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Abstract: The hierarchical edge-cloud enabled paradigm has recently been proposed to provide
abundant resources for 5G wireless networks. However, the computation and communication
capabilities are heterogeneous which makes the potential advantages difficult to be fully explored.
Besides, previous works on mobile edge computing (MEC) focused on server caching and offloading,
ignoring the computational and caching gains brought by the proximity of user equipments (UEs).
In this paper, we investigate the computation offloading in a three-tier cache-assisted hierarchical
edge-cloud system. In this system, UEs cache tasks and can offload their workloads to edge servers
or adjoining UEs by device-to-device (D2D) for collaborative processing. A cost minimization
problem is proposed by the tradeoff between service delay and energy consumption. In this problem,
the offloading decision, the computational resources and the offloading ratio are jointly optimized in
each offloading mode. Then, we formulate this problem as a mixed-integer nonlinear optimization
problem (MINLP) which is non-convex. To solve it, we propose a joint computation offloading
and resource allocation optimization (JORA) scheme. Primarily, in this scheme, we decompose
the original problem into three independent subproblems and analyze their convexity. After that,
we transform them into solvable forms (e.g., convex optimization problem or linear optimization
problem). Then, an iteration-based algorithm with the Lagrange multiplier method and a distributed
joint optimization algorithm with the adoption of game theory are proposed to solve these problems.
Finally, the simulation results show the performance of our proposed scheme compared with other
existing benchmark schemes.

Keywords: MEC; computation offloading; resource allocation; cache; D2D

1. Introduction

With the drastic development of sensors and wireless communication techniques, there is
explosive growth in the number of mobile devices accessing wireless networks. It is foreseen that
the mobile data traffic will increase even more significantly in the coming years [1]. Furthermore,
user quipments(UEs) will be smarter and their accompanied novel, sophisticated applications will be
more ubiquitous and pervasive, such as face recognition, interactive game and augmented reality [2].
However, these emerging applications and services need not only extensive computing capabilities
and infer vast battery consumption but also high data rate, which throws out a challenge to UEs
as their computing power and battery capability are constrained. The previous signal processing
and transmission techniques applied in the conventional cellular networks may not be efficient to
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meet UEs’ requirements of high throughput and adequate computational power. To improve the
delay performance and operational costs of services in fifth-generation (5G) wireless networks, future
communication networks not only need to support seamless wireless access but also to offer the
provisioning of computational offloading for UEs [3,4].

To meet with such a challenge of limited computational capability of UEs, a typical paradigm
of mobile edge computing (MEC) is proposed which combines wireless network service and cloud
computing at the edge of the small cell networks (SCNs) [5]. In an MEC system, a huge number
of heterogeneous ubiquitous and decentralized devices are enabled to communicate, potentially
cooperate and perform computation offloading by uploading their computational tasks to the MEC
server via access ratio networks [6,7]. UEs no longer need to offload all of their tasks (e.g., high-quality
video streaming, mobile gaming, etc.) to the central and remote cloud. Thus their requirement can
be satisfied at any time and anywhere. However, the limited computational capabilities of edge
servers may not be sufficient when there exists competition for resources by a large number of devices.
The hierarchical edge-cloud framework is effective in overcoming this problem. Compared with
traditional MEC frameworks, the central cloudlets is set in the hierarchical edge-cloud framework are
seen as supplements of the computing resources [8,9]. This architecture allows a chance of offloading
the workload to high-tier servers and partially relieves the competition among UEs who are requesting
delay-sensitive services. However, offloading to higher-tier servers will incur extra overheads of delay
and energy consumption in the uplink wireless transmission. Therefore, the central cloud server is
indispensable for tasks with a large amount of computation workload and with a small data size [10].
As the UEs’ tasks are heterogeneous, the competition of resources for other type of tasks (e.g., tasks
with a large data size) is still universal in the RAN, thus how to further relieve the competition is an
urgent problem to be solved [11].

Device-to-device (D2D) communication and caching are proposed as technological components
to tackle the data-rate problem. D2D enables devices to communicate directly and obtain the proximity
gain, reuse gain, and hop gain [12–14]. Moreover, since requests of UEs are not simultaneous in the
time domain, so in each period of task requesting, a large number of idle UEs would exist. The idle
UEs can enable the requesting UEs to offload part of computation tasks to neighbor devices via D2D
communication links. Applying caching to heterogeneous network nodes can satisfy the request of
UEs in the local networks. By proactively predicting and caching the most popular contents in the
storage facilities, the distances between the UEs and contents are shortened, which improves the
performance of content delivering.

From now on, several recent works have investigated computation offloading and resource
allocation strategies in the mobile edge systems [15–20]. The authors of [15–17] focused on the
computation offloading strategy. By the optimization of offloading mode (e.g., local computing or edge
offloading mode), the service delay and energy consumption would be largely saved. Some researchers
investigated the communication resources allocation [18], computational resource allocation [19,20] in
MEC-enabled systems to improve the resource efficiency. As wireless channel conditions of UEs have
significant differences, the communication resource allocation and computational resource allocation
can improve communication and computing efficiency, respectively. Some works addressed the joint
allocation of radio and server resource allocation algorithms in various MEC systems [21–26]. The joint
computation and communication resources can balance the delay cost and computation cost according
to the UEs’ servicing delay and energy cost. Recently, the authors of [27–29] integrated caching
technology with computation offloading to optimize the offloading policy in MEC systems. By task
caching, the transmission cost can be largely saved, the offloading cost can be largely saved and UEs’
experience can be further improved.

Although the benefits of D2D communication and caching have received much attention in the
MEC computing networks, the two technologies are considered separately in most works. Moreover,
in their works about task offloading, server offloading mode and local offloading mode are mainly
two considered modes with the assumption that the hardware and software resources can support
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all computing tasks. This assumption is impractical, because computing power of edge servers and
UEs are both limited, which may result in poor performance, especially in a scenario of resource
competition among a large number of UEs. Furthermore, the advantages of task caching in small base
stations (SBSs) have been investigated in some works, but the potential benefits of task caching in UEs
and how much gain will be obtained by cache-enabled D2D communication are still not explored in
the scenario of MEC systems.

Therefore, this research focuses on the computation offloading and resource allocation in a
cache-aided hierarchical edge-cloud system, featured by its SCN architecture. We consider tasks which
can be partially offloaded and processed. Specially, four offloading modes are considered in this
paper named cloud partial offloading, MEC partial offloading, cache-matched D2D partial offloading
and cache-mismatched D2D partial offloading. Our aim to minimize the system cost with a trade-off
between the energy consumption and serving delay while meeting the computation constraints of
servers. The offloading strategy, CPU-cycle assignment in the cloud server and MEC server, and task
offloading ratio are jointly optimized.

The contributions of this paper are listed as follows.
(1) We present the considered hierarchical edge-cloud models, which include cloud partial

offloading, MEC partial offloading, cache-matched D2D partial offloading, and cache-mismatched
D2D partial offloading. A joint optimization problem is established to minimize the total offloading
cost. Particularly, the offloading cost is defined as a linear combination of the total energy consumption
and the total offloading latency. We focus on the joint design of CPU cycle frequency, the offloading
decision, and the offloading ration allocation with the constraints of the computational resources.

(2) From the observation of the joint optimization problem, it is mixed-integer nonlinear
optimization problem (MINLP) and non-convex. To solve it, we decouple it into the offloading
ratio allocation problem (ORAP), resource allocation problem (RAP) and offloading mode selection
problem (OMSP), according to each offloading mode.

(3) We design an efficient distributed joint computation offloading and resource allocation
optimization (JORA) scheme to solve the original optimization problem. Especially for the resource
allocation problems in MEC and cloud partial offloading modes, the Lagrange multiplier method is
adopted. With the solution of resource allocation problems, an alternative optimization algorithm is
proposed to obtain an optimal solution to the offloading ratio problem. For the two D2D offloading
modes, we use reformulation linearization-technique (RLT) to reformulate the ratio allocation problems
into four linear optimization problems which can be solved in polynomial time. At last, we formulate
the offloading optimization problem as a potential game and propose a distributed algorithm to obtain
the optimal solution.

(4) We investigate the performance of the proposed scheme through extensive numerical experiments.
Simulation results show that the proposed scheme outperforms other existing benchmark schemes.

The paper is organized as follows. In Section 2, we review the related works. The system model is
presented in Section 3. The problem formulation and decomposition are given in Section 4. Section 5
provides the formulation of task offloading and resource optimization problem. Meanwhile, the
solution to the problem is also given. Simulation results are described in Section 6. Finally, Section 6
concludes this paper.

2. Related Work

The MEC paradigm has attracted dramatic attention in both academia and industry over the
past several years. From the perspective of users, most services need data transmission and resource
allocation. Thus various works jointly optimize computation offloading and resource allocation in
recent years. To the best of our knowledge, their research can be focussed on the following aspects:
(i) cache-based data offloading. (ii) joint computation offloading and resource allocation (iii) joint
caching, computation offloading and resource allocation.
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2.1. Cache-Based Data Offloading

The Cache-based data offloading is known as caching the popular contents at the caching entities
(e.g., users’ equipment, MEC server, etc.) located at the edge network, with which the delay and
energy consumption of end UEs who are requesting contents would be largely decreased. Liu et al. [30]
proposed a mobility-aware coded probabilistic caching scheme in MEC-enabled SCNs. In their
scheme, user mobility and distributed storage are jointly considered with the aim of throughput
maximization. Hou et al. [31] proposed a proactive caching mechanism named Learning-based
cooperative caching strategy based on MEC architecture to reduce transmission cost while improving
UEs’ QoE. He et al. [32] presented a social trust scheme to enhance the security of MSNs. They
apply a novel deep reinforcement learning approach to optimally allocating the network resources.
Sun et al. [33] presented a MEC-based mobile VR delivery framework to minimize the average required
transmission rate. The main concern of task offloading strategy in their work is what, how and where
to offload UEs’ tasks with the current network conditions. Xu et al. [34] proposed an enhanced adaptive
bitrate video delivery scheme with joint cache and radio resource allocation. A JCRA algorithm to solve
the matching problem to make cooperation between cache and radio resources. The authors of [35]
proposed a novel D2D caching policy for device caching with the adoption of stochastic-geometry in
mmWave-Cellular Networks. A random caching policy is proposed and the offloading gain and the
distribution of the content retrieval delay are optimized in their works. The works in [36] investigated
the probabilistic caching placement in stochastic wireless D2D caching networks. A closed-form
approximation of cache-aided throughput was obtained.

2.2. Joint Computation Offloading and Resource Allocation

The main concern of computation offloading strategy is how and where to offload UEs’ tasks
under current network conditions. Numerous works have been done to achieve an optimal offloading
policy. Meanwhile, as the channel conditions and the requested tasks of UEs are heterogeneity,
a joint resource allocation strategy includes channel allocation policy, transmit power allocation
policy, and computational resource allocation policy are critical to the ultimate QoS of UEs. Some
works consider a joint optimization of computation and resource. Zhao et al. [10] studied the
scheduling of heterogeneous cloud to maximize the probability that tasks can have the delay
requirements met. He et al. [14] integrated the D2D communications with MEC to further improve
the computation capacity of the cellular networks. Yang et al. [16] considered small-cell network
architecture for task offloading and optimized the offloading policies in order to achieve energy
efficiency. Al-Shuwaili et al. [19] jointly optimized communication and computational resources for
AR mobile applications with the consideration of inherent collaborative properties of data in the uplink,
and data delivery in the downlink. The authors of [20] aimed to maximize the energy efficiency in
UAV Based MEC System for IoT Devices. El Haber et al. [24] jointed optimization of computational
cost and devices energy for task offloading in multi-tier edge-clouds while respecting the devices’
latency requirement. In [26], the authors proposed a jointly optimization policy in heterogeneous
networks in order to minimize the cost of system respect to the energy consumption, computation and
transmission cost. The authors of [37] investigated the task allocation problem in MEC environment
with mmWave technology. In their works, the backhaul bandwidth and the edge server resource
allocation are jointly optimized to minimize the total task serving time. In [38], the authors presented a
NFV-enabled architecture and proposed orchestration algorithms for VNF onboarding and scheduling.

2.3. Joint Caching, Computation Offloading and Resource Allocation

Noticing that content offloading can largely save the transmission resource and decrease the
service delay, some works try to integrate caching with the computation offloading and resource
allocation to further the performance in the MEC systems. Tan et al. [13] studied the virtual
resource allocation for heterogeneous services which include data service and computation service.
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Liu et al. [34] furthered the work in [13] and studied the joint offloading and resource allocation
problem in blockchain-based video streaming systems. In their work, D2D technology was adopted
to enhance the sharing of computing power to end users. But both the work in [13,39] ignored the
competition among UEs. Hao et al. in [29] presented the task caching and resource allocation scheme
for mobile edge computing to improve the energy efficiency of the system. But the tasks are caching
in MEC server, which is far away from the request users compared with the other nearby idle users,
which may exacerbate the transmission delay and the resource competition in MEC server. The authors
of [40] exploited the computation-communication tradeoff in a multi-user multi-server MEC network
to speed up the downloading phase with the transmission cooperation of multiple computing nodes.
Liu et al. in [28] optimized the energy by designing a resource allocation policy in a cache-enabled
MEC system. Unfortunately, they considered task caching was arranged in MEC server as the work
of [29].

3. System Model

In this section, we introduce a cache-aided hierarchical edge-cloud system. In such a system,
the SBSs installed with an MEC server can provide a set of UEs seamless access and an abundance of
computing resources in their proximity. The cloud is seen as a supplement to MEC as it has sufficient
computing resources and provides service via a fiber backhaul link with the relay of SBSs.

3.1. Network Model

We assume there are several SBSs that connecting the remote cloud server via a fiber backhaul
link. The remote cloud center has sufficient computing resources but is far away from UEs, while the
MEC server close to the UEs, has limited computing power. We model the cloud server as a large
number of virtual machines. Each of them has a dedicated processing capacity of fC (in cycles per time
unit) [41]. Similarly, we model each of the MEC servers as a virtual machine with a processing power
of fM (in cycles per time unit). The SBSs help UEs relay their tasks to cloud server or MEC servers for
processing. If there is more than one UE access to the same MEC server, the processing power of the
associated server will be shared. Without loss of generality, we focus on a typical small cell and its
associated UEs, as shown in Figure 1. Assume there are K UEs in the range of the typical cell, the set of
UEs is denoted by K = {1, 2, · · · , K}.

____. 

D f;be, Backhaul 

Central Cloud 

(a)

Computation 

Tasks Ln

User device Ui

Computation 

Tasks Ln

User device Ui MEC Server

SBS with MECUser device Ui
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D2D Partial Offloading Mode

MEC Partial Offloading Mode

Central Cloud Partial offloading mode

(b) Illustration of different computation offloading modes
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Figure 1. The considered device-to-device (D2D)-aided hierarchical edge-cloud system. (a) An
overview of a hierarchical mobile edge computing (MEC) system. (b) Illustration of different
computation offloading modes.

Assume each UE has a virtual reality application task (e.g., rendering scenes, or tracking objects)
from a determinant task library need to be processed, and the requesting tasks are are heterogeneous in
data size and computation capacity requirement. In our setting, UEs have a caching ability. A random
caching scheme is adopted to keep the heterogeneity of tasks among UEs (e.g., uniformly probability
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random caching), which means all the UEs random cache tasks according to a determined probability
distribution until the caching spaces are filled up. Task caching refers to caching the completed task
applications and their related data onto UEs’ local caching entities. In each offloading period, the UEs
can choose to offload their tasks to MEC server, remote cloud, or perform them in the D2D networks.
We call these UEs who have a task to be processed active UEs and treat the other UEs as idle UEs.
Figure 1a illustrates an instant of such a cache-aided edge-cloud system with D2D communications.

The direct discovery strategy is considered in D2D networks [42]. In the requesting period,
UEs participated in the device discovery process, periodically and synchronously transmit/receive
discovery signals. In a device discovery period, an active UE would transmit discovery signals that
may be detected by other UEs. The information in the discovery signals should include identity and
application-related information (e.g., cache state). Thus, the active UEs would accurately establish
connections with the most proper cache-matched or mismatched idle UEs. It should be mentioned
that the device discovery period and the connection establishment period are all under control of UEs’
serving SBS.A quasi-static scenario is considered where the set of UEs remains unchanged during a
computation offloading period.

For each UE, there are four offloading modes that can choose, as shown in Figures 1b and 2:

(1) MEC partial offloading (mode 1)

In general, if an active UE cannot find adequate computing resources from the idle UEs nearby,
no matter they have cached the requested task or not, the UE may be associated with Mode 1. After the
allocation of offloading ratio, the offloading part of the task would be relayed and processed in the
MEC server while the left part will be performed locally. It should be emphasized that the offloading
and local processing are implemented simultaneously. To ensure the active UEs to experience a short
delay and low energy consumption, the offloading ratio should be optimized with the consideration
of competition between other active UEs in the same offloading mode. Moreover, the allocated CPU
cycles should also be carefully designed.

(2) Cloud partial offloading (mode 2)

Similar to mode 1, for each UE with mode 2, they would additionally experience the transmission
delay of backhaul link between SBSs and cloud center, but needn’t consider the competition from other
UEs compared with mode 1. The offloading part and the left part of the task are also be processed
simultaneously. But different from mode 1, there is no competition for resources as there is no share of
resources in the virtual machine of cloud centers. UEs are preferred to be associated with this mode if
they cannot find adequate computing resources and the size of their request tasks is generally small,
which results in a tiny transmit cost.

Active user Ui

D2D idle users without caching task Ln

NCU 1

NCU 2

NCU k

 Task Ln

D2D multicasting

(a) D2D  computation offloading to  Non-cache users

Active user Ui

D2D idle users  caching task Ln

CU 1

CU 2

CU k

 Task Ln

(b) D2D  computation offloading to cached users

(a)

Active user Ui
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(a)   D2D  computation offloading to  Non-cache users

Active user Ui

D2D idle users  caching task Ln
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CU 2

CU k

 Task Ln

(b)  D2D  computation offloading to cached users
(b)

Figure 2. Illustration of two D2D partial offloading modes. (a) Cache-mismatched D2D partial
offloading. (b) Cache-matched D2D partial offloading mode.
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(3) Cache-mismatched D2D partial offloading (mode 3)

In this mode, the active UE would requisition all the computing resources of idle UEs nearby.
In this case, as the allocated idle UEs have not cached the requesting task, the transmission from
the active UEs to the occupied idle UEs for the offloading part should be involved in. For an active
UEs, all the idle UEs have not cached the requesting task would formulate a potential collaborative
offloading group. After the offloading ratio allocation, the idle UEs with nonzero offloading ratio
would keep in the original group and the others would be released. The multicast scheme is adopted
for offloading in this paper with a consideration of spectral efficiency. The size of tasks is considerable
and the transmission cost should not be ignored which is different from that in the cache-matched
D2D offloading mode. It should be emphasized that the whole data of task(e.g., the task-related
database for computing) and the computing correlative parameters should be delivered to the hired
UEs. The correlative computing parameters may include the input parameters and the computing
ratio allocation decision for each hired UE. When the cache-mismatched UEs receive the data, they
will decode the signal by a carefully designed decoding function. After the decoding period, they can
get their workloads and perform processing.

(4) Cache-matched D2D partial offloading mode (mode 4)

As in this mode, cache-matched idle UEs have already cached the requesting tasks (e.g., task-related
database). Thus the active UEs need only to transmit the related computation parameters as in mode 3.
The parameters have a tiny data size compared with the whole task. We ignored the transmission
delay and transmit energy consumption of UEs as they are far less than that of sending and processing
the whole task [29]. So we only need to focus on the computing delay and energy consumption of each
processing UEs. It needs to state that in all offloading modes if the offloading ratio is zero, that means
the task will be processed locally.

We define the set of offloading strategies each UE could be associated with byO = {DC, DN, M, C}.
Specially, The indicators DC, DN, M and C mean cache-matched D2D partial offloading mode,
cache-mismatched D2D partial offloading mode, MEC partial offloading mode and cloud partial
offloading mode, respectively. In this paper, we don’t consider the simultaneously offloading in
different offloading modes as it will increase the complexity of signal scheduling, and the spectrum
resources are limited which may not be enough to support simultaneous and multi-mode access for a
large number of UEs.

3.2. Task Caching Model

Assume there is a task library consists of N computation tasks denoted by N = {1, 2, · · · , N},
and all the tasks have different task size and computation requirements. Tasks can be divided and be
partially offloaded. Let Ln(Dn, Sn) presents nth of the tasks, where Dn denotes the total number of
instructions to be executed (in CPU cycles). Furthermore, Sn means the data sizes in bits of the task
Ln. As the assumption in many works, we do not consider the transmission delay of task results and
packer loss as the data size after processing. In this paper, the caching capacities of UEs are normalized
as the number of caching tasks. Moreover, the caching capacities of all UEs are equally denoted by M.

The distribution of many Internet services was proven to follow Zipf’s law. Similar to Internet
services, the distribution of computing services also follows Zipf’s law[43]. As the assumption in [29],
in this paper, we assume that the requests of UEs follow the same Zipf distribution. The popularity set
of tasks is denoted by P = (P1, P2, · · · , PN), in which the popularity is ranked in descending order.
The popularity of tasks can be calculated by

Pn =
n−γ

N
∑

j=1
j−r

, ∀n ∈ N ,
(1)
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where the exponent γ is the popularity distribution parameter, which reflects the skewness of popularity.

3.3. The Communication and the Computation Models

There are two communication modes, including D2D communication and cellular communication.
In this paper, all the UEs occupy the orthogonal spectrum in both D2D links and cellular links, and the
cell reuses the bandwidth resources of another cell. That ensures the intercell interference among UEs
can be removed no matter which mode they are associated with.

3.3.1. Mode 1: MEC Partial Offloading Mode

If an active UE is associated with MEC partial offloading mode, the UE would firstly offload its
task to the SBS and then process it in MEC server. In this case, cellular communication will be applied.
For a typical UE i in this case with the task Ln, the transmit rate RT

i can be calculated by

RT
i = BClog2

(
1 +

pi HM
i

σ2 + Ic

)
, (2)

where BC represents the bandwidth in cellular communication for each UEs, pi is the transmit power
of UE i, σ2 is the additive white Gaussian noise. Ic denotes the interference coming from other adjacent
cells. For the sake of simplicity, we regard Ic as a constant.

According to the Formula (2), the delay for UE i offloading task Ln to MEC server can be calculated by

tMT
i,n = θM

i Sn

/
RT

i , (3)

where θM
i ∈ [0, 1] is the offloading ratio of UE i in MEC offloading mode. Specially, θM

i = 0(θM
i = 1)

means task will be totally processed locally (in the server).
The energy consumption of transmission can be represented as

EMT
i,n = pitMT

i,n . (4)

Let f M
i denote the allocated computational resources in MEC server for UE i, the processing time

can be expressed as
tMC
i,n = θM

i Dn

/
f M
i . (5)

According the works in [26], we can also get the energy consumption of partial processing task
Ln in MEC server which can be calculated by

EMC
i,n = ηmθM

i Dn( f M
i )2, (6)

where ηm is the energy effective switched capacitance of MEC server.
Similarly, let f L

i denote the computing power of UE i, the computation delay and the energy
consumption for processing local part of tasks can be expressed as

tML
i,n = (1− θM

i )Dn

/
f L
i (7)

EML
i,n = ηu(1− θM

i )Dn( f L
i )

2, (8)

where tML
i,n and EML

i,n denote the computing delay and energy consumption by local computing, ηu

denotes the energy effective switched capacitance of UE i.
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3.3.2. Mode 2: Cloud Partial Offloading Mode

The offloading procedure in this mode can be divided into two phases named as the access phase
and the backhaul phase, respectively. The active UEs in this mode should firstly access the serving SBS
and transmit their offloading part by wireless access front link, then relay them to cloud center for
processing by fiber backhaul link. Therefore, the communication latency includes two parts, fronthaul
transmission delay and backhaul transmission delay.

Similar to the Formula (3), let θC
i ∈ [0, 1] denotes the offloading ratio of i in cloud offloading mode,

the fronthaul transmission delay and energy consumption which are denoted as tCT1
i,n , ECT1

i,n , can be
defined as the same as (3) and (4) by following the same notations.

For the backhaul link transmission, we consider the delay in backhaul from local access networks
to the cloud center as a constant value. Moreover, the transmission energy consumption in backhaul
link can be neglected as it is insignificant compared with the energy consumption of computation.
Let TC denote the backhaul link transmission delay for all tasks. So the total offloading delay can be
expressed as tCT

i,n = tCT1
i,n + TC.

The computation delays for processing the offloading part and the rest part of task Ln are denoted
by tCC

i,n and tCL
i,n which can be expressed as

tCC
i,n = θC

i Di/ f C
i (9)

tCL
i,n = (1− θC

i )Di/ f L
i , (10)

where f C
i represents the allocated computational power in cloud center for UE i.

Similar to the Formulas (6) and (8), we can get the computation energy consumption for the
offloading part and the rest part of task Ln

ECC
i,n = θC

i ηcDn( f C
i )2 (11)

ECL
i,n = (1− θC

i )ηuηuDn( f L
i )

2, (12)

where ECC
i,n and ECL

i,n denote the energy consumption for cloud processing and local processing, ηc

denotes the energy effective switched capacitance of cloud servers.

3.3.3. Mode 3: Cache-Mismatched D2D Partial Offloading Mode

For an active UE in cache-mismatched D2D partial computing mode, the UE will offload part of its
task to nearby idle UEs who have not cached the requesting task. The multicast scheme will be adopted
for transmission. So the transmission rate is depending on the UE with the worst channel state.

Furthermore, some idle UEs may satisfy more than one active UE’s demands because the D2D
coverage of active UEs may overlap. To simplify, in this paper, if an idle UE can be selected by one
more active UE, it would associate to the nearest active UE.

For an active UE i in mode 3, let VNC
i denote the set of potential idle UEs nearby who are within

the D2D coverage of i without caching the requesting task Ln. So the multicasting transmit rate can be
expressed as

RD
i = BDlog2

(
1 +

pihNC
i,j

σ2 + Id

)
, j = argmin{hNC

i,o }o∈VNC
i

, (13)

where hNC
i,j denotes the channel gain between UE i and the idle UE j, Id is the interfere from other

D2D links with the same channel in other cells. BD is the bandwidth for each active UE in the D2D
offloading modes.
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Let θNC
i,j ∈ [0, 1] denote the allocated offloading ratio of the task requested by i to the UE j.

Especially, the local process ratio of the task can be repressed as θNC
i,i . Then we can get the multicasting

delay of i which can be calculated by

tDT
i,n = (1− θNC

i,i )Sn/RD
i . (14)

Let EDT
i,n denotes the energy consumption of multicasting. Thus we have

EDT
i,n = pitDT

i,n . (15)

The computation delay of UE j for helping process the task Ln can be calculated by

tDC
i,j,n = θNC

i,j Dn/ f L
j , j ∈ VNC

i ∪ i. (16)

The energy consumption of UE j for processing a part of task Ln can be expressed as

EDC
i,j,n = θNC

i,j ηuDn( f L
j )

2, j ∈ VNC
i ∪ i. (17)

3.3.4. Mode 4: Cache-matched D2D Partial Offloading Mode

In cache-matched D2D partial computing mode, the offloading and processing procedure are
similar to that of the cache-mismatched D2D partial offloading mode. The only difference is that the
multicasting of tasks is not needed because the hired UEs have already cached the request tasks of the
active UEs. Thus, the transmission delay can be neglected. Let VDC

i denote the set of idle UEs cached
the requesting task Ln, the computation delay and energy cost in this mode can be expressed as the
same formulations as Formulas (16) and (17) respectively by replacing VNC

i by VDC
i .

4. Problem Formulation and Solutions

In this section, we formulate the joint offloading and resource allocation problem. Considering
the non-convexity of the joint optimization problem, we decompose it into multiple subproblems and
propose corresponding algorithms to solve these problems. Then, a distributed joint optimization
algorithm is presented to solve the joint offloading and resource allocation problem.

4.1. Problem Formation

Our aim is minimizing the system cost with a trade-off between task processing delay and energy
consumption. Considering the fact that the different properties and performance criterions of delay
and energy consumption, we use a weighted cost of delay and energy consumption of the system
for task processing. We let ρt ∈ (0, 1] and ρe ∈ [0, 1] denote the normalized weight coefficients of the
total process latency and the total energy consumption(ρe + ρt = 1). They are used to characterize the
impact of delay and energy consumption on the total cost. The values of these parameters are depend
on the type of tasks. For example, for a delay-sensitive application, the system may set ρt = 1 and
ρe = 0.

As introduced previously, a computation task can be offloaded in different modes. Thus for a
typical active UE i, we denote its offloading strategies by xo

i ∈ {xM
i , xC

i , xNC
i , xDC

i }( i ∈ K, o ∈ O).
Especially, xo

i = 1, o ∈ O means UE i is associated with offloading mode o.
For an active UE i, as its task can be computed at multiple computing entities (e.g., MEC server,

cloud center or other idle UEs nearby), the total delay for processing tasks should be the maximum
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one of the handling delay in the involved entities. Thus, we have the total processing delay in
different modes. 

tDC
i,n = max

{
tDC
i,j,n

}
j∈VDC

i ∪i
, i f xDC

i = 1

tNC
i,n = max

{
tNC
i,i,n, tNT

i,n + tNC
i,j,n

}
j∈VNC

i

, i f xNC
i = 1

tM
i,n = max

{
tML
i,n , tMT

i,n + tMC
i,n

}
, i f xM

i = 1

tC
i,n = max

{
tCL
i,n , tCT

i,n + tCC
i,n

}
,else

(18)

Similarly, the total energy consumption can be expressed as

EDC
i,n = ∑

j∈VDC
i ∪i

EDC
i,j,n, i f xDC

i = 1

ENC
i,n = EDT

i,n + ∑
j∈VDC

i ∪i

ENC
i,j,n, i f xNC

i = 1

EM
i,n = EML

i,n + EMT
i,n + EMC

i,n , i f xM
i = 1

EC
i,n = ECL

i,n + ECT
i,n + ECC

i,n , else

(19)

In (18) and (19), the indicators tDC
i,n , tNC

i,n , tM
i,n, tC

i,n present the total processing delay in cache-matched
D2D partial offloading mode, cache-mismatched D2D partial offloading mode, MEC partial offloading
mode and cloud partial offloading mode, respectively. Indicators EDC

i,n , ENC
i,n , EM

i,n, EC
i,n present the total

processing energy consumption in such four partial offloading modes, respectively.
Let ΦDC

i and ΦNC
i denote the sets of allocated offloading ratio to idle UEs of UE i in mode 3

and mode 4. To minimize the total cost of computation offloading in such system, the following
optimization problem can be established

min
XDC

i XNC
i XC

i XM
i ,

ΦDC
i ,ΦNC

i θM
i θC

i , f M
i , f C

i

C = ∑
i∈K

∑
o∈O

xo
i (ρtto

i,n + ρeEo
i,n) (20a)

Subject to: ∑
o∈O

xo
i = 1, ∀i ∈ K (20b)

xo
i ∈ {0, 1}, ∀i ∈ K (20c)

0 ≤ f M
i ≤ fM, ∀i ∈ K (20d)

0 ≤ ∑
i∈K

f M
i ≤ fM, ∀i ∈ K (20e)

0 ≤ f C
i ≤ fc, ∀i ∈ K (20f)

0 ≤ θM
i ≤ 1, ∀i ∈ K (20g)

0 ≤ θC
i ≤ 1, ∀i ∈ K (20h)

0 ≤ θDC
i,j ≤ 1, ∀i ∈ K, θDC

i,j ∈ ΦDC
i (20i)

0 ≤ θNC
i,j ≤ 1, ∀i ∈ K, θNC

i,j ∈ ΦNC
i (20j)

θDC
i,i + ∑

j∈VDC
i

θDC
i,j = 1, ∀i ∈ K (20k)

θNC
i,i + ∑

j∈VNC
i

θNC
i,j = 1, ∀i ∈ K, (20l)

where C denotes the value of the total cost. Constraints (20b) and (20c) ensure each UE can only choose
one offloading mode in each task processing period. Constraints (20d) and (20f) mean the allocated
computational capacity in MEC server and cloud server for each UE should be bounded within
zero and its maximum computational power. Similarly, constraint (20e) bound the total allocated
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computational power for all UEs in MEC particle offloading mode. Constraints (20g) and (20h) state
that offloading ratio in MEC partial offloading mode and cloud partial offloading mode should be
limited between 0 and 1. Constraints (20i) and (20j) are proposed to guarantee the offloading ratio
of each entitie for each active UE in cache-matched D2D offloading mode or cache-mismatched D2D
offloading mode are limited between 0 and 1. Futhermore, constraints (20k) and (20l) are proposed to
limit the total offloading ratio.

From the observation of task offloading optimization problem, we can see that xo
i ∈ {0, 1} is binary,

resulting in the nonconvexity of objective function. These attributes makes (20) become a mixed-integer
nonlinear optimization problem (MINLP). Moreover, joint consideration of offloading ratio allocation,
offloading mode selection and resource allocation makes centralized algorithms commonly with a
high computation complexity. Furthermore, as the adoption of game theory, a centralized algorithm
needs a large number of iterations to obtain the NE solution, which is impractical. So a distributed
mechanism is extremely urgent to be designed to ensure the efficiency of the solution.

To solve the problem (20), We propose a distributed joint computation offloading and resource
allocation optimization (JORA) scheme. In this scheme, we decompose it into three subproblems,
which mean offloading ratio allocation problem (ORAP), resource allocation problem (RAP) and
offloading mode selection problem (OMSP).

4.2. Resource Allocation Problem (RAP) in JORA

Recalling (20), the optimization of the CPU-cycles frequency of servers for each UE is related to
the offloading ratio allocation strategies.

Now we discuss the resource allocation problem in JORA. Since the constraints given by (20b),
(20c) and (20g)–(20i) are not related to the CPU-cycle frequency, so they can be overlooked in this
subproblem. So the problem of computing resource optimization is equivalent to the following problem
when xo

i,n, θM
i,n, θC

i,n are fixed:

min
f M
i , f C

i

C = ∑
i∈K

xo
i (ρtto

i,n + ρeEo
i,n) (21a)

Subject to: (20d), (20e), (20f). (21b)

It is obvious that if the offloading strategies of active UEs are fixed, the problem (20) is equivalent
to minimize the cost accumulation of active UEs in their respective modes.

4.2.1. RAP in MEC Partial Offloading Mode

Now we discuss the resource allocation problem of the UEs in MEC offloading mode. By separating
the cost of the system in MEC offloading mode from (22), the resource allocation problem of UEs in
MEC partial offloading mode can be expressed as

min
f M
i

CM = ∑
i∈K

ρt max{tML
i,n , tMT

i,n + tMC
i,n }+ ρeEM

i,n

Subject to: (20d), (20e).
(22)

The problem of (22) is continuous and non-differentiable due to the function of max{·}. The value
of max{·} is respected to the offloading ratio {θM

i }i∈K. For a typical UE i, the total delay is related
to the numerical relationship between local computing delay and offloading delay decided by the
value of θM

i .
In order to solve the problem (22), we present a lemma as follows
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Lemma 1. The problem (22) is a convex optimization problem with respect to { f M
i }i∈K and it is equivalent to

the following optimization problem for all UEs with θM
i 6= 0,∀i ∈ K.

min
f M
i

CM = ∑
i∈K

ρt(tMT
i,n + tMC

i,n ) + ρeEM
i,n

Subject to: (20d), (20e)
(23)

Proof. Please refer to Appendix A.

For the problem (23), we adopt Lagrange multiplier method to solve it. By applying the
Karush–Kuhn–Tucker(KKT) conditions, the Lagrangian of problem of (23) can be expressed as

min
F

L(F) + µ

 ∑
i∈K,θM

i 6=0

f M
i − f M


subject to: (20d), (20e), (20f).

(24)

where F = { f M
i }i∈K and µ are values larger than 0.

For ∀i ∈ K and θM
i 6= 0, the KKT conditions are as follows

∇ f M
i

L (F) = −
2ρtDnθM

i(
f M
i
)2 + 2ρeκMθM

i Dn f M
i = 0

µ ∑
i∈UM ,θM

i 6=0

(
f M
i − fM

)
= 0.

(25)

Let [y]+ = max{y, 0}, combined with the condition (25), the Lagrange multipliers update as below.

µ(t + 1) = µ(t) + δ(t)

 ∑
i∈K,θM

i 6=0

f M
i − f M

+ (26)

where t is the current times of iteration, δ(t) represents the step of t-th iteration. By utilizing the KKT
conditions, the optimal resource allocation solution can be found.

4.2.2. RAP in Cloud Partial Offloading Mode

Similar to RAP in MEC partial offloading, the resource allocation in cloud partial offloading mode
can be separated from problem (20), and can be expressed as

min
f C
i

CC = ∑
i∈K

ρt max{tCL
i,n , tCT

i,n + tCC
i,n }+ ρeEC

i,n

Subject to: (20f).
(27)

By recalling Lemma 1, for the RAP in cloud partial offloading mode, we have a similar conclusion.

Lemma 2. The problem (27) is a convex optimization problem with respect to { f C
i } and it is equivalent to the

following optimization problem for all UEs with θC
i 6= 0, ∀i ∈ K.

min
f C
i

CC = ∑
i∈K

ρt

{
tCT
i,n + tCC

i,n

}
+ ρeEC

i,n

Subject to: (20 f ).
(28)

Proof. Please refer to the proof of Lemma 1.
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Then the following optimum solution can be obtained by solving the following equation:

∇ f C
i

CC( f C
i ) = −

2ρtDnθC
i(

f C
i
)2 + 2ρeκCθC

i Dn f C
i = 0, ∀i ∈ K. (29)

By solving the Equation (29), we can get:

f C∗
i = 3

√
ρt

2ρeκc
. (30)

Based on (30), a closed-form solution of (27) can be expressed as follows:

f Copt
i =

{
f C∗
i , f C∗

i < fC

fC, f C∗
i ≥ fC

(31)

4.3. Offloading Ratio Allocation Problem (ORAP)

In order to trade off the delay cost and energy cost, the offloading ratio allocation in different
offloading modes should be carefully optimized.

4.3.1. ORAP in MEC and Cloud Partial Offloading Modes

As discussed above, the cost of the system in different offloading modes are independent. For all
active UEs in mode 1 and mode 2, if the offloading strategies {xo

i }o∈O , f M
i and resource allocation

policies f C
i are fixed, the problem (20) in such two types of offloading modes can be equivalently

seemed as solving the following offloading ratio allocation problem.

min C
θM

i ,θM
i

= ∑
i∈K

xM
i

[
ρt max

{
tML
i,n , tMT

i,n + tMC
i,n

}
+ ρeEM

i,n

]
+ xC

i

[
ρt max

{
tCL
i,n , tCT

i,n + tCC
i,n

}
+ ρeEC

i,n

]
Subject to: (20g), (20h)

(32)

As the offloading proportions of UEs {θM
i }i∈K are independent, the (32) is equivalent to

minimizing the cost of each UE (e.g., minimize CM
i , ∀i ∈ K).

Assume for any active UE i ∈ K associated with MEC partial offloading mode. If the optimal
solution have reached, it must fall into two cases as follows.

Case 1: tML
i,n ≥ tMT

i,n + tMC
i,n

In this case, the local processing delay is larger than the offloading delay. We can get the constraint
on θM

i as follows
θmin

i ≥ θM
i ≥ 0 (33)

where θmin
i =

DnRM
i f M

i
f L
i Sn f M

i + f L
i RM

i Dn+DnRM
i f M

i
which meets that the value that tML

i,n = tMT
i,n + tMC

i,n .

The problem (32) can be rewritten as

min
θM

i

CM1
i =ρttML

i,n + ρe(EML
i,n + EMT

i,n + EMC
i,n )

subject to: 0 ≤ θM
i ≤ min{θmin

i , 1}.
(34)

By discussing the first derivative of the cost CM
i to θM

i , ∇θM
i

CM
i (θM

i ) = 0, we can get the optimal
solution of offloading ratio as follows

θ
Mopt
i =

0, i f ∇θM
i

CM1
i (θM

i ) > 0

θmin
i , i f ∇θM

i
CM1

i (θM
i ) ≤ 0

(35)
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Case 2: tML
i,n ≤ tMT

i,n + tMC
i,n

In this case, the local processing delay is smaller than the offloading delay. We can get the
constraint on θM

i as follows
1 > θM

i ≥ θmin
i . (36)

The problem (33) can be rewritten as

min
f M
i

CM2
i = ∑

i∈K
ρt

(
tMT
i,n + tMC

i,n

)
+ ρe(EML

i,n + EMT
i,n + EMC

i,n )

Subject to: min{θmin
i , 1} ≤ θM

i ≤ 1.
(37)

As same as case 1, we can get the optimal solution by discussing the first derivative. The optimal
solution in this case can be expressed as follows

θ
Mopt
i =

θmin
i , i f ∇θM

i
CM2

i (θM
i ) ≥ 0

1, i f ∇θM
i

CM2
i (θM

i ) < 0.
(38)

By summarizing the solutions in case 1 and case 2, the optimal offloading ratio θ
Mopt
i can be

obtained by
θ

Mopt
i = arg min

{
CM

i (0), CM
i (θmin

i ), CM
i (1)

}
, ∀i ∈ K. (39)

The process of solving ORAP in cloud partial offloading mode is similar to that in MEC edge
partial offloading mode. We can get a similar conclusion about the optimal offloading ratio, which is
expressed as follows

θ
Copt
i = arg min

{
CC

i (0), CC
i (θ

M∗
i ), CC

i (1)
}

, ∀i ∈ K. (40)

4.3.2. ORAP in D2D Partial Offloading Modes

For all active UEs in D2D offloading modes, the computing resources are fixed, we only consider
the ratio allocation to minimize the total cost in such modes.

Firstly, we discuss the D2D cache-mismatched partial offloading mode, as offloading delay is not
needed in D2D cache-matched partial offloading mode which is the only difference.

For each UE in this mode, their cost are independent. Thus, the problem (20) in such offloading
mode can be equivalently seemed as solving the offloading ratio allocation for each UE. For a UE i
requesting task Ln, the offloading ratio allocation problem can be equivalently expressed as

min
ΦNC

i

CDC
i =ρt max

{
tDL
i,i,n, tDT

i,n +
{

tDL
i,j,n

}
j∈VNC

i

}
+ ρeENC

i,n , ∀i ∈ K, ∀n ∈ N

Subject to: (20j), (20k)

(41)

Assume the problem ΦNC∗
i is an optimal solution of the offloading ratio policy of (41).

Next, we analyze the cache-matched idle UE candidate with the maximum processing delay when
the offloading ratio problem reaches the optimal solution.

Theorem 1. For an active UE i, (i ∈ K), when the optimal solution to the problem (41) is reached, the idle UEs
with the worst computing power would experience the maximum processing delay compared with other idle UEs
in the same group.

Proof. Please refer to Appendix B.
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Assume the idle UE j is the UE with a maximum processing delay in the offloading group of i
(e.g., j = arg max{ti,g,n}g∈VNC

i
). Under this condition we can further discuss the optimal solution to

the problem (41). The problem (41) can be rewritten as

min
ΦNC

i

CDC
i =ρt max

{
tDL
i,i,n, tDT

i,n + tDL
i,j,n

}
+ ρeENC

i,n , ∀i ∈ K, ∀n ∈ N (42a)

subject to: θDC
i,j Dn/ f L

j ≥ θDC
i,g Dn/ f L

g , ∀g ∈ VNC
i , (20j), (20k), (42b)

where (42b) ensures j is the cache-mismatched idle UE with the maximum processing delay which is
the necessary condition of the optimal solution.

Similar to the UEs in cloud and MEC offloading modes, we analyze the cache-mismatched D2D
ratio offloading mode in two cases. The optimal cost will be the smaller one of the costs in these
two cases.

Case 1: tDL
i,i,n ≥ tDT

i,n + tDL
i,j,n

In this case, the problem (41) can be rewritten as:

min
ΦNC

i

CDC
i = ρttDL

i,i,n + ρeENC
i,n , ∀i ∈ K, ∀n ∈ N

(43a)

Subject to: θDC
i,i Dn/ f L

i ≥ θNC
i,j Dn/ f L

i , ∀j ∈ vNC
i (43b)

(20j), (20k), (42b).

The problem (43) is a Linear programming problem(LP), which is solvable in polynomial time.
We denote the optimal offloading ratio allocation policy by ΦNC1

i .
Case 2: tDL

i,i,n < tDT
i,n + tDL

i,j,n
The problem (42) can be rewritten as:

min
ΦNC

i

CDC
i = ρt

(
tDT
i,n + tDL

i,j,n

)
+ ρeENC

i,n , ∀i ∈ K, ∀n ∈ N
(44a)

subject to: θDC
i,i Dn/ f L

i ≤ θNC
i,j Dn/ f L

i , ∀j ∈ VNC
i (44b)

(20j), (20k), (42b).

The problem (44) is also a Linear programming problem(LP), which is solvable in polynomial
time. We denote the optimal offloading ratio allocation policy by ΦNC2

i .
In summary, the optimal solution of problem (41) can be got by comparing the cost obtained in

two cases:
ΦNC

i = arg min
{

CNC
i

(
ΦNC1

i

)
, CNC

i

(
ΦNC2

i

)}
, ∀i ∈ K. (45)

We can get the similar solution to the D2D cache-matched offloading mode:

ΦDC
i = arg min

{
CDC

i

(
ΦDC1

i

)
, CDC

i

(
ΦDC2

i

)}
, ∀i ∈ K, (46)

where CDC
i (ΦDC1

i ) is the cost in case 1 when the active local processing delay is larger than the
offloading delay, CDC

i (ΦDC2
i ) is the cost in case 2 when the active local processing delay is smaller than

the offloading delay.
For the cache-matched D2D partial offloading mode, we can get the same conclusion as the only

difference between the two modes is that the transmission delay is omitted in cache-matched D2D
partial offloading mode.
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The optimal allocated offloading ratio and optimal allocated computing resources are coupled
in MEC and cloud partial offloading modes. An iteration-based algorithm is presented to find the
optimal solution, which is shown in Algorithm 1.

Algorithm 1 Iteration-based algorithm for offloading ratio and resource allocation.

Require: K,XO

Ensure: Current cost {Ci}i∈K.
1: Initialize the offloading ratio for each UEs.
2: for l = 1:L do

3: for i = 1 to K do

4: if xM
i = 1 then

5: Calculate optimal resource allocation policy according to Formula (25) for all UEs.
6: Obtain the optimal value of θi for ∀i ∈ K according to (39).
7: else if xC

i = 1 then

8: Calculate optimal resource allocation policy according to Formula (31) for all UEs.
9: Obtain the optimal value of θi for ∀i ∈ K according to (40).

10: else if xDC
i = 1 then

11: Obtain the optimal value of ΦDC
i for ∀i ∈ K according to (46).

12: else if xNC
i = 1 then

13: Obtain the optimal value of θi for ∀i ∈ K according to (45).
14: end if
15: end for
16: Update the value of µ(t + 1) according to Formulas (25) and (26)
17: end for
18: return current cost {Ci}i∈K according to the Formula (21b)

In Algorithm 1, the optimization results of the CPU-cycle frequency, the offloading ratio are
updated alternately. In particular, during each iteration, the solutions of CPU-cycle frequency
optimization can be obtained straightforwardly based on (25), (26) and (31). The offloading ratio
allocation is optimized according to (39), (40), (45) and (46).

4.4. Offloading Mode Selection Problem (OMSP)

When the allocated offloading ratio and allocated computing resources given by (20) are fixed,
the offloading mode selection problem can be written as

min
xDC

i xNC
i xC

i xM
i

C = ∑
i∈K

Ci

Subject to: (20b), (20c).
(47)

As shown in (20), although the offloading ratio and the allocated resources are independent with
the offloading decision {xo

i }i∈K, the competition of computing resources in MEC server and D2D idle
UEs lead to an interaction between active UEs when they are making the offloading decisions.

To determine which tasks should be offloaded, we formulate the interactions between the UE
users as a strategic game. In each iteration process of the game, every active UE would make their
current best offloading decision according to the current UEs’ offloading decisions state.

We define game g = (K, ∏i∈K xo
i ,{Ci}i∈K), where K is the set of players and xo

i is the feasible
strategy space of player i, Ci is the player i’s cost with consideration of delay and energy consumption,
which decides its payoff achieved from using computing services.

In the offloading game, each UE is one player and would select the optimal mode to minimize its
cost (e.g., Ci ) in response to the other UEs’ strategies.

To obtain the strategies of all UEs, we first introduce the concept of the best response strategy.
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Let matrix Xo
−i denote the offloading strategies of all UEs, excluding UE i. Each row of Xo

−i
represents the offloading vector of a UE. According to the definition of Game Theory [44], the best
response strategy for each UE can be expressed as

x∗i = arg max Ci(xo
i , Xo
−i) (48a)

Subject to: xo
i ∈ {0, 1}, i ∈ K, ∑

o∈O
xo

i = 1, o ∈ O. (48b)

We now introduce the NE as follows.

Definition 1. (NE [44]) An offloading strategy profile {xo
i ∗}i∈K is a NE of game g if no player can further

decrease the cost by unilaterally altering its strategy, i.e., for all xo
i
′ ∈ Xi, i ∈ K

C(xo
i
′, Xo′
−i) ≤ C(xo

i , Xo
−i). (49)

We next show that there exists an NE.

Definition 2. A game is called a potential game if it exists a potential function Q such that for ∀i ∈ K and
offloading vectors that satisfy:

Ci(xo
i , Xo
−i)− Ci(xo′

i , Xo′
−i) = Qi(xo

i , Xo
−i)−Qo

i (xo
i
′, Xo′
−i). (50)

The Nash has self-stability properties which makes the UEs in the game derive mutually
satisfactory solution at the equilibrium. At the equilibrium, no one can improve their utilities by
changing the offloading policy since the UEs are selfish to act in their interests in the non-cooperative
offloading problem.

Propotion 1. The following function is a potential function and g are potential games for all UEs

Q(xo
i , Xo
−i) = (1− xM

i )
(

∑
j∈K,j 6=i

cM
i + xC

i CC
i + xNC

i CNC
i + xDC

i CDC
i

)
+ xM

i ∑
j∈K

CM
j . (51)

Proof. For each UE, it can choose four offloading modes for task processing. By substituting the value
of xo

i into the Formula (51), we can get the cost variation by changing the offloading decision.
We first discuss the case that switching offloading decision between cloud offloading mode and

MEC offloading mode. Assume the initial choice of UE i is MEC partial offloading mode and then
change the offloading mode to cloud offloading partial mode,(e.g., xo

i = {1, 0, 0, 0} → xo′
i = {0, 1, 0, 0}.

In this case, we have:

Q(xo
i ,X o

−i) =
K

∑
i=1

CM
i (52)

Q(xo′
i ,X o

−i) = ai,m

K

∑
j=1,j 6=i

CM
j + CC

i (53)

By subtracting the Formulas (52) and (53), we can achieve that

Q(xo
i , Xo
−i)−Q(xo′

i , Xo
−i) = CM

i − CC
i = C

(
xo

i , Xo
−i
)
− C(xo′

i , Xo
−i). (54)

From (54) we can find that the variation of (51) is equal to that of the cost function. Similarly, we
can get that when switch the offloading decisions, same conclusion would be obtained, which proves
that proposition 1 is established and the game must existence NE. When the iteration in this game
increase to a certain number, the solution will reach the optimal solution.
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The distributed joint optimization algorithm is presented in the Algorithm 2. Now we analyze
the complexity of Algorithms. Based on (39), Algorithm 1 can approach the optimal solution of
resource and offload ratio allocation problem via L iterations, thus the computational complexity
of Algorithm 1 can be estimated as O(LK). As the Algorithm 2 is established by the iteration of
Algorithm 1. The computational complexity of Algorithm 2 can be analyzed as O(TLK2+LK).

Algorithm 2 The distributed joint optimization algorithm.

Require: Ci, XO

Ensure: Optimal offloading policy XO∗

1: for i = 1 to K do

2: Each UEs switch the offloading modes.
3: Calculate the current cost of the system by Algorithm 1 and update the offloading mode to the

optimal current mode xo′
i .

4: end for
5: while l <= T or XO 6= XO′ do

6: for i = 1 to K do

7: Set xM
i = 1, calculate the cost by Algorithm 1 and update the offloading mode with minimum

cost xo′
i .

8: end for
9: end while

10: Output the optimal offloading policy XO∗ and cost {C∗i }i∈K;

5. Simulation Results and Discussions

In this section, we use computer simulation software MATLAB to evaluate the performance of
our algorithms. We firstly give the simulation setup and some of the other schemes for comparison
in this paper. Then we compare these schemes and analyze the cost performance which is the aim of
our optimization.

5.1. Simulation Setup

The simulation results of the proposed JORA are presented in comparison with other algorithms.
The simulation was conducted on simulator Matlab 2018. The simulation parameters are described as
follows. We considered the system consists of 80 UEs and one SBS. In the simulation, there was an
orth-hexagonal region, which was covered by an SBS located at the center, with 300 m in diameter [14].
The UEs were uniformly distributed in the SBS coverage area. According to the reference [13] where
40 UEs compete for a total 20 MB bandwidth, the wireless bandwidth for each UE in D2D and cellular
links in this paper was set to 1 MHz. As the assumption in [16], the background noise is set to
−100 dbm. The wireless channel gain Hi is modeled as Hi = 127 + 30× log d [29], where d is the
distance between UE i and computational entities other than UEs themselves. For UEs, we assumed
that the CPU clock speeds are randomly distributed among 800–900 MHz. Without loss of generality,
we assumed that the computational resources of each virtual machine of the cloud server and the MEC
server are 10 GHz and 20 GHz, separately. The average data size of tasks was randomly distributed
between 0.5 MB and 2.5 MB. Meanwhile, the required computational resource for each task is randomly
distributed between 1 Ghz and 3 Ghz. The other main parameters in the simulations are summarized
in Table 1.
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Table 1. Summary of other default simulation parameters.

Parameters Values

Transmit power of UEs (pu) 0.1 w
Coefficient per unit of energy (ρe) 0.5

Revenue coefficient per unit of delay (ρt) 0.5
The number of tasks in the library (N) 20

The number of UEs (K) 80

In the simulations, the cost of the system is presented in units. To evaluate the impact of different
parameters, the proposed JORA was compared with three other methods in their respective frameworks.

• DCOA [15]. The DCOA scheme only focuses on offloading strategy in mobile cloud computing
(MCC) adopting a distributed potential game. But dynamic resource allocation and collaborative
calculation among users are not considered in this scheme.

• RND, which means all UEs randomly select the four offloading strategies. Moreover, the resources
and offloading ratio are also randomly allocated.

• MEC W. Local [29]. We use computing systems and algorithms in [29]. In their strategy, UEs
partially offload and process tasks in MEC. Moreover, the computing resources and offloading
ratio are optimized by an alternating iterative algorithm.

• MEC W. D2D [39]. In this scheme, a group D2D UEs are seemed as the supplement to the
MEC server. UEs can choose MEC partial offloading mode or D2D partial offloading mode.
The offloading strategy and offloading ratio are optimized, but the computational resources
allocation is not considered.

5.2. Performance Evaluation of Distributed JORA Scheme

5.2.1. The Impact of the Number of UEs to the Total Cost of the System

Considering that our aim is minimizing the total cost of the system, so, we illustrate the cost
performance of our proposed JORA scheme and discuss the effects of UEs. The number of UEs can
reflect the resource competition in edge servers and D2D networks, and it is one of the most important
factors to the total cost. As shown in Figure 3, the ratio of number of active UEs to that of idle UEs
was fixed to 1, the delay from SBS to cloud center TC was set to 0.1 s, the cache sizes of UEs were
equally fixed to 3. Observing Figure 3, we can find that as the number of UEs increased, total costs
increased in all schemes. But compared with the other schemes, our proposed scheme has the best
performance. Moreover, through the observation of increasing rates of all schemes, we can find that
the proposed scheme had the lowest rate while the RND scheme experienced the worst performance.
The reasons were that with the consideration of cached-D2D and the cloud center, the competition
in MEC was largely alleviated in the proposed scheme. Moreover, as the number of active UEs and
idle UEs increased, schemes without considering the ubiquitous and idle computing resources of UEs
(e.g., RND) experienced a higher cost, whether the computing cost or the transmission cost. However,
the schemes with D2D (e.g., JORA and MEC w. D2D) will provided more computing resources for
active UEs. It can also be verified by the cost increasing rate of scheme MEC W. D2D, which was
smaller than the other three schemes without considering the UEs’ cooperation computing. We can also
find that the scheme MEC w. Local had a better performance than the other three schemes. The reason
was rooted in its carefully designed offloading ratio allocation policy and resource allocation policy,
while these policies are partial missed in schemes MEC W. D2D and RND. We can also find in Figure 3
that there were small gaps between the costs in proposed JORA with different γ. The reasons can be
concluded that as the parameter γ influences the concentration of tasks’ popularity. When changing the
values of γ, the amount of available idle computing resources nearby the active UEs in D2D networks
will be changed but with low increase because of the density of UEs. Moreover, the caching scheme
was fixed and the cache sizes of UEs were small, which also makes the gaps small compared with the
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total costs of UEs in all four offloading modes. The variation of costs in different γ is not so obvious,
but we can also find that with the increasing of γ, the total cost decreases from the local amplification
of Figure 3. It is because the increasing of γ can increase the concentration of tasks’ popularity, which
can enhance the hit probability of caching and further decrease the total cost.
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Figure 3. The total cost of the system over the average required computational resources of tasks.

5.2.2. The Effect of Weights among Impact Factors on the Serving Delay and Energy Consumption

The total cost formulated with a trade-off between delay and energy consumption. It is reflected
by the delay weight and energy weight. Thus, we set different weights with the increasing number of
UEs to find the influence of weights on the delay and energy consumption. In Figure 4, the delay and
energy consumption obtained by our proposed JORA with varying number of UEs are evaluated.

In Figure 4a, we can find that as the number of UEs increases, the average processing delays of all
schemes decrease. Besides, the average delay and its decreasing rate get higher with the increasing of
the delay weight. The reason lies in: as the delay weight becomes larger, UEs will be allocated more
proportion of tasks to the cloud center or MEC server in the proposed JORA scheme, which can cause a
larger energy consumption but can largely save the processing delay. As the delay weight increases to
a certain amount, the advantage of computing in servers is more obvious due to the huge computing
resources compared with UEs’ cooperative computing. Moreover, the number of serving idle UEs is
fixed that results in the ultra-low computational delay.

In Figure 4b, we can find that as the number of UEs increases, the average energy consumption of
all schemes decreases. Moreover, the average energy consumption and its increasing rate increase with
the increase of energy weight. As the energy weight becomes larger, the energy consumption and its
decreasing rate decline do too, no matter how the number of active UEs changes. The reasons can be
explained that when there are very few active UEs, the computational resources in D2D networks and
MEC server are adequate, which results in a lower average processing delay and energy consumption
of active UEs. Moreover, as the number of active UEs increases, more UEs choose to offload their tasks
or offload more proportion of their tasks to the servers smaller energy switch coefficient, which results
in a larger decreasing rate of energy consumption. Furthermore, as the number of active UEs increases,
the competition in the MEC server and in D2D networks was exacerbated. The cloud center can
compensate for this shortcoming and bring about performance improvement with a small computation
energy consumption compared with cooperative computing among UEs.
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Figure 4. The influence of weights to the processing delay and energy consumption. (a) The average
processing delay of UEs to the different weights. (b) The average energy consumption to the different weights.

5.2.3. The Effect of Cache Size of UEs to the Total Cost of the System

In our proposed scheme, cache-matched D2D offloading mode is deemed as a key offloading
mode, which can relieve the resource competition in the servers and decrease the transmission cost.
The performance of cache-match D2D offloading is largely affected by cache capacity. So, we evaluate
the impact of the cache size of UEs on the average number of UEs, and analyze the influence to the
offloading decision with different cache size of UEs. Figure 5 shows the impact of the cache size of
UEs on the average number of UEs in each mode. In this simulation, we set the number of active UEs
and the number of idle UEs to 50. The delay from SBS to cloud center TC is fixed to 0.2 s.
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Figure 5. The beneficial UEs in different offloading modes to the average required computational
resources of tasks.

We can observe from Figure 5 that the number of UEs associated with the cache-matched D2D
partial offloading mode increases while the number of UEs in other offloading modes decreases in
different degrees. The reason is that as the cache size of UEs increases, more active UEs have the chance
to find the cache-matched idle UEs for task processing. The active UEs can use computational resources
of the cache-matched idle UEs while task data transmission is not required, which can largely save
the total processing delay and energy consumption caused by data transmission. Thus, comparing
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with the other three offloading modes, UEs in cache-matched offloading modes will experience a tiny
transmission cost. By which reason, more active UEs which have chosen other modes further change
their offloading decisions and participate in D2D cache-matched offloading modes.

As shown in Figure 5, the number of UEs in MEC partial offloading mode and D2D
cache-mismatched partial offloading modes slightly reduced while the number of UEs in cloud
partial offloading modes decreases sharply. The reasons can be concluded as follows: (i) there exists a
competition of active UEs between the cache-matched D2D offloading mode and the cache-mismatched
offloading modes as the number of idle UEs is fixed. The increasing number of beneficial UEs in D2D
cache-matched offloading mode certainly would influence the number of UEs in cache-mismatched
D2D partial offloading modes. (ii) Comparing with the cache-mismatched D2D offloading mode,
the cache-matched offloading mode has obvious advantages because of a smaller transmission
cost, which would seize the UEs who originally chose the cache-mismatched offloading mode.
(iii) Comparing to costs of cloud partial offloading mode, UEs in the MEC partial offloading mode
wouldn’t experience backhaul delay. Thus the decreasing of the beneficial number of UEs in edge
computing modes are largely coming from the cloud offloading mode.

5.2.4. Effect of Task Size and Workload to the Total Cost

The nature of the task itself determines the cost of transmission or computation, so, we show the
influence of the average data size of tasks and average of the workload of tasks to the total cost.

The influence of the average data size of tasks to the total cost is illustrated in Figure 6a. We fix the
average computation workload of tasks to 1.2Gcycles and the number of UEs to 30. We can see from
Figure 6a, as the average data size of tasks increases, the total costs in all schemes increase too, but our
scheme has the best performance compared with other schemes. The reasons can be concluded as
follows. Firstly, it is obvious that more average required computational resources of tasks means more
energy cost and larger delay of UEs, as both the energy and delay consumption of computing increase.
Secondly, the offloading cost will get higher with the increases of average data size. Thus UEs will
experience a larger transmission delay and energy consumption in a fixed offloading ratio. To decrease
the cost, UEs may choose an offloading mode with the lowest increasing rate of cost (e.g., D2D partial
offloading). Compared with other schemes, the D2D partial offloading modes include cache-matched
D2D partial offloading mode and cache-mismatched D2D offloading mode have greater advantages
versus computing by cloud center and MEC servers in saving delay. According to Figure 6a, we can
see that the cost of scheme MEC W. Local scheme has a slightly increasing from 15 to 16. The reason
is that the mechanism of partial offloading leads to a higher computation proportion of tasks, which
can relieve the consequences bring by the increasing of task size. From Figure 6a, the scheme DCOA
has a larger increasing rate than scheme MEC w. Local and scheme MEC w. D2D. As the average size
per task increases from 0.5 MB to 1.5 MB, the cost of DCOA is smaller than the two schemes. As the
average size per task increases from 1.5 to 2.5, the cost of DCOA gradually exceeds that of the two
schemes. The reason is that as the transmission cost and transmission consumption are proportional
to the amount of task data, the transmission cost from MEC to cloud in DCOA is absented in other
two schemes. Moreover, when the the average size of task is small (e.g., 0.5–1.5 MB), the extra cost
can be supplied the gap in DCOA as there is no competition in cloud server compared with the other
two schemes. But when the average task size increase to a certain amount (e.g., exceeds 1.5 MB),
the advantage of sufficient computing resources is weakened by the cost of transmission, which leads
to a lower cost compared with the other two schemes.

Figure 6b illustrates the workload of tasks to the total cost. In this part, the average data size
of tasks is fixed to 1.5 MB, and the number of UEs is set to 40, which can better display the trends
of schemes with D2D communication. The average workload of tasks in changed from 1Gcycles to
3Gcycles. As shown in Figure 6b, the total costs increase with the increase of workload for all schemes.
Moreover, by the comparison with other schemes, the proposed scheme has the best performance.
The reason is that as the workload of tasks increases, more computation energy will consumed, which
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increases the total cost. Besides, the existence of more offloading modes in JORA enables UEs to choose
an offloading strategy with the lowest cost according to the characteristics of the tasks requested.
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Figure 6. Effect of task size and workload to the total cost. (a) The average total cost to the different
average size per task. (b) The average total cost to the different average computations per task.

5.2.5. The Influence of Backhaul Delay to the Average cost of the System

The cloud server is seemed as the a supplement of edge servers and collaborative D2D computing,
so the backhaul transmission delay is the key point that largely affects the total cost. In this part, we
study the influence of idles UEs on the number of beneficial users that offload their computation tasks.

To analyze the impact of latency between SBSs and cloud center on the average cost in this system,
we simulate the total cost with a different number of UEs and different backhaul latency settings in
Figure 7. The ratio of number of active UEs to that of idle UEs is fixed to 1. As shown in Figure 7,
the average system cost for the tasks’ processing per UE tends to rise with the increasing number of
UEs. It is because the competition for computing resources intensifies with the increases number of
active UEs, as the limit resources in idle UEs and MEC server. Thus, the average cost of the system
would increase in each mode.
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Figure 7. The influence of backhaul delay to the average cost of the system.

In addition, as the backhaul transmission delay increases from 0.05 s to 0.5 s, the average cost gets
higher with fixed UEs’ numbers. The reason is that the increasing number of UEs intensify the resource
competition in MEC server, thus more UEs offload tasks to the cloud center which has additional
transmission delays compared with computing in MEC server. As we know, it is universal of the
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phenomenon of resource competition in MEC. Thus the allocated computing resources in MEC server
may not be sufficient. When backhaul transmission delay decreases, the backhaul transmission cost
decreases, thus the advantage of computing in cloud is highlighted as it has adequate computing
resources in cloud center.

5.2.6. The Beneficial UEs with Different Ratio of Active UEs to Idle UEs

It is easy for us to understand that the ratio of active UEs to idle UEs directly affects the cost
in D2D offloading modes, which is decided by available computing resources and the degree of
competition in the D2D networks. Thus, it is meaningful to evaluate the influence of the ratio to UEs’
offloading decision. So in this part, we illustrate the beneficial UEs with different ratios of active UEs
to idle UEs.

In Figure 8, we change the ratio of active UEs to the idles UEs and evaluate the number of active
UEs in each offloading mode. In this setting, the total number of UEs are 40 and the cache size of
UEs is 5.

0.7 0.6 0.5 0.4 0.3 0.2

The ratio of the number of active UEs to that of idle UEs

0

5

10

15

20

25

30

T
he

 n
um

er
 o

f U
E

s 
w

ith
 d

iff
er

en
t o

ffl
oa

di
ng

 m
od

es Cloud Partical offloading Mode
MEC Partical offloading Mode
Cache-dismatched D2D Partical offloading Mode
Cache-matched D2D Partical offloading Mode

Figure 8. The beneficial UEs with different ratios of active UEs to idle UEs.

From Figure 8, we can observe that the number of UEs in the two D2D partial offloading modes
decreases with the ratio increases. Moreover, the number of UEs in MEC partial offloading mode has a
little increasing while the number of UEs in cloud offloading mode grows significantly. It is because
with the increasing of ratio, the idle UEs in D2D networks are fewer which result in lack of computation
resource in D2D computing networks. Thus, a large number of actives UEs could not find sufficient
idle computing resources nearby, which motivate them to choose other offloading modes. Comparing
with cloud partial offloading mode, MEC partial offloading has a huge advantage as only fronthaul
transmission delay is considered in the case. But as the ratio increases, more active UEs who originally
choose D2D partial offloading modes participate in the competition of MEC servers, which results in
an increasing number of UEs in MEC offloading mode with an aggravating of resource competition.
So, some of these UEs should be associated with cloud offloading mode, when the resources of MEC
server are saturated.

6. Conclusions

In this paper, we investigated the offloading and resource allocation in a three-tier system which
includes cloud center, MEC servers and D2D UEs. We considered that each UE has a task request
from the task library and needs to make a decision on the task execution. Four processing modes
were specifically considered, including cache-matched D2D partial mode, cache-mismatched D2D
partial mode, MEC partial offloading mode and cloud partial offloading mode. A cost minimization
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problem was formulated with a trade of service delay and consumption. Particularly, the offloading
decision, the computational resources and the offloading ratio in each mode were all optimized.
Offloading decision, the computational resources and the offloading ratio were optimized for each
mode. To solve the nonlinear and non-convex problems, we designed an iterative algorithm that
converges the stationary optimal solution with polynomial computational complexity.
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Notations

Symbol Definition
K The number of UEs
N The number of tasks in the task library
K The set of UEs
N The library of tasks
X 0 The offloading strategy set of UEs
Pn The requesting probability of task Ln

pu The transmit power of UEs
RT

i The average transmit rate of UE i in cellular networks
θC

i The offloading ratio of UE i in cloud partial offloading mode
θM

i The offloading ratio of UE i in MEC partial offloading mode
θM

i The offloading ratio of UE i requesting task Ln in MEC partial offloading mode
θNC

i,j The offloading ratio of UE i to idle UE j in cache-mismatched D2D partial offloading mode

θDC
i,j The offloading ratio of UE i to idle UE j in cache-matched D2D partial offloading mode

ΦNC
i The set of offloading ratio of UE i in cache-mismatched D2D partial offloading mode

ΦDC
i The set of offloading ratio of UE i in cache-mismatched D2D partial offloading mode

tMT
i,n The average transmit delay of UE i requesting task Ln in MEC mode

tCT
i,n The uploading time of task Ln to cloud center for UE i

tL
i,n The local computing time by MUE i for task Ln

tC
i,n The computation execution time of UE i with cloud computing for task Ln

tM
i,n The computation execution time of task

TC The backhaul delay between MEC servers and cloudlets
ρt The revenue coefficient per unit of saved delay
ρe The revenue coefficient per unit of saved energy
ELC

i,n The energy consumption for processing task Ln locally
El

i,n The energy consumption of MUE i for task Ln processing locally
EMC

i,n The energy consumption of UE i for task Ln processing in MEC
ECC

i,n The energy consumption of UE i for task Ln processing in cloud
Eu

i,m,n The energy consumption of transmission in uplink from MUE i to FN m for task Ln

Co The total cost of the system in offloading mode o

Appendix A. Proof of Lemma 1

For each UEs in MEC partial offloading mode, we can discuss its cost into two cases by comparing
the values of local computation delay and MEC processing delay. We first rewrite the problem (23) by
merging the energy cost and energy cost of each UEs into the max function which is presented as follows.
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min
f M
i

CM = ∑
i∈K

xM
i min

{
CM1

i , CM2
i

}
subject to (20d), (20e),

(A1)

where CM1
i which is presented in Formula (35) means the cost of UE i when the local computation

delay for the left proportion of task is larger than that of MEC total processing delay include data
transmission delay and computation delay, CM2

i which is presented in Formula (37) means the cost in
the case that the former delay is smaller than the latter delay.

Firstly, we discuss the convexity of the problem (A1). The function of CM1
i and CM2

i for any UE
i ∈ K in Formula (A1) are both continuity and differentiable. Their convexity can be verified as follows

∇2
f M
i

CM1
i = 2ρeηMθM

i Dn � 0

∇2
f M
i

CM2
i =

2ρtDnθM
i

f M
i

+ 2ρeηMθM
i Dn � 0.

(A2)

As a max function of two convex functions is also a convex function according to the conclusion
in [45], so the cost function for processing tasks for each UE min{CM1

i ( f M
i ), CM2

i ( f M
i )}∀i∈K is convexity.

From the observation of problem (A1), we find that it is a linearity summing of the cost function of
UEs and its constraints (20d), (20e) are also linear, we can get the conclusion that the problem (A1) is
convex optimization problem.

Secondly, we will use the counter-evidence method to prove the equivalence between the
problem (A1) and the problem (24). Assume the solutions F ∗ = { f ∗1 , f ∗2 , · · · , f ∗K} is optimal solution to
problem (A1). If Lemma 1 is not held, there must be at least one idle UE j whose f ∗j (j ∈ K) satisfies the
conditions in the follows

CM2
j ( f ∗j ) ≤ CM1

j ( f ∗j ), 0 < f ∗i < min{ f j
max, 1}, (A3)

where f j
max is the value of f ∗j that satisfies Ci( f ∗j )

M1 = Ci( f ∗j )
M2. As the first derivative of its cost is

larger than zero. So the optimal solution of resource allocation for j must be 0, which is a conflict to the
setting in Lemma 1. Thus Lemma 1 is proofed.

Appendix B. Proof of Theorem 1

For an active UE i in D2D cache-mismatched partial offloading mode, assume j is the idle UE
with a maximum computing delay when the optimal task ratio allocation is reached.

Thus we have
j = arg max

{
tDC
i,j,n

}
j∈VNC

i

(A4)

By substituting related variables into (A4), we can rewrite the Formula (A4) as

θNC
i,j >

θNC
i,g f L

j

f L
g

, ∀g ∈ VNC
i \j. (A5)

Now, we break this optimal ratio allocation by changing the workload allocated to j. If we reduce
the offloading ratio θNC

i,j by an infinitesimal value4θ (e.g.,4θ → 0+) to a new value of ratio θNC′
i,j and

allocate the rest workload to any of other idle UEs. Thus, the total cost for processing the task of i is
impossible to decrease.

Next we discuss the delay of local computing and offloading delays in idle UEs. After the
reallocation of the ratio of j, the longest processing delay among idle UEs may change or not.

Case 1: there is no changing of the longest processing delay of idles UEs.
If this case occurs, as the total offloading data size of idle UEs is not changed, the multicast delay

is as same as that before. Thus, there must be at least one idle UE which have the same processing
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delay as UE j in the optimal ratio allocation solution. Let UNC
i denotes the set of idles UEs that with a

smaller computing delay than j’s when meeting to the optimal ratio solution. The computing delay of
idle UE, which receives the reallocated workload is one of UEs in UNC

i .

θNC
i,n Dn

f L
j

>
θNC

i,j Dn

f L
g

, g ∈ UNC
i . (A6)

The increment of cost after changing ratio can be expressed as

∆CNC
i = ρe

(
−∆θρuDn

(
f L
j

)2
+ ∆θρuDn

(
f L
g

)2
)

. (A7)

As discussed before, the optimal solution is broken up which results in the current cost is not
less than that of changing before, which leads to ∆CNC

i ≥ 0. Thus, we can easily get that f L
j ≤ f L

g .

If we replace idle UE g by any other UEs in UNC
i , the case would still occur, and the same conclusion

can be also be obtained. In other words, if this case occurs, when the optimal ratio allocation solution
meets, the processing delay of idles UEs can be directly presented by that of idle UEs with the worst
computing power, as shown in Theorem 1.

Case 2: the longest processing delay of idles UEs are changed.
As ∆θ is infinitesimal value, the idle UE j is also the UE with the worst computing delay among

other idles UEs. In this case, there must be at least one idle UEs with a less computing delay and the
idle UE received the reallocated workload of the task is one of such UEs. As same as that in case 1, we
let UNC

i denote the set of such idle UEs.
After reallocation, the cost increment can be presented as with the constraint (61):

∆CNC
i = −ρt∆θDn

f L
j
− ρe

(
∆θηuDn

(
f L
j

)2
− ∆θηuDn

(
f L
g

)2
)

. (A8)

As in case 1, by letting ∆CNC
i ≥ 0, we have

ρe

(
M θηuDn

(
f L
g

)2
− M θηuDn

(
f L
j

)2
)
>

ρt M θDn

f L
j

> 0. (A9)

So we can easily know that f L
j ≤ f L

g . If we replace idle UE g by any other UEs in UNC
i , the case

would still occur and the same conclusion can be also be got. If this case occurs, when the optimal
ratio allocation solution meets, the processing delay of idles UEs can be directly presented by that of
idle UEs with the worst computing power(e.g., the computing delay of UE j).

By concluding the two cases, the Theorem 1 can be proofed.
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