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Abstract: In this study, the effects of back-gate bias on the subthreshold swing (S) of a tunnel
field-effect transistor (TFET) were discussed. The electrostatic characteristics of the back-gated TFET
were obtained using technology computer-aided design (TCAD) simulation and were explained
using the concepts of turn-on and inversion voltages. As a result, S decreased, when the back-gate
voltage increased; this behavior is attributed to the resultant increase in inversion voltage. In addition,
it was found that the on–off current ratio of the TFET increased with a decrease in S due to the
back-gate voltage.
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1. Introduction

A continuous scaling of metal–oxide–semiconductor field-effect transistors (MOSFETs) has enabled
integrated circuit (IC) chips to be fabricated with more functionality and at a lower cost [1,2]. Currently,
multi-gated (MG) FETs (e.g., FinFETs) have replaced conventional FETs, which face a physical limit
on scaling owing to short-channel effects [3]. Moreover, FinFETs also have a theoretical limit on
subthreshold swing (S), since they are based on Boltzmann statistics as well. Therefore, a decrease in
power consumption through the maintenance of a high on–off current ratio (Ion/Ioff) is a huge technical
challenge for future complementary MOS (CMOS) technology.

A tunnel FET (TFET) has been regarded as one of the most promising candidates for the
next-generation low-power devices, because it can achieve a subthreshold swing of 60 mV/decade at
room temperature [4,5]. Most studies about TFETs have mainly focused on improving their performance
in terms of Ion, S, etc. by changing their structures and materials of devices [6–9]. Moreover, most TFETs
use silicon-on-insulator (SOI) structures; therefore, it is very important to understand how a back-gate
bias (Vbg) affects the operation of TFETs. A few studies have reported that back-gate biases change
the transfer characteristics of TFETs [8,10]. However, no in-depth analysis has yet been conducted on
how a back-gate bias affects S specifically. Therefore, in this study, the subthreshold characteristics of a
back-gated TFET are extensively analyzed by means of technology computer-aided design (TCAD)
simulation. Through this simulation, it is shown, for different back-gate biases, the channel potential
changes with gate bias, along with the mechanism behind this change. The results thus obtained were
used to analyze the influence of back-gate bias on the transfer characteristics of the TFET, especially
the subthreshold swing.
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2. Simulation Conditions

The device structure studied in this work is shown in Figure 1. In order to improve current
drivability with the help of pseudo-direct band-to-band tunneling (BTBT) model, a p-type source and a
channel are made of Ge [9]. On the other hand, a Si drain is used for suppressing a leakage current due
to the ambipolar behavior (Iamb) and the Shockley–Read–Hall (SRH) recombination observed in TFETs.
As well as the top-gate oxide of a 1 nm thick SiO2 layer, the back-gate electrode is also separated from
the Ge channel, using the same thickness of SiO2 to prevent the substrate leakage current, through
the forward-biased source to the substrate junction; in this case, the substrate is negatively biased.
The work functions for both the top and back gates are 4.05 eV. The other device design parameters are
summarized in Table 1. In order to rigorously examine the BTBT behavior, a dynamic nonlocal BTBT
model was used for TCAD simulation after calibration [11,12]. In addition, both indirect and direct
BTBTs were considered in this simulation [7,9,11].
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Figure 1. Schematic diagram of a back-gated tunnel field-effect transistor (TFET).

Table 1. Device parameters used in technology computer-aided design (TCAD) simulation.

Parameter Description Unit Value

Lgate gate length nm 50

Tox equivalent oxide thicknesses of top- and back-gate oxides nm 1

Xj junction depth nm 10

TB body thickness nm 50

NS source doping concentration /cm3 1020

ND drain doping concentration /cm3 1020

NB body doping concentration /cm3 1017

3. Results and Discussions

Figure 2 shows drain current (Id) as a function of top-gate voltage (Vtg) for different values of Vbg.
Different drain voltages (Vds) of 0.05 V and 0.5 V were applied as shown in Figure 2a,b, respectively.
Two noteworthy phenomena were discussed below.

First, a comparison of Figure 2a,b clarified that a higher Vds contributed to a lower minimum S.
Furthermore, it was also observed that, as Vds increased, the channel inversion voltage (Vinv) increased.
Vinv is defined as the value of Vtg required for the formation of an inversion layer [9]. It was observed
that, similar to those of MOSFETs, the surface potential of the TFET rarely changed after an occurrence
of channel inversion (Vtg ≥ Vinv). However, it was observed that the Vinv of the TFET was unaffected
by the gate-to-source voltage (Vgs), but it was determined by the gate-to-drain voltage (Vgd) instead.
Moreover, an increase in Vds also increased Vinv, while the change in turn-on voltage (Von) was
negligible during the first occurrence of the BTBT. Due to this, the gate-to-channel coupling for high
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Vds was stronger than that for low Vds, which further resulted in a smaller S compared with that for
low Vds.
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Figure 2. Transfer characteristics, where Vbg is changed from 0 to −2.0 V with a −0.5 V step at different
Vds values: (a) 0.05 V and (b) 0.5 V. The insets are the extracted minimum S as a function of Vbg.

Second, the insets of both Figure 2a,b indicate that S was improved as the amount of Vbg increased.
As shown, if the amount of Vbg was increased up to 2 V, S was decreased from 84 to 77 mV/dec for
Vds = 0.05 V and from 74 to 68 mV/dec for Vds = 0.5 V. In addition, Figure 3a,b depict the change in
ratio (Ion/Ioff) of the on-state current (Ion) and the off-state current (Ioff) with increasing amount of Vbg.
The Ion and Ioff are defined as Id at Vtg = 1.0 V and Vtg = 0 V, respectively. As mentioned earlier, due to
the improved S by increasing the amount of Vbg, the Ion/Ioff increased by 144% and 126% for Vds of
0.05 and 0.5 V, respectively.
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Figure 3. The change in the ratio of the on-state current (Ion) and the off-state current (Ioff), where Vbg

is changed from 0 to −2.0 V with a −0.5 V step, at different Vds values: (a) 0.05 V and (b) 0.5 V.

In order to analyze these phenomena, the change in surface potential (∆ϕs) of the back-gated TFET
as a function of Vtg was examined, as shown in Figure 4. ∆ϕs was extracted as the change in surface
potential with respect to Vtg sweep starting from −0.4 V. As shown, for small values of Vtg, the surface
potential was linearly proportional to it. However, as Vtg further increased, the surface potential
became saturated. This behavior is attributed to the formation of an inversion layer, which decouples
the Vtg with the surface potential [13]. Owing to the screening of the Vtg by the inversion charges at the
channel, the surface potential could not be increased any further. As a result, the BTBT barrier width
(i.e., BTBT probability) was almost fixed, and Id became slightly saturated, which resulted in a distinct
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degradation of S with the increase in Vtg, as shown in Figure 2. An interesting phenomenon observed
in Figure 4 is that the saturation point of the surface potential was pulled back when Vbg was applied.
The channel potential was well-controlled by Vtg before the saturation region, which explained the
improvement in S with a larger |Vbg|.
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Figure 4. The change in surface potential as a function of Vtg, when Vbg is biased by 0 and −2 V. At a
higher Vtg, an increase in amount of Vbg causes the formation of an inversion layer, which results in
the occurrence of the saturation of the surface potential.

In order to confirm the dependence of S on Vbg more quantitatively, the values of Vinv were
extracted from the gate capacitance (Cg) and Vtg relationship for different values of Vbg, as shown
in Figure 5a, and were further compared with Von, as shown in Figure 5b. By referring to [14],
the values of Vinv were extracted from the first extremums of the second derivative of the Cg–Vtg curves.
The extraction method is a concept of extracting the Vth of an MOESFET similar to the maximum
transconductance (gm,max) method; and the extraction equation was written as below:

dgm

dVtg
=

d2Id

dVtg2 ∝
d2Cg

dVtg2 . (1)

As a result, the larger extremum points were obtained, when higher values of |Vbg| were
applied, which meant the higher Vtg was required for the channel inversion. Because the better
gate controllability was secured before the formation of the inversion layer, the higher value of Vinv

means that the region of steeper transfer characteristics was expanded. The top-gate controllability
improvement by the back-gate bias can be explained with the energy band diagrams of a single-gate
device and a double-gate device, as shown in Figure 5c.

Considering the definitions of Vinv and Von, the mechanism of the change in S with respect to the
amount of Vbg can be understood by comparing the values of Vinv and Von. As clearly observed from
Figures 2a and 5b, Von did not vary for different values of Vbg, and the transistor was turned on for the
same value of Vtg (−0.04 V). Since the energy level of the Γ valley of Ge for direct tunneling is 0.14 eV
higher than that of the L valley, where indirect tunneling occurred, it is necessary to change the surface
potential, even after the turn-on point of the transistor Von, in order to improve S using direct tunneling.
In the absence of Vbg, Vinv was found to be lower than Von, as shown in Figure 5b. This meant that,
in this case, it was hard for direct tunneling to take place, because of the already formed inversion
layer, which screened the electric field. In contrast, when a negative Vbg was applied, Vinv became
larger, while Von remained the same, as shown in Figure 5b. Therefore, the direct tunneling between
the source and the channel became dominant after the turn-on point of the transistor. Moreover, S was
kept at a low level, until the coupling between the Vtg and the surface potential became weaker due to
the formation of the inversion layer. As a result, the voltage window between Von and Vinv was found
to be the determining factor for the subthreshold characteristics of TFETs. Furthermore, this is the
reason why a lower S can be obtained in back-gated TFETs compared to that in conventional TFETs.
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Figure 5. (a) Extraction of Vinv from the Cg–Vtg relationship and its second derivative charts, when the
Vbg is increased. Vbg slows down the inversion point. (b) Von and Vinv as a function of Vbg. Vinv

increases, as the amount of Vbg increases, while Von is kept constant. (c) Energy band diagrams of a
single-gate device and a double-gate device. The left diagram represents the energy band diagram
of the single-gate device, and the right one represents that of the double-gate device. The negative
back-gate bias of the double-gate device helps invoke band bending easily.
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4. Conclusions

In this study, using the TCAD simulation, it was confirmed that the subthreshold characteristics
of a TFET can be improved by introducing a back-gate bias, compared to those of conventional TFETs.
The impact of Vbg on S was discussed using the concepts of Von and Vinv. A Vbg value of −2 V can
help reduce S of the TFET with Lgate = 50 nm. For Vds = 0.05 V, an improvement in S by −7 mV/dec
was achieved. In addition, the minimum S value of 68 mV/dec was obtained at Vds = 0.5 V for Vbg

= −2 V. Moreover, an improvement in transfer characteristics, which was caused by the back-gate
voltage, was confirmed by an increase of 126% in on–off current ratio at Vds = 0.5 V for Vbg = −2 V.
Considering the applications of TFETs as a low-power device, the back-gated TFET structure can be
one of the strategies for achieving better performance.
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