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Abstract: VWorld Data Center (VDC), operated by the Ministry of Land, Infrastructure, and Transport
of South of Korea, provides the latest high-quality spatial information of South Korea. VWorld data
include aerial images, digital elevation models, 3D buildings, 3D bridges, roads, administrative
information, etc. We present a 3D spatial information platform that uses VWorld data. This platform
is based on the web browser environment and supports cross platform by complying with WebGL
and web standards. The 3D-terrain tile structure has a quadtree-based detail level for high-resolution
rendering. When rendering different tile levels or sizes simultaneously, abnormal gaps occur between
the tiles. We propose the use of a specially shaped 3D terrain object model to minimize these gaps.
This model can be used and verified using the service site of the WebGL-based VWorld spatial
information platform. Our platform has a limited environment and runs in a web browser while
requesting real-time spatial information data from VDC. VWorld data cannot be stored locally by
policy. We improve the frame rate in such way that it can easily be used in a limited web browser
environment or even a computing environment without a graphics processing unit. We intend to
officially present the proposed method to the VDC and apply it. We expect our platform to be used
for various web-based geospatial applications.
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1. Introduction

VWorld Data Center (VDC) of the Ministry of Land, Infrastructure, and Transport of South of
Korea provides up-to-date high-quality national spatial information [1]. The provided national spatial
information is terrain-based data such as aerial images, digital elevation models (DEMs), and 3D
structures. VWorld spatial information provides aerial images of areas around the world. In particular,
aerial images of the Korean Peninsula (South and North Korea) are provided with 12-cm accuracy.
It provides the data of 3D buildings and bridges for major cities such as Seoul, Busan, Incheon, and
Daejeon in the South of Korea. In addition, it provides the 3D data of Pyongyang’s representative
structures such as Ryugyong Hotel and Rungnado Stadium. Due to the peculiarity of South Korea as a
divided country, Google Earth [2] and other web 3D maps only service 3D terrain except buildings.
The VDC enables to provide 3D terrains and buildings that have been modified in accordance with the
Korean government’s security policy.

VDC provides approximately 30 TB or more through DataAPI to users [1,3]. Users can use
DataAPI to download VWorld data; however, there are limitations. South Korea is in a special situation
of a truce with North Korea. The government of South Korea limits the unauthorized use of measurable
spatial information such as longitude, latitude, or height of a specific location in a building. Since
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the misuse of VWorld data could cause a security threat, editing and redistributing it for proprietary
purposes are prohibited by law.

Figure 1 shows the proposed WebGL-based VWorld spatial information platform service site [4,5].
Users can control the camera to render 3D terrains and buildings from various angles. The previous
VWorld map service [6] was an ActiveX-based program that ran only in Internet Explorer. VWorld map
service site needed a cross-platform service for more users to easily access it. WebGL is a cross-platform,
royalty-free web standard for a low-level 3D graphics application programming interface (API) based on
OpenGL embedded systems (ES) exposed to ECMAScript via the HTML5 Canvas element. Developers
familiar with OpenGL ES 2.0 will recognize WebGL as a Shader-based API that uses GLSL with
constructs that are semantically similar to those of the underlying OpenGL ES API. WebGL brings
plugin-free 3D to the web for implementation in the browser. Major browser vendors Apple (Safari),
Google (Chrome), Microsoft (Edge), and Mozilla (Firefox) are members of the WebGL Working
Group [7–11]. The proposed WebGL-based platform is cross-platform compatible and has been tested
on at least nine web browsers and four or more operating systems [5].
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Figure 1. The proposed WebGL-based VWorld spatial information platform.

This paper contributes to solving two major problems through the implementation of a 3D map
platform based on the web browser environment. The first problem is the implementation of the
real-time web-based platform under a limited computing environment. A platform designed for a
wide range of people should be able to guarantee at least 30 FPS in a computing environment without
a graphics processing unit (GPU). We present a method for speeding up request and download times
and finding the data to be rendered from large amounts of data, over 30 TB.

The second problem is the determination of a method for expressing the 3D terrain object model
of VWorld data. VWorld spatial information data does not provide 3D terrain object models; it only
provides aerial images and DEMs. We propose a method for generating 3D terrain object models using
the VWorld data. In geospatial applications, quadtree-based level of detail (LOD) approach is widely
used for streaming images, terrains, vectors, and other data. Figure 2 shows an example of a complete
quadtree-based LOD structure. All the tiles are defined {level, x, y} and have the same resolution.
The root is at level zero, its children are at level one, and so on [12–15]. Since all the tiles have the same
resolution, when the lower level tiles are represented, more tiles are used for rendering. As more tiles
are used, the resolution of the image sources in a particular area can be increased.
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Figure 2. Example of quadtree structure. All the tiles have the same resolution. 

The 3D map platforms with quadtree-based LOD make use of the position and direction of the 
camera to determine the LOD of the tiles to be rendered on the screen. Depending on the position 
and direction of the camera, various LODs of tiles may be adjacent to each other and rendered in a 
frame. In such a case, gaps such as a hollow state may occur. Cesium is a representative spatial 
information platform with quadtree-based LOD [16]. The formats and methods used in Cesium are 
widely used as standards in the field of 3D mapping. Figure 3 shows the gaps that occur when 
another LOD of tiles are adjacent in the Cesium platform. This gap occurrence is common in 3D map 
platforms with the quadtree-based LOD; 3D map platforms make use of a variety of approaches to 
minimize gaps. Cesium creates additional meshes similar to curtains in the terrain model. Figure 3c 
shows the result obtained when the camera is moved to a level below the ground. 
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Figure 2. Example of quadtree structure. All the tiles have the same resolution.

The 3D map platforms with quadtree-based LOD make use of the position and direction of the
camera to determine the LOD of the tiles to be rendered on the screen. Depending on the position and
direction of the camera, various LODs of tiles may be adjacent to each other and rendered in a frame.
In such a case, gaps such as a hollow state may occur. Cesium is a representative spatial information
platform with quadtree-based LOD [16]. The formats and methods used in Cesium are widely used
as standards in the field of 3D mapping. Figure 3 shows the gaps that occur when another LOD of
tiles are adjacent in the Cesium platform. This gap occurrence is common in 3D map platforms with
the quadtree-based LOD; 3D map platforms make use of a variety of approaches to minimize gaps.
Cesium creates additional meshes similar to curtains in the terrain model. Figure 3c shows the result
obtained when the camera is moved to a level below the ground.
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Figure 3. Cesium 3D map: (a) gaps in mountainous terrain, (b) gaps in the edges of unclear tiles owing 
to some tiles not having loaded, and (c) use of curtain-like 3D terrain object models for minimizing 
gaps. 

When different LODs are adjacent to each other, the gap can be minimized by changing the 
shape of the meshes of a terrain model. In previous studies, the shape of the outer meshes was 
changed according to the shape of the outer meshes of the adjacent LOD tile [17,18]. In such a case, it 
is necessary to know in advance the information of all the tiles rendered before the meshes of the 3D 
tiles are generated. When the position or direction of the camera is changed, the tile LOD should also 
be changed. As a result, a procedure is required to change or confirm the shape of the 3D terrain 
object models in every frame. The tiles to be rendered can be changed according to the data request 
result in the web-based 3D map platforms that obtain geospatial data from the server. Therefore, it is 
difficult to predict the relationship between adjacent tiles in advance. Furthermore, depending on the 
server state, if the data requests fail, the tile continuity can become irregular. Owing to the limited 
computing environment in a web browser, changing or confirming the shape of the meshes of a 3D 
terrain object model in every frame can affect the performance. 

In this paper, we present a method for rendering 3D terrain object models effectively in the 
aforementioned limited environment based on a web browser. In contrast to the existing research 
methods, we propose a method for minimizing the gap that can occur when different LOD tiles are 
adjacent even when the information of the neighboring tiles is unknown. The proposed platform has 
a rendering frame rate of more than 50 FPS even in a computing environment without a GPU, and it 
can thus be easily used. Anyone can use the proposed platform through the service site [4]. 

2. VWorld Spatial Information Data  

VWorld spatial information data comprises a variety of the latest high-definition data such as 
aerial images, DEMs, 3D buildings, administrative information, roads, and facility names. The data 
is indexed in units of tiles and has a quadtree-based LOD tile structure. A layer is used to distinguish 
various spatial information data in a tile. A layer is a unit used for classifying spatial information data 
according to attributes. The spatial information data with the same attributes can be managed 
collectively using layers [19–21]. A tile is defined as {level, IDX, IDY}, and one tile includes a plurality 
of layers. In this paper, a tile that has various layers is defined as a sector. A sector is a minimum unit 
for storing VWorld spatial information data and a basic unit displayed on the screen. If a sector is 
rendered on the screen, the spatial information of the activated layer in this sector is rendered.  
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VWorld data constitutes all sectors based on the latitude and longitude coordinates. It has six 
LOD steps (0–5) throughout the world. For South Korea and North Korea, it comprises 13 to 17 steps 
of LOD (0–12 or 16). The sectors at LOD 0 consist of 50 sectors divided into 5 steps of latitude and 10 
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from the lower left origin. Sectors are defined as {level, IDX, IDY}. For example, the lower left sector 

Figure 3. Cesium 3D map: (a) gaps in mountainous terrain, (b) gaps in the edges of unclear tiles owing
to some tiles not having loaded, and (c) use of curtain-like 3D terrain object models for minimizing gaps.

When different LODs are adjacent to each other, the gap can be minimized by changing the shape
of the meshes of a terrain model. In previous studies, the shape of the outer meshes was changed
according to the shape of the outer meshes of the adjacent LOD tile [17,18]. In such a case, it is necessary
to know in advance the information of all the tiles rendered before the meshes of the 3D tiles are
generated. When the position or direction of the camera is changed, the tile LOD should also be
changed. As a result, a procedure is required to change or confirm the shape of the 3D terrain object
models in every frame. The tiles to be rendered can be changed according to the data request result in
the web-based 3D map platforms that obtain geospatial data from the server. Therefore, it is difficult
to predict the relationship between adjacent tiles in advance. Furthermore, depending on the server
state, if the data requests fail, the tile continuity can become irregular. Owing to the limited computing
environment in a web browser, changing or confirming the shape of the meshes of a 3D terrain object
model in every frame can affect the performance.

In this paper, we present a method for rendering 3D terrain object models effectively in the
aforementioned limited environment based on a web browser. In contrast to the existing research
methods, we propose a method for minimizing the gap that can occur when different LOD tiles are
adjacent even when the information of the neighboring tiles is unknown. The proposed platform has a
rendering frame rate of more than 50 FPS even in a computing environment without a GPU, and it can
thus be easily used. Anyone can use the proposed platform through the service site [4].

2. VWorld Spatial Information Data

Vworld spatial information data comprises a variety of the latest high-definition data such as
aerial images, DEMs, 3D buildings, administrative information, roads, and facility names. The data is
indexed in units of tiles and has a quadtree-based LOD tile structure. A layer is used to distinguish
various spatial information data in a tile. A layer is a unit used for classifying spatial information
data according to attributes. The spatial information data with the same attributes can be managed
collectively using layers [19–21]. A tile is defined as {level, IDX, IDY}, and one tile includes a plurality
of layers. In this paper, a tile that has various layers is defined as a sector. A sector is a minimum unit
for storing Vworld spatial information data and a basic unit displayed on the screen. If a sector is
rendered on the screen, the spatial information of the activated layer in this sector is rendered.

2.1. Sector

Vworld data constitutes all sectors based on the latitude and longitude coordinates. It has six
LOD steps (0–5) throughout the world. For South Korea and North Korea, it comprises 13 to 17 steps
of LOD (0–12 or 16). The sectors at LOD 0 consist of 50 sectors divided into 5 steps of latitude and
10 steps of longitude. They are square with a latitude and longitude of 36◦ each. Figure 4a shows
the 50 sectors at LOD 0. It is based on the X-axis in the longitude direction and Y-axis in the latitude
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direction from the lower left origin. Sectors are defined as {level, IDX, IDY}. For example, the lower
left sector of (a) is defined as {0, 0, 0}, and the upper right sector is defined as {0, 9, 4}. Figure 4b shows
the sectors at LOD 1 that consist of 10 steps of latitude and 20 steps of longitude, which result in a total
of 100 sectors. A sector at LOD 0 is divided into four sectors at LOD 1. In this paper, we implemented
the 3D spherical earth, and Figure 4c shows the result thus obtained.
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Figure 5 shows an example of spatial information presentation in a sector. At the bottom, an
aerial image is placed, and additional images with transparency are superimposed thereon. Figure 5b
shows an orthogonal image. The images taken from the aircraft are distorted, as shown in Figure 5a.
To correct the distortion of the images caused by the altitude, an orthogonal image similar to that
taken from the vertical of the building is generated. The overlapping result is presented in Figure 5f.
A plurality of layers is superimposed on a sector to express the final rendering result.

1 
 

   
(a) (b) (c) 

 
  

(d) (e) (f) 
 

Figure 5. Examples of spatial information layers: (a) oblique aerial image, (b) orthogonal image, (c)
road, (d) facility name, (e) 3D building models, and (f) superimposed result of layers (a)–(e).

The spatial information provided by VDC comprises over 30 TB, and the amount of data increases
as the spatial data is updated every year. In this paper, we classify dozens of types of spatial information
data into tiles with latitude and longitude and define them as sectors. The basic function of the VWorld
platform is to search and request for the sectors rendered on the screen according to the position
and direction of the camera as controlled by a user. Every frame of the downloaded data is then
rendered and displayed on the screen [5]. By classifying and constructing the data based on sectors
having geometric information, it is possible to efficiently manage various types of large-capacity spatial
information data.

2.2. Aerial Images

Aerial images provided by VDC have a 256 × 256-pixel resolution and comprise LOD 0 to LOD
16. The area displayed by a single aerial image at LOD 13 can be represented by four aerial images at
LOD 14 or by 16 aerial images at LOD 15, as shown in Figure 6. At this time, because the resolution of
each aerial image is the same, it is expressed in high quality as it is expressed at a lower level [22,23].

VWorld aerial images are provided in three layers: earth, 2018, and orthogonal image. Earth layer is
an aerial image covering the whole world. Meanwhile, the areas of South Korea and North Korea are
updated extensively every year. Although the VDC comprises updated aerial image data, owing to
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the peculiarity of the divided country, it provides only the latest year’s aerial images with the latest
security rules. Currently, the 2018 layer is the latest aerial image layer. The orthogonal image layer is
obtained or edited in the shape obtained on looking down at the building vertically from the sky.
In the case of images taken by an aircraft, tilting occurs according to the height of the terrain and the
building. The orthogonal image layer is used to improve this distortion, as shown in Figure 7c. The earth
layer and 2018 layer are default layers that are available at the start, and a user can select additional
aerial image layers on VWorld service site [4]. If three aerial images are used simultaneously, they are
superimposed and displayed as shown in Figure 7d. The earth layer is a jpeg file, and the 2018 layer and
orthogonal image layer are blended using alpha channel values in the png format.Electronics 2019, 8, 1411 7 of 20 
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Figure 7. Aerial image layer types: (a) earth layer, (b) 2018 layer, (c) orthogonal image layer, and (d)
superimposed results of (a–c).
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2.3. Digital Elevation Model

A DEM is a data model used to represent terrain elevation [24,25]. A sector has a DEM. A DEM
consists of 65 × 65 with a row-major order, and the top left corner is the origin (0, 0), as shown in
Figure 8. Figures 8 and 9 show the scaled-down DEM from 65 × 65 to 5 × 5 for illustrative purposes.
Aerial images have LODs up to LOD 16, but DEMs have LODs up to LOD 15. The upper LODs are
generated based on the lowest LOD, which is LOD 15, as shown in Figure 9. Therefore, the DEMs with
the same longitude and position have the same value regardless of the LOD. For example, the size of
the DEM at LOD 15 is 65 × 65, and the size of the DEM at LOD 14 is also 65 × 65. The DEM at LOD 14
is configured by considering a DEM size of only 33 × 33 from four DEMs at LOD 15.
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3. Visualization of 3D Terrain Object Model

The VDC does not provide 3D terrain object model objects. A 3D terrain object model has to be
created by the client using an aerial image and a DEM. A sector has at least an aerial image and a DEM.
In some regions, sectors may not have DEMs, in which case the DEM value of the parent sector is used.
The parent sector includes a reference sector (it is called the child sector), which has one LOD less
than the parent sector. This chapter describes how to request for Vworld data and create a 3D terrain
object model.

3.1. Method of Requesting for Vworld Data

The VDC provides a variety of up-to-date and high-quality spatial information. APIKeys are
issued to users and a method is provided for using Vworld data via DataAPIs. Even if the APIKey is
issued, the act of privatizing, editing, modifying, and selling Vworld data is regulated by law.
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The use of DataAPI is a method of requesting for the uniform resource locator (URL) generated
based on a rule. Table 1 shows an example of the use of DataAPI based on data type. As the majority
of the spatial information data is classified and managed based on sectors, the data layer at a desired
position can be requested using the sector level, IDX, and IDY. For the Key value, instead of *, the
private APIkey that is provided by VDC is used. IDX and IDY are determined based on sectors at LOD
0, as shown in Figure 4.

Table 1. Example of the use of Vworld DataAPI.

Type Layer Level IDX, Y URL

Aerial image tile_mo_HD 0 0, 0 Request=GetLayer&Layer=tile_mo_HD&Level=0&IDX=0&IDY=0&Key=*
Aerial image 2018 0 0, 0 Request=GetLayer&Layer=2018&Level=0&IDX=0&IDY=0&Key=*

Aerial image hybrid
_silgam 0 0, 0 Request=GetLayer&Layer=hybrid_silgam&Level=0&IDX=0&IDY=0&Key=*

DEM DEM 0 0, 0 Request=GetLayer&Layer=dem&Level=0&IDX=0&IDY=0&Key=*

3.2. Generation of 3D Terrain Object Model

The mesh of the 3D terrain object model is created using the latitude and longitude coordinates
and the DEM in a sector. All the sectors are square shaped, and the same-level sectors have the same
size. For example, in the case of a sector at LOD 0, the latitude and longitude are 36◦ apart, and the
sectors at LOD 1 are 18◦ apart. Therefore, it is possible to calculate the latitude and longitude position
corresponding to a DEM of size 65 × 65 that is configured at regular intervals with only the lower left
corner position in a sector.

The vertex, index, and UV texture are the basic elements required to create a 3D object model.
The vertex is the smallest unit that makes up a triangular mesh. Three vertices are required to define a
mesh. In the implemented spatial information platform, the vertex coordinates have a 3D coordinate
system based on the XDO coordinate system, as shown in Figure 10a [5,26].

XDO is a unique 3D model format that stores Vworld 3D structure models. The XDO format is a
left-handed coordinate system, and the z-axis is the up vector of the camera. The WebGL coordinate
system is a right-handed coordinate system, and the y-axis is the up vector of the camera. Therefore,
in order to perform rendering using the WebGL Library, the transformation matrix from the XDO to
WebGL coordinate system is included in the model-view matrix. The model-view matrix is an essential
parameter for performing rendering using the WebGL library [8,26].
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In this paper, the sectors are represented by a mesh size of 4 × 4 × 2 for the purpose of explaining
briefly. A sector can be used to create a 3D terrain object model of up to the size of 64 × 64 × 2 based on
a DEM size of 65 × 65. Figure 11 shows an example of the vertex coordinates consisting of the latitude,
longitude, and DEM for the sectors defined as LOD: 0, IDX: 5, and IDY: 2. If only the latitude and
longitude values at the bottom left are determined, all the vertex coordinates can be calculated as the
interval of the sector at LOD 0 is 36◦.
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dcol,row is used to represent the column and row of the DEM. In the case of the sectors at LOD 0,
the longitude of a sector is divided into ten from −180◦ to 180◦, and the sixth sector from the left is
from 0◦ to 36 ◦. Furthermore, the latitude of a sector is divided into five from −90◦ to 90◦, and the third
sector from the bottom is from −18◦ to 18◦. The interval degree of the latitude and longitude is 9◦.
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The latitude and longitude coordinates are transformed into the 3D coordinate vector v based
on the XDO coordinates system [5]. Earth is assumed to be a sphere in the XDO coordinate system.
The radius of the earth R is considered to be 6378137 m. The elevation of the terrain is the addition of R
and the DEM of each location.

v =
[
(R + d) ∗ cos lat ∗ cos lon (R + d) ∗ cos lat ∗ sin lon (R + d) ∗ sin lat 1

]T
(1)

The index defines the triangular mesh as the indexing value of the vertex array. The 3D coordinates
transformed from the vertex are stored in the vertex array in the order shown in Figure 12a. The corner
number represents the indexing value of the vertex array, which defines a triangular mesh with the
indexing values of the three vertices. For example, (0, 5, 1) indicates the triangle in the upper left corner
of Figure 12a. In this case, the order of the index array is obtained in the counterclockwise direction.
When the mesh size of a sector is 4 × 4 × 2, a total of 32 triangles is used. To define this model using
the index array, a total of 96 index values are required to define the 32 triangular meshes.
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The UV texture array is used for mapping a texture image into the meshes of the 3D terrain object
model. The resolution of all the texture images where 3D terrain object model generation is used is
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256 × 256. However, because multiple overlapping texture images can be used, the values of the UV
texture array have a value between 0 and 1 without the use of the pixel coordinates. The upper left
point is defined as (0, 0), and the lower right point has a value of (1, 1). In the case of the UV texture
and index arrays, all the sectors use the same array when the mesh size of the 3D terrain object model is
the same, in contrast to vertex arrays that are changed based on the latitude and longitude coordinates.

Box 1 lists the vertex, index, and UV texture arrays. v is the 3D coordinate vector that is transformed
to the XDO coordinate system. The vertex array stores values in the order of the x, y, and z axes.
Therefore, a total of 75 values are stored for 25 vertices. Ninety-six values are defined for the index
array, and 50 values are defined for the UV texture array. The parentheses () in Box 1 are used to
distinguish a mesh or a point. It is actually stored in the form of a 1D array.

Box 1. Examples of vertex, index, and UV texture arrays. The parenthesis () is used to group a mesh or
a point unit. It is actually a 1D array.

Vertex =
{
v0x , v0y , v0z , v1x , v1y , v1z , v2x , v2y , v2z , . . . , v24x , v24y , v24z

}
Index = { (0, 5, 1), (1, 5, 6), (1, 6, 2), (2, 6, 7), . . . , (18, 23, 19), (19, 23, 24)}
UV texture = {(0, 0), (0.25,0), (0.5, 0), . . . , (0.75, 1), (1, 1)}

vi =
{

vix viy viz 1
}T

(2)

3.3. Minimizing the Gap Between Sectors at Different LODs

In the case of spatial information tiles with quadtree-based LODs, some gaps may occur when
the tiles at different LODs are adjacent to each other. The main cause of these gaps is the mesh size.
Figure 13 shows an example of gaps that can be observed when sectors at different LODs are adjacent.
The length of one side of the green sector at LOD n is twice that of the red sector at LOD n + 1. In the
case of a mesh size of 4 × 4 × 2, the sector at LOD n uses four meshes on the outer side, and the two red
sectors at LOD n + 1 use a total of eight meshes. Because the DEM of the entire LOD is generated based
on the sectors at LOD 15, the change in the values of the DEM is usually small in adjacent terrains.
Large changes in the DEM often occur in areas such as mountainous terrains, as shown in Figure 13.
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Figure 13. Example of gaps, a green sector at LOD n, and two red sectors at LOD n + 1.

In this paper, we use the same outer mesh size of the 3D terrain object model of the green sector at
LOD n as the red sector at LOD n + 1 for minimizing gaps. Figure 14 shows the result obtained using
the additional mesh created. Two vertices are added to represent four meshes at the four corners, while
the outer corner consists of three meshes with one added vertex. Therefore, the outer mesh size of the
green sector at LOD n can be the same size as that of the sector at LOD n + 1. In the proposed VWorld
platform, the size of the DEM is 65 × 65, and up to 64 × 64 × 2 meshes can be configured. However, we
limit the maximum size of the created outer meshes to 32 × 32 × 2.
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Figure 14. Added vertices (red) of the 3D terrain object model with double the number of meshes in
the outer area.

Figure 15 shows an example of the use of an added 3D mesh model with the red vertices as shown
in Figure 14. Because the outer mesh size of the green sector at LOD n is the same as that of the red
sectors, the gaps can be minimized.
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Figure 15. Example of the use of the added mesh model with the red vertices as shown in Figure 14.

The gaps still occur if the difference in the LOD of the adjacent sectors is greater than one. In this
paper, we use a curtain-shaped terrain model to minimize the gaps that can occur when the difference
in the LOD of the adjacent sectors is greater than two. The additional curtain-shaped meshes are
lowered downwards in a manner similar to a curtain on the outer line of the existing terrain model, as
shown in Figure 16.
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Figure 16. Example of the curtain-shaped meshes in blue.

The additional vertices of the curtain-shaped meshes are the coordinates at which the outer
vertices have moved down in the original terrain. Because the 3D terrain object model corresponds
to a spherical surface of the earth, the direction of the axis under the terrain cannot be referenced to
a particular axis of the coordinate system. The downward direction of the terrain is opposite to the
existing outer vertex vector. v′ is the vector whose scale of the v is modified to (l− s) as follows:



Electronics 2019, 8, 1411 13 of 20

l =
√

vx2 + vy2 + vz2 (3)

v′ =
[
(l− s) ∗ vx

l (l− s) ∗
vy
l (l− s) ∗ vz

l 1
]

(4)

Figure 17 shows the results obtained before and after using the proposed gap-minimization
method in our WebGL-based platform [4]. Figure 17a,b presents the rendering result obtained with the
mesh size of 16 × 16 × 2 as a line-string. Figure 17c,d presents the texture rendering result obtained
with the same mesh size. The 3D curvature of the original terrain model is represented by a cube-like
shape without the bottom face as per our proposed method.
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outer line of the sectors. The rendering target area is Seorak Mountain, which is located in Gangwon-
do Province, South Korea. The LOD of the sector rendered on the screen is determined based on the 
distance between the center point of the sector and the camera. Therefore, various LOD sectors can 
be displayed adjacent to each other. In a mountainous terrain, where DEM changes are large, frequent 
gaps can be observed between the sectors. When the mesh size of the 3D terrain object model is large, 
the occurrence of gaps is more frequent, and the size of the gaps is larger. The experimental results 

Figure 17. Result obtained using the proposed method for minimizing gaps; the mesh size is 16 × 16 × 2:
(a) line-string rendering results before improvement, (b) result of the method proposed in (a), (c) texture
mapping results before improvement, and (d) result of the method proposed in (c).

Figure 18a,c shows the results obtained when the sectors at different LODs are adjacent to each
other in the case of mountainous terrains with relatively large DEM changes. The yellow line is the
outer line of the sectors. The rendering target area is Seorak Mountain, which is located in Gangwon-do
Province, South Korea. The LOD of the sector rendered on the screen is determined based on the
distance between the center point of the sector and the camera. Therefore, various LOD sectors can be
displayed adjacent to each other. In a mountainous terrain, where DEM changes are large, frequent
gaps can be observed between the sectors. When the mesh size of the 3D terrain object model is large,
the occurrence of gaps is more frequent, and the size of the gaps is larger. The experimental results
show that the mesh size of 16 × 16 × 2 results in relatively smaller gap than those in the case of a
4 × 4 × 2 mesh size. Figure 18b,d shows the results obtained using the 3D terrain object models with
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the proposed gap-minimization method. It is difficult to find gaps that occur even in a mountainous
terrain where the DEM changes are large.
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Figure 18. Experimental results of the gap-minimization method in Seorak Mountain: (a) the mesh 
size used is 4 × 4 × 2, (b) result of the application of the method proposed in (a), (c) the mesh size used 
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4. Frame-Rate Improvement for Limited Web-Based Environments  

The primary objective of the proposed VWorld spatial information platform is to make high-
quality, up-to-date spatial information easily available to anyone. Therefore, we used a web browser 
environment that does not require installation. The proposed platform also supports cross-platform 
with WebGL and Web standards to run on a variety of operating systems and web browsers. The 
rendering of a large amount of data in 3D requires a certain computing environment level. In 
previous research, the use of a platform that maintains 30 FPS or more even in the environment 
without a GPU has been proposed [5]. The processes performed in one frame can be categorized into 
three process categories: finding sectors to be rendered, data request, and rendering. The most time-
consuming process is finding the sector to be rendered. In this section, we describe an algorithm for 
finding sectors to be rendered, and we propose the application of subdomains for speeding up the 
data request process. 

4.1. Finding Sectors to be Rendered 

The process that takes the longest time on one frame is the process of finding the sector to be 
rendered. It is necessary to decide which sector is to be rendered from among the 71.5 billion target 
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Figure 18. Experimental results of the gap-minimization method in Seorak Mountain: (a) the mesh size
used is 4 × 4 × 2, (b) result of the application of the method proposed in (a), (c) the mesh size used is
16 × 16 × 2, and (d) result of application of the method proposed in (c).

4. Frame-Rate Improvement for Limited Web-Based Environments

The primary objective of the proposed VWorld spatial information platform is to make high-quality,
up-to-date spatial information easily available to anyone. Therefore, we used a web browser
environment that does not require installation. The proposed platform also supports cross-platform with
WebGL and Web standards to run on a variety of operating systems and web browsers. The rendering
of a large amount of data in 3D requires a certain computing environment level. In previous research,
the use of a platform that maintains 30 FPS or more even in the environment without a GPU has been
proposed [5]. The processes performed in one frame can be categorized into three process categories:
finding sectors to be rendered, data request, and rendering. The most time-consuming process is
finding the sector to be rendered. In this section, we describe an algorithm for finding sectors to be
rendered, and we propose the application of subdomains for speeding up the data request process.

4.1. Finding Sectors to Be Rendered

The process that takes the longest time on one frame is the process of finding the sector to be
rendered. It is necessary to decide which sector is to be rendered from among the 71.5 billion target
sectors, which have 16 steps of LODs in total. On a global basis, the LODs have 6 steps, and only
South Korea and North Korea have 13 or 16 steps. The actual number of sectors is approximately
200 million sectors. However, in order to determine whether a sector is actually constructed, it is
necessary to request the sector from the VDC. In the previous research [5], they used two culling tests
in the quad tree-based LOD structure. Only the child sector of the sector that passed the culling test
could be the test target. By reducing the number of inspection targets with only sectors that have
passed, the frame speed could be improved. In this paper, we can improve upon the previous approach
by adding the center-culling test and specifying the conditions for the sector to be tested. In addition,
we could reduce the number of target sectors to be rendered by adjusting the scaleFactor in (5) that
determines the drawLevel.

drawLevel =
log(R/dist)

log 2
× scaleFactor (5)

By default, the scaleFactor is set as 1. When the frame rate slows down, the scaleFactor can be
adjusted to at least 0.92 to reduce the number of sectors to be rendered in a frame by 30%. R represents
the radius of the earth, and dist represents the distance between the camera and the center of the
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sector. Figure 19 shows the flow chart of the render loop function. When the frame starts, the position
and direction of the camera under user control are calculated. Three culling tests are performed on
50 sectors with LOD 0.
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Figure 20 shows the flow chart of the culling test. The first center culling test calculates whether
the sector is located in the center of the screen. The central sector is the sector that contains the
longitude and latitude through which the camera’s principal line passes. If a sector is determined as
the center sector, the curling test is ended. In other cases, a sector may be rendered only if the two tests
are passed.
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A child sector search, marked in blue in Figure 19, is performed on sectors that pass the culling
test. First, the drawLevel of the sector S is determined. When the LOD of the sector is lower than the
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drawLevel, a culling test is performed on the four sectors Schild of S. The child sectors Schild are four
sectors of LOD + 1 located in the region of the parent sector S. If Schild passes the culling test, the Schild
data is requested from the VDC. Because the download is not completed after the request in the same
frame, the parent sector S is added in the drawSector. If the download is completed, the target sector S
is changed to the child sector Schild. The procedures marked in blue are repeated in a manner similar to
the recursive function to the lowest LOD.

If Schild does not pass the culling test, Schild and all its child sectors are deleted. Only sectors above
LOD 5 are deleted, so that the camera suddenly moves to another location. In the previous approach,
the platform occupied up to 3 GB of web-browser memory. Our proposed platform deletes the sector
above LOD 5 under certain conditions, and the memory occupancy is reduced to less than 1.5 GB.

In the frame rate experiment, two types of computers are used. The desktop computer with
a GPU has an Intel®4.20-GHz Core™ i7 CPU, an NVIDIA GeForce GTX 1080Ti GPU, and a wired
network. The notebook without a GPU has an Intel®2.70 GHz Core™ i7 CPU and a wireless network.
The desktop has an external GPU, whereas the notebook does not. The web browser used is Google
Chrome (version 77.0.3865.120, 64 bit). Arithmetically, there are 71.5 billion sectors, but the proposed
method tests only approximately 80 sectors or less per frame. Therefore, a frame rate of more than
50 FPS can be maintained even in a computing environment without a GPU, as shown in Table 2.
If the frame rate is less than 16.7 ms, the maximum speed supported by the web browser is 60 FPS.
The proposed method used with a GPU was measured at 5.34 ms per frame and recorded a maximum
FPS of 60.

Table 2. Result of frame rate experiment: 47 sectors, 2,560 meshes in each sector, and a total of
120,320 meshes. A sector has two textures (256 × 256 pixels). The number of culling test target sectors
is 78.

GPU (ms) Without GPU (ms)

Our platform 5.34 (60 FPS) 19.01 (52.6 FPS)

Previous research [5] 6.93 (60 FPS) 25.06 (39.9 FPS)

4.2. Data Request through Subdomain

Web browsers restrict the amount of data that can be simultaneously requested on a single domain.
In Google Chrome, you can make up to six requests to a single domain at the same time. We use
subdomains to increase the number of data requests and speed up the downloads. Subdomains are
created by distributing multiple URLs on the same site. For example, if there exists a site called
google.com, then scholar.google.com is a subdomain. Web browsers limit the number of simultaneous
requests from one domain, but if we use subdomains, the web browser can recognize them as different
domains and increase the number of concurrent requests. This is a simple method, but the experiment
result demonstrated that it is effective.

As shown in Figure 21, the increase in the number of requests available simultaneously has the
effect of aggregating the available networks. One consecutive row of the same color indicates that the
downloading of one piece of data is in progress, while a row of the same column position indicates that
a simultaneous download is in progress. Up to six pieces of data can be downloaded concurrently as
shown in Figure 21a, but in case of Figure 21b, up to approximately 20 can be requested simultaneously.

The 3D terrain representation was considered to be the top priority for a natural user environment.
Therefore, the DEMs and aerial images, which make up the terrain model, are requested from the
newly operated subdomains, and other data, such as buildings, roads, and facility names, are used in
the existing single domain. The speed improvement realized as a result of using the local server is
presented in Table 3. This effect may be limited in a limited network environment. However, as the
number of data that can be requested simultaneously is greatly increased from 6 to 30, this effect will
improve as the speed of the network technology advances.
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• During the experiment, the web browser cache was initialized each try.
• Thirty simultaneous requests were made while using four subdomains and an original

single domain.
• Because the time of speed is determined by the network environment, only relative time

comparisons are meaningful. The network environment changes according to the experiment
time, and the experiments are alternately performed in the same order as once for the subdomain
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Table 3. Data request completion time by number of domains: a single domain means one domain,
and the case of subdomains means five domains (request data 3618, size 38.29 MB).

Subdomain (ms) Single Domain (ms)

Try 1 2137.66 5303.46

Try 2 1460.88 4475.67

Try 3 1340.15 4460.35

As the result of the experiment, the data download completion time was reduced by approximately
2.5 to 3 times compared to when a single domain is used. We officially requested the VDC operated by
the Ministry of Land, Infrastructure and Transport for the use of subdomains. Our proposal has been
accepted, and VDC now has four subdomains in addition to its existing single domain. Previously,
only one domain of http://xdworld.vworld.kr was operated. However, a total of four subdomains
within the same server are being operated as http://xdworld0.vworld.kr, http://xdworld1.vworld.kr, http:
//xdworld2.vworld.kr, and http://xdworld3.vworld.kr.

5. Conclusions

In this paper, we presented a web-based spatial information platform for use with VWorld.
VWorld spatial information comprises a quadtree-based tile structure. Different levels of tiles may
be simultaneously rendered according to the position and direction of the camera. As the mesh size
of the terrain model is constant, gaps occur when different levels of tiles are adjacent to each other.
We proposed the use of a method of 3D terrain object model generation to minimize these gaps.
On using the proposed method, the occurrence of gaps was reduced. The proposed platform also
supports real-time rendering in GPU-less computing environments. It facilitates the finding of sectors
to be rendered on the screen quickly from 30 TB or more of VWorld data and render it at a rate of at
least 50 FPS even in a computing environment without a GPU. Our platform facilitates the finding
of all sectors to be rendered while testing only approximately 80 sectors per frame out of 71.5 billion

http://xdworld.vworld.kr
http://xdworld0.vworld.kr
http://xdworld1.vworld.kr
http://xdworld2.vworld.kr
http://xdworld2.vworld.kr
http://xdworld3.vworld.kr
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target sectors. Sector management algorithms have also improved web browser memory from 3.0 GB
to approximately 1.5 GB as compared to the previous research [5]. In particular, we officially proposed
the use of the subdomain method and applied it to VDC. Anyone can use the proposed WebGL-based
spatial information platform through the VWorld map service site [4].

In our future work, we intend to develop a WebGL-based spatial information platform using
Unity3D. Unity3D is a 3D development platform that anyone can easily access, and it also supports
WebGL. Globe 3D map assets will be developed and distributed. We also intend to research an
improved real-time rendering method for the relatively large size of point cloud data.
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