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performed by applying an exponential decay after the passage of all ants. In order to avoid early
stalling, the values of the pheromone is bounded between νmin and νmax as in [41]. The ants choose
the next vertex based on a probability inversely proportional to the vertex cost fV . Such probability is
given by:

π(ik|ik−1) =
ν(ik) η(ik, ik−1)

∑Ck
jk=1 ν(jk) η(jk, ik−1)

, (19)

where π(ik|ik−1) is the probability to go from vertex ik−1 to ik, ν(ik) is the pheromone value of vertex
ik, Ck is the cardinality of Qk,

η(i, j) =

{
(ξ + fV(i))

−1 if the transition is feasible
0 otherwise

. (20)

and ξ > 0 has a small value to avoid division by zero.
Thus, the Ant Colony algorithm can be summarized as:

1. Set Xw eek
is discretized into set Xw eek

, sampling in redundancy subspace;

2. Set Qk is obtained by solving the inverse kinematic problem for all elements of Xw eek
;

3. The pheromone value of each vertex is initialized equal to νmax;
4. Each ant randomly selects the next vertex based on the transition probability Equation (19);
5. Ants are ranked based on the path cost;
6. m best ants are selected, collision checking is performed on the vertexes which are selected the

first time. If an ant path is in collision, this ant is replaced by the next ant in the ranking;
7. The best solution found since the beginning of the whole optimization is added to the set of the

best ants found at the current iteration;
8. The best ants update the pheromone values of the vertexes of their path by adding a quantity

that is inversely proportional to the cost function of its entire network path, that is:

ν(ik)← ν(ik) +
1

Γ(p)
. (21)

9. The pheromone evaporation is performed for all the vertexes

ν← min (νmax, max ((1− ρ)ν, νmin)) . (22)

10. If termination conditions are not satisfied, go to step 4.

Termination conditions are the convergence of ants to the best path and the convergence of the
pheromone level to a steady value, as suggested in [43]. It is worth highlighting that if in Step 6 there
are less the m ants with a feasible path, all of them are selected. If no ant provides a feasible path,
the optimization problem is aborted.

6. Case Studies

6.1. Milling Task

Algorithm effectiveness is analyzed in the milling task scenario shown in Figure 4. As stated in
Section 4.1, the redundancy optimization criterion consists in minimizing the deflections caused by
milling forces.
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X
Y

Z

Figure 4. Redundant DoF of the robot during the milling task. The redundant DoF is the rotation
around the z-axis of the world frame {w} denoted θz.

Weighting vector M in (12) is set equal to

M =

[
1000, 1000, 1000,

180
π

,
180
π

, 0
]

by imposing that a linear deflection equal to 1 [mm] has the same influence of an angular deflection
equal to 1 [deg], and neglecting deflections around the redundant axis. Weighting factors are set equal
to λv = 10−5 and λa = 10−7, respectively.

The considered robot model is a 6-DoF Comau NS16. The algorithm runs on a laptop equipped
with a Intel Core i7-8565U, 16 GB RAM-LPDDR3 and a 512 GB SSD. The stiffness matrix was derived
by following the identification procedure described in Chapter 4 of [44] and is equal to:

K = diag
(

3.7 · 105, 4.5 · 105, 106, 106, 106
)

[Nm/rad]

The transformation matrix between the robot base frame and the workspace frame is

Tbase w =


0.9968, −0.0796, 0.0001, 0.9936
0.0796, 0.9968, 0.0000, −0.1699
−0.0001, 0.0000, 1.0000, 0.6716

0, 0, 0, 1.0000


while the transformation matrix between the robot flange and the end-effector frame is

Tf lange ee =


0.9991, 0.0274, 0.0334, 0.1857
−0.0273, 0.9996, −0.0018, 0.0002
−0.0335, 0.0009, 0.9994, 0.1389

0, 0, 0, 1.0000


The milling trajectory is a 100 [mm] × 100 [mm] square with rounded corner (radius 5 [mm]),

the center of the square is shifted by 50 [mm] from the the workspace origin along x and y directions,
as shown in Figure 5, where also milling forces are represented. The milling parameters are in Table 1.
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0.012

Figure 5. Milling path with the required force field (blue arrows).

Table 1. Technological parameters used to compute the milling forces described in [42]. Parameters are
referred to aluminum milling.

b is the axial depth of cut 1.5 [mm]
Ω is the spindle speed 13,000 [rpm]
fv is the feed velocity 1080 [mm/min] = 18 [mm/s]
φex arc exit angle 3.14 [rad]
φin arc enter angle 1.0472 [rad]
Kt is the tangential cutting coefficient 600 [N/mm2]
Kr is the radial cutting coefficient 300 [N/mm2]
Ktee is the tangential edge coefficient 10 [N/mm2]
Kree is the radial edge coefficient 5 [N/mm2]
α is the helix angle 0.6981 [rad]

The milling path is discretized in 157 points. In each of them, the redundancy angle is discretized
by using 721 values equally spaced in the range [−π,π] (namely, sampling step equal to 0.5 [deg]).
By computing the inverse kinematic for each value of the redundancy angle, the cardinality of sets
Q1, · · · , QN varies between 1442 and 1868, depending on joint limits and possible collisions. Memory
footprint of each vertex is 64 Byte (6 double variables for joint configuration, one double variable
for the cost fV(qik ), one double variable for pheromone value), the footprint of the all net vertexes is
16 Mbyte.

We denote with RBMM (Rank-Based Max-Min) the solver proposed in Section 5. We compare
it with:

• a standard Ant Colony Optimization solver (denoted as ACO) [38];
• a rank-based Ant Colony approach (denoted as RB) [40];
• a Max−Min Ant Colony approach (denoted as MM) [41];
• a local solver (denoted as LS) where qi1 is selected as the vertex with minimum cost in Q1 and,

for each step k, the next vertex qik+1
is selected as the vertex with minimum cost in Qk+1 which

can be reached from qik with a feasible transition.

In order to compare different algorithms performances, Problem (7) is solved 10 times for each
algorithm. The chosen performance indices are the root mean square value of the Cartesian Compliance
Index (M wδxee) and the time taken by the algorithm to find a solution. Table 2 shows the average
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value and the standard deviation of the indices for the different methods. On the one hand, RBMM
and MM converge to a better solution thanks to the pheromone saturation, which avoids stagnation
in local minima. On the other hand, RBMM and RM show lower computational times, thank to the
rank-based ant selection and the consequent reduction of collision checking. Notice that LS gives the
worst solution, due to its deterministic and local nature.

Table 2. Average and standard deviation of the Cartesian Compliance Index (root mean square value)
and of the computational time.

Method Cartesian Compliance Index [mm] Computational Time [s]

RBMM 0.0682 ± 0.0019 2.21 ± 0.18
ACO [38] 0.0716 ± 0.0028 3.91 ± 1.16
RB [40] 0.0701 ± 0.0024 2.22 ± 0.22

MM [41] 0.0695 ± 0.0019 3.15 ± 0.93
LS 0.0829 ± 0.0000 0.51 ± 0.02

The obtained deflection trends during the 10 runs of RBMM algorithm are shown in Figure 6,
highlighting the algorithm repeatability.

0 5 10 15 20 25
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0.04

0.05
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0.1

0.11

Figure 6. Deflection (Cartesian Compliance Index) trends obtained during 10 runs of the proposed algorithm.

6.2. Additive Manufacturing

An additive manufacturing task is considered. The technological path is a spiral defined as

wTwk
=


1 0 0 x(θ)
0 −1 0 y(θ)
0 0 −1 z(θ)
0 0 0 1

 (23)

where θ ∈ [0, 4π] is the curvilinear abscissa
x(θ) = 0.8 +

(
0.3− 0.01 θ

2π

)
cos (θ)

y(θ) = 0.5 +
(

0.3− 0.01 θ
2π

)
sin (θ)

z(θ) = 0.5 + 0.05
2π θ.

(24)
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The curve is depicted in Figure 7.
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Figure 7. Additive manufacturing technological path.

The end-effort has to follow the curve during the time period t ∈ [0, 20] with the following
timing law

s(t) =


1
2 0.0569t2 if t < 4
0.4555 + 0.2278(t− 4) if 4 ≤ t ≤ 16
0.4555 + 0.2278(t− 4)− 1

2 0.0569(t− 16)2 if 16 < t ≤ 20.
(25)

In this way, the modulus of Cartesian velocity is constant when t ∈ [4, 16], as shown in Figure 8.
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Figure 8. Trends of Cartesian velocity. Blue line: x-component. Red line: y-component. Violet line:
z-component. Yellow line: modulus.
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The considered robot model is a 6-DoF Comau NS16, while the algorithm runs on a laptop
equipped with a Intel Core i7-8565U, 16 GB RAM-LPDDR3 and a 512 GB SSD.

The additive path is discretized in 200 points. The cone apperture is set equal to 2θ = 25 [deg].
In each of them, 2356 uniform-distributed transformation matrices respecting (16) are considered.
By computing the inverse kinematic for each value of the redundancy angle, the cardinality of sets
Q1, · · · , QN varies between 9424 and 18,848, depending on joint limits and possible collisions. As in
Section 6.1, memory footprint of each vertex is 64 Byte, the footprint of the all net vertexes is 171 Mbyte.

The comparison is made by using the same algorithm of Section 6.1. In order to compare different
algorithms performances, Problem (7) is solved 10 times for each algorithm. The chosen performance
indices are the root mean square value of the angle (in degrees) w.r.t. the nominal path and the time
taken by the algorithm to find a solution.

Table 3 shows the average value and the standard deviation of the indices for the different
methods. Considerations of Section 6.1 are confirmed also in this case study. RBMM and MM converge
to a better solution avoiding stagnation in local minima. Moreover, RBMM and RM show lower
computational times, thank to the rank-based ant selection and the consequent reduction of collision
checking. Finally, LS gives the worst solution, due to its deterministic and local nature.

Table 3. Average and standard deviation of the angle between computed and nominal path. (root
mean square value) and of the computational time.

Method Angle [deg] Computational Time [s]

RBMM 7.902 ± 0.251 5.66 ± 0.48
ACO [38] 8.061 ± 0.378 5.91 ± 1.96
RB [40] 7.924 ± 0.353 5.72 ± 0.55

MM [41] 7.952 ± 0.242 8.17 ± 2.93
LS 8.291 ± 0.000 0.91 ± 0.02

Also in this case, the algorithm repeatability is shown in Figure 9, where results of 10 runs
are depicted.
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Figure 9. Angle between computed and nominal path trends obtained during 10 runs of the proposed
algorithm.
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7. Conclusions

This paper has proposed a unified motion planning framework to deal with under-defined
Cartesian trajectories in technological applications, such as milling, additive manufacturing,
welding, and gluing applications. In particular, we have used this framework to formulate two
common technological problems by taking into account their particular technological requirements.
The proposed formulation is based on the discretization of the configuration space: the allowed
Cartesian space is sampled and a closed-form inverse kinematics is applied to obtain an admissible set
of joint configurations for each point of the task. This leads to a discrete optimization problem, which is
solved by a modified Ant Colony Optimization solver based on Rank-based and Max−Min strategies.
Notice that the formulation of the problem implicitly respects the constraints of the robot such as
position, velocity, acceleration, and torque limits. The effectiveness of the method is demonstrated in
real-word milling and additive manufacturing scenarios. Results show that the proposed approach is
able to optimize the task by also taking into account complex elastic behaviours during the process,
such as the deflection of the robot tool. A comparison with other Ant Colony solvers shows that the
proposed algorithm has faster converge rate and it has a better repeatability then other Ant Colony
Optimization implementations.

Author Contributions: M.B., S.M. and G.N. designed the Ant Colony solver. M.F. and N.P. worked on the problem
formalization, P.M. dealed with additive manufacturing case study, E.V. worked on the machining case study.

Funding: No funding was received for this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

n number of degrees of freedom of the robot
q joint configuration vector
q̇ joint velocity vector
q̈ joint acceleration vector
τ joint effort vector
Ta b transformation matrix from frame b to frame a
xa b origin of frame b in frame a
ẋa b linear velocity of the origin of frame b in frame a
ωa b angular velocity of frame b in frame a
ẍa b linear acceleration of the origin of frame b in frame a
ω̇a b angular acceleration of frame b in frame a

Wa b velocity twist vector from frame b to frame a, defined as
[

ẋa b; ωa b
]

Ẇa b acceleration twist vector from frame b to frame a, defined as
[

ẍa b; ω̇a b
]

Tw ee transformation matrix from robot end-effector frame ee to workpiece frame w
Tw ck

transformation matrix from CAM output frame ck to workpiece frame w at trajectory sample k
N number of samples of the desired trajectory

The following functions describe the kinematics and dynamics equation of the robot:

- Tw ee = fkin,p(q) is the forward kinematic function of the robot;
- Ww ee = fkin,v(q, q̇) is the velocity forward kinematic function;
- Ẇw ee = fkin,a(q, q̇, q̈) is the acceleration forward kinematic function;
- τ = fdyn(q, q̇, q̈) is the inverse dynamics function;
- c = fcol(q) is the collision function, which is equal to 1 in case of one or more collisions, 0

otherwise.

The following sets describe the feasible conditions:

- admissible joint configuration set Ip = {q ∈ Rn : q ≤ q ≤ q̄} where q and q̄ are, respectively,
the lower and upper joint limits;
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- admissible joint velocities set Iv = {q̇ ∈ Rn : q̇ ≤ q̇ ≤ ¯̇q} where q̇ and ¯̇q are, respectively, the lower
and upper joint velocity limits;

- admissible joint effort set Ie = {τ ∈ Rn : τ ≤ τ ≤ τ̄} where τ and τ̄ are, respectively, the lower
and upper joint effort limits;

- admissible Cartesian velocities set Cv = { Ẇw ee ∈ R6 : ẋ ≤ ẋw ee ≤ ¯̇x ∧ω ≤ ωw ee ≤ ω̄} where ẋ,
¯̇x, ω, and ω̄ are, respectively, the lower and upper linear and angular velocity limits.
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