
electronics

Article

A New Fault Diagnosis Method of Bearings Based on
Structural Feature Selection

Wentao Mao 1,2,*,†, Liyun Wang 1,† and Naiqin Feng 1

1 School of Information Engineering, Zhengzhou University of Industrial Technology, Zhengzhou 451100,
China; zzwly0428@163.com (L.W.); fengnaiqin@163.com (N.F.)

2 School of Mechanics and Civil & Architecture, Northwestern Polytechnical University, Xi’an 710129, China
* Correspondence: maowt.mail@gmail.com; Tel.: +86-177-3735-3087
† These authors contributed equally to this work.

Received: 15 October 2019; Accepted: 22 November 2019; Published: 25 November 2019 ����������
�������

Abstract: By using signal processing and statistical analysis methods simultaneously, many
heterogeneous features can be produced to describe the bearings fault with more comprehensive
and discriminant information. At same time, there may exist redundant or irrelevant information
which will instead reduce the diagnosis performance. To solve this problem, it is necessary to conduct
feature selection which tries to choose the most typical and discriminant features by evaluating their
effect on fault status. However, if the structural relationship between features has not been considered
well, some similar or redundant features are still probably chosen, which would introduce bias into
the final diagnosis model. In this paper, a new fault diagnosis method of bearings based on structural
feature selection is proposed to solve the aforementioned problem. Obeying the hypothesis that the
features with strong relatedness have close coefficient distance, the proposed method aims to improve
diagnosis performance via determining group structure in fault features. First, a new feature selection
strategy is proposed by introducing a group identification matrix. Using this matrix, two evaluation
criteria about intra-group feature correlation and inter-group feature difference are constructed by
means of coefficient’s distance. Consequently, we get a multi-objective 0–1 integer programming
problem by minimizing intra-group distance and maximizing inter-group distance simultaneously.
Second, we use the multi-objective particle swarm optimization algorithm to solve this problem,
and then determine the optimal group structure of features adaptively. Finally, a diagnosis model
can be trained by support vector machine on the typical features extracted from these groups.
Experimental results on four UCI datasets show the effectiveness of the proposed group feature
selection strategy. Moreover, the experimental results on two bearing datasets (i.e., CWRU and IMS
datasets) demonstrate that the proposed method can identify the inherent group structure in fault
features, and then has better diagnosis performance compared with several state-of-the-art methods.

Keywords: fault diagnosis; bearing; structural information; support vector machine; heterogeneous
feature; feature selection

1. Introduction

As an important unit of common rotating machinery, rolling bearings easily fall into different kinds
of faults under complex working condition such as long-term heavy load and strong impact, etc. Faulty
bearings will lead to the performance deterioration of whole machinery, so fault diagnosis for bearings
always plays a vital role in health management of machinery. In recent decades, fault diagnosis has
received much attention from academic researchers and engineers [1,2]. With quick development of
artificial intelligence in the past decade, machine learning-based fault diagnosis methods have shown
their comparative performance in health monitoring for rotating machinery. In these methods, two key
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issues are generally included: feature extraction and model construction [3,4]. For feature extraction,
representative features of vibration signals need to be extracted by using statistical analysis or following
failure mechanism. Heterogeneous features can be calculated in time/frequency/time-frequency
domain [5]. There are a large number of features such as Kurtosis value [6], wavelet packet transform
(WPT) [7], empirical mode decomposition (EMD) [8], Garch model [9] and so on which are applied
to bearing fault diagnosis. These features have different characteristics. For instance, Kurtosis value
is sensitive to early fault, while WPT and EMD can effectively decompose non-stationary signal.
Moreover, entropy theory has also been introduced to extract discriminant features [10] Based on these
features, some machine learning algorithms, e.g., support vector machines (SVMs) [11,12], decision
tree [13] and artificial neural network [14], have been introduced to establish diagnosis model. Despite
different operational principles, these algorithms all build classification model on the extracted features
of different health conditions. In very recent years, we also observe deep learning techniques [15–17]
have been successfully introduced to solve the fault diagnosis problem. Different kinds of deep neural
networks such as stacked auto-encoder [18] and convolutional neural network [19] have been proved
promising in solving the problem of fault diagnosis. In contrast to the hand-crafted features listed
above, deep learning techniques are capable of extracting features adaptively from raw signals and
directly output the diagnosis result. However, as running on deep neural networks, deep learning
techniques tend to perform well on sufficient training data, which is too restrict for many real-world
applications. Even these techniques would extract features from small-scale samples (by avoiding
over-fitting), these features still need to be analyzed and refined again for achieving better discriminant
ability.

In this paper, we turn around our focus from the deep learning-based fault diagnosis methods back
to the diagnosis method on small-scale samples, as mass of bearings fault data are not easy to collect
in many real-world applications. From the discussion above, features of fault statuses play a vital role
to establish the decision model of fault diagnosis. Then we hope to find an effective way on feature
level to improve the generalization performance of diagnosis model on unseen data. We observe that
different signal processing techniques, even including some deep learning techniques, can only provide
limited information to describe bearings fault. Different features have the different representative
ability. For example, as a fourth-order index to measure stochastic signal, Kurtosis is rather sensitive
to the incipient fault [8]. Moreover, EMD contributes to decomposing non-stationary signal into a
collection of intrinsic mode functions with a trend [4]. Then EMD can choose proper components
of intrinsic mode function for statistical analysis. As an example, we draw four statistical features
(Kurtosis, RMS, frequency spectrum, wave factor) of total degradation process of one same bearing
from CWRU dataset (please refer to the section of experiment), as shown in Figure 1. It is visually
obvious in Figure 1 that Kurtosis goes up in the early fault stage, while frequency spectrum shows
better tendency in the fast degradation stage). Figure 1 indicates that different features have different
working areas on this signal, which just shows the necessity of heterogeneous feature selection.

An intuitive idea to improve the diagnosis performance is merging as many heterogeneous
features as possible to describe the bearings fault with more comprehensive information, named
feature pooling [7]. To select typical and discriminative features, it is recommended to conduct feature
selection which needs to evaluate the effect of features on fault status. Currently, two strategies, i.e.,
Filter and Wrapper [20], have been widely used in feature selection. The filter methods pick up the
intrinsic relevance of the features measured via univariate statistics such as information entropy and
rough set, while the Wrapper methods measure the “usefulness” of features based on the classifier
performance. Despite impressive performance of these two strategies in many fields, there are still two
challenges arising from the field of bearing fault diagnosis:

(1) First, it probably exists redundant information after common feature selection for
heterogeneous features. For example, to improve the measurement quality, many engineers used to set
up vibration sensors on adjacent places, and this would cause the phenomenon of cross detection [7].
The number of features duplicates, but the features are rather redundant. Traditional feature selection
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methods may eliminate such duplicated or irrelevant features to some extent. However, it is still
necessary to further exploit the relevance of the rest of features to improve the feature representation
as well as reduce the bias of diagnosis model.

(2) Second, most current Wrapper methods ignore the inner structure among heterogeneous
features. If we can explore the features’ inner structure, the most typical features can be determined
more easily in an effective subset.
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Figure 1. Four statistical features in time domain of total fatigue life of one same bearing.

These two challenges can be put into the problem of structural feature selection. Although some
related topics like sparse feature selection [21,22] have been studied, the structural selection methods
for heterogeneous features are seldom found in the field of bearing fault diagnosis. In this paper,
we try to solve this problem. We start with a simple but typical structure: group structure. Obeying
the hypothesis that the features with strong relatedness have close coefficient distance, this paper
aims to determine the group structure of features while doing feature selection. The basic idea is
introducing an identification matrix to indicate the distance between features and then optimizing such
matrix to obtain an optimal inner feature structure. From the theoretical aspect, the main contribution
of this paper is proposing a new structural feature selection method on heterogeneous features.
This method transforms the structural feature selection problem into a multi-objective 0–1 integer
programming problem by minimizing intra-group feature correlation and maximizing inter-group
feature discrimination at the same time. After solving this optimization problem, the optimal structure
can be adaptively determined. From the practical aspect, the main contribution of this paper is
proposing a new fault diagnosis method for bearings. In contrast to most of current diagnosis methods,
the proposed method can effectively obtain a set of typical fault features for building diagnosis model
no matter from traditional statistical features or deep features. To our best knowledge, there are very
few studies on structural heterogeneous feature selection for bearing fault diagnosis.

It is worth noting that this method uses SVM as baseline algorithm. SVMs are supervised learning
models for classification with structural risk minimization. By using maximum-margin strategy and
kernel trick, SVMs perform well on non-linear small-scale data. However, the basic idea listed above
can also generalize to some discriminant classifiers such as perception network, linear discriminant
analysis, and Logistic regression. Moreover, the proposed structural feature selection method can link
to the last layer of a deep neural network. Therefore, the redundant features which are easily generated
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on small-scale data can be detected and removed. In the experiment section, the effect of structural
feature selection is first evaluated on four UCI Machine Learning Repository datasets which are widely
used and cited for machine learning research, and then tested on two bearing datasets. We also find that
the least absolute shrinkage and selection operator (LASSO) is effective in variable selection by forcing
certain coefficients of some variables to be set to zero. As an extension of LASSO, group LASSO [21,22]
can identify predefined groups of covariates to be selected into or out of a model together. However,
this method relies on L1-norm minimization which is the optimal convex approximate of L0-norm
minimization. With special optimization methods (e.g., proximal methods) required to select sparse
features, this method could not apply to the existing classification algorithm form.

The paper is organized as follows. In Section 2, we review the typical feature extraction, feature
selection methods and support vector machine. In Section 3, we introduce an identification matrix to
establish the multi-objective 0–1 programming problem, and provide a solution with multi-objective
particle swarm optimization. Section 4 is devoted to computer experiments on UCI datasets and two
bearing fault diagnosis data sets, followed by a conclusion of the paper in the last section.

2. Background

In this section, we provide the review for some commonly used techniques and algorithms which
will be used in our proposed algorithm and experiments.

2.1. Feature Extraction Using EMD and WPT

In recent decades, EMD [4] and WPT [3] have become the promising tool of extracting features
from vibration signals, especially from non-stationary signals. The basic idea of EMD is decomposing
the given signal into a series of intrinsic mode function (IMF) [23] on the base of local characteristic time
scale. Here IMF indicates a simple oscillatory mode as a counterpart to a simple harmonic function.
Using the IMFs, the obtained sequence c1 (t) , c2 (t) , · · · , cn (t) covers the bands’ component from high
frequency to low frequency. The first few IMF components are significant as they contain the most
important information of raw signal. In Experiment section, we extract 8 IMF components for the
fault signals. After decomposition, we calculate the energy spectrum of each IMF component to build
EMD’s feature vector, as the following formulation [24]:

EEMD = {E1, E2, · · · , En}
where Ei =

∫
|ci (t)|2dt=

m
∑

k=1
|yik|2

Here yik (i = 0, 1, · · · , n; k = 0, 1, · · · , m) denotes the amplitude of discrete points in ci (t).
Like EMD, WPT also can extract energy spectrum as a set of features of bearing vibration signals.

WPT is a wavelet transform where the discrete-time signal is passed through more filters than the
discrete wavelet transform. Then WPT can offer a richer signal analysis for non-stationary signal.
Using WPT, we obtain the decomposition coefficients

{
X0

d, X1
d, · · · , X J−1

d

}
, where d is decomposition

level, and J is the total number of sub-band. In this experiment, we set d = 3, J = 8. The energy of
each sub-band signal can be calculated by using the following formulation [5]:

EWPT =
{

E0
d, E1

d, · · · , EJ−1
d

}
where EJ

d =
∫ ∣∣∣X j

d (t)
∣∣∣2dt=

n
∑

k=1

∣∣∣xjk

∣∣∣2
Here xjk (j = 0, 1, · · · , J − 1; k = 0, 1, · · · , n) denotes the amplitude of discrete points in X j

d (t).
Therefore, the WPT energy spectrum can be obtained after the normalization of EWPT by calculating
the proportion of each WPT component in total EWPT .
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2.2. Support Vector Classification

SVM is an effective binary classification algorithm on small-scale data. Based on the statistical
learning theory, SVM tries to seek structural risk minimization, and then can get good generalization
ability on limited observations while avoiding over-fitting [25]. By introducing the kernel trick, SVM
effectively solves the problem of “dimension disaster” for the high-dimensional problem. SVM has
been a promising tool in the fields of pattern recognition and fault diagnosis, etc. For the sake of
better understanding, we provide a sketch map to show the principle of SVM classification in Figure 2.
Obviously, SVM seeks the best classification hyper-plane (solid line) with maximum margin between
negative and positive classes.

positive

negative

margin

Figure 2. Sketch map of SVM classification.

Here we take the non-linear SVM as an example. Given a set of independently and identically
distributed (i.i.d) training samples {(x1, y1) , · · · , (xN , yN)} ⊂ Rd × R, SVM is formulated as
minimizing the following functional [26]:

min
w,b

1
2
‖w‖2 + C

N

∑
i=1

ξi

s.t. yi (w · ϕ (xi) + b) ≥ 1− ξi

ξi ≥ 0 i = 1, 2, ..., N

(1)

where C is the regularization parameter, ϕ (·) is the non-linear mapping function. In Equation (1), the
first term is the regularization term which is used to prevent over-fitting, and the second term means
training error on the available training samples. Minimizing Equation (1) will reach structural risk
minimization. By calculating the Karush–Kuhn–Tucker (KKT) condition which permits replacing the
primal problem by a dual problem, Equation (1) can be transformed to the following dual form [26]:

min
α

1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjK
(
xi, xj

)
−

N

∑
i=1

αi

s.t.
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0, i = 1, 2, ..., N

(2)

where K
(
xi, xj

)
=<ϕ (xi) ,ϕ

(
xj
)
> is kernel function, αi means Lagrange multiplier. Please note

that in Equation (2), the first term is convex and quadratic on αi while the second term is convex.



Electronics 2019, 8, 1406 6 of 26

Therefore, Equation (2) is a convex quadratic problem. After solving this problem, the optimal solution
α∗ = (α1

∗, α2
∗, ..., αN

∗)T can be obtained. Therefore, we have the following classification model [26]:

f (x) = sign

(
N

∑
i=1

αiyiK (x, xi) + b

)

where the sign (·) function is:

sign (x) =

{
1 i f x ≥ 0
−1 i f x < 0

2.3. SVM-RFE

As a typical Wrapper feature selection method, SVM-Recursive Feature Elimination
(SVM-RFE) [27] has been successfully used to find discriminative relationships and identify the
inner patterns within bearing fault datasets. SVM-RFE is an iterative algorithm that works backward
from an initial set of features obtained from SVM. At each round, SVM-RFE first fits a linear SVM,
and then ranks the features in terms of their weights in the SVM solution, and finally eliminates the
feature with the lowest weight. The ranking criterion Rc is the difference between the weight ‖W‖2 of
all features and the weight ‖W−p‖2 after eliminating pth feature, as follows [27]:

Rc =
∣∣∣‖W‖2 −

∥∥W−p∥∥2
∣∣∣

Please note that W =
m
∑

i=1
αiyi ϕ (xi) is the model weight of SVM and can be calculated by

Equation (1). After substituting W, we have [27]:

Rc =
1
2

∣∣∣∣∣ m

∑
i,j=1

αiαjyiyjK
(
xi, xj

)
−

m

∑
i,j=1

αi
(−p)α

(−p)
j yiyjK

(
x(−p)

i , x(−p)
j

)∣∣∣∣∣
where m is the number of samples, K

(
xi, xj

)
means the kernel function of sample xi and xj, αi is the

Lagrange multiplier of SVM while the superscript (−p) indicates the pth feature is removed.

3. The Proposed Fault Diagnosis Method

In this section, we present the proposed fault diagnosis method based on structural feature
selection of heterogeneous fault features. Briefly speaking, we first exploit the inner structure of
features and then choose the most representative fault features for building diagnosis model. We adopt
the following assumption: the features with strong relatedness have short weights’ distance, and then
construct a multi-objective 0–1 programming problem by making the feature weights in the same
group as close as possible while making the feature weights in the different group as unlike as possible.
By solving this problem, the optimal inner structure of fault features can be determined adaptively,
and a set of fault features with good discriminant ability can be chosen for model training.

3.1. Model Construction

Given a set of i.i.d training samples {(x1, y1) , · · · , (xN , yN)} ⊂ Rd × R, we have the weight
coefficient vector β = [β1, β2, ..., βd]

T of d-dimensional features by running linear SVM. Suppose
that there exists some group structures among the features. Therefore, to conduct structural feature
selection, we need to assign all d-dimensional features into G groups with making the weight distance
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of features in same group as small as possible and the distance in different group as big as possible.
Here we first present the expression of intra-group weight distance:

IntraDist =
G

∑
g=1

m

∑
i<j

∣∣βi − β j
∣∣ (3)

where G is the total number of group, m is the number of features in group g. Equation (3) means the
sum of the weight distance of each two features in all groups. Obviously, minimizing Equation (3) can
prompt features with close weight into a same group.

Equation (3) cannot be minimized directly. To get a feasible minimization target, we introduce
group assignment matrix Q whose elements qgi ∈ {0, 1} indicate whether the t-th feature is assigned
to the group g. Moreover, let Qg ∈ RG×G be the diagonal matrix whose diagonal elements are qgi. It is

clear that
G
∑

g=1
Qg = I, where I stands for the identity matrix. We also set the weight distance matrix

A as:
A = B− BT

where B is square matrix composed by feature’s weight vector β, i.e., B = [β, · · · , β]. Using the element
aij ∈ A, we can re-write Equation (3) as:

IntraDist =
G

∑
g=1

m

∑
i<j

∣∣aij
∣∣

s.t aij ∈ A

(4)

Because A =
G
∑

g=1
QgAQg, we first give the following definition:

Definition 1 (Intra-group weight distance sum).

IntraDist
(
Qg
)
=

G

∑
g=1

m

∑
i<j

∣∣aij
∣∣

s.t aij ∈ QgAQg

G

∑
g=1

Qg = I

(5)

The summation constraint guarantees that each feature can be assigned to one and only one group.
Obviously, if G = 1, Equation (5) equals a standard formulation of weight distance. It is clear that the smaller
the value of f is, the better the grouping performance is.

Similarly, to measure the inter-group distance, we have the following formulation:

InterDist =
k

∑
g=1

m

∑
i=1

n

∑
j=1

∣∣βi − β j
∣∣ (6)

where k =
⌈

G
2

⌉
, m is the number of features in group g, n is the number of features which are not in the group g.

Equation (6) indicates the sum of inter-group feature distance. Obviously, maximizing Equation (6) can prompt
features in different groups to be farther away from each other, or say, to be more divergent.
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Similarly, we use group assignment matrix Q to express the inter-group feature divergence. We can
re-write Equation (6) as:

InterDist =
G

∑
g=1

m

∑
i<j

∣∣bij
∣∣

s.t bij ∈ Bg

Bg = A−Mg −Ng

(7)

where Mg = QgAQg is intra-group weight distance matrix for group g, Ng =
(
E−Qg

)
A
(
E−Qg

)
is

beyond-group weight distance matrix for the group g. Consequently, Bg means the inter-group divergence
matrix for the group g. According to the matrix theory, we have:

Bg = A−Mg −Ng

= A−QgAQg −
(
E−Qg

)
A
(
E−Qg

)
=A−QgAQg −A + AQg + QgA−QgAQg

=AQg + QgA− 2QgAQg

(8)

Based on the derivation above, we give the following definition:

Definition 2 (Inter-group weight distance sum).

InterDist
(
Qg
)
=

G

∑
g=1

m

∑
i<j

∣∣bij
∣∣

s.t bij ∈
(
AQg + QgA− 2QgAQg

)
G

∑
g=1

Qg = I

(9)

Equation (9) indicates the distance sum of each feature to any other features in different groups. Obviously,
maximizing Equation (9) will assign the features with divergent weights into different groups.

Please note that Equation (5) indicates the intra-group feature relatedness while Equation (9) indicates the
inter-group feature divergence. To exploit the inner structure based on feature distance, we need to minimize
Equation (5) and maximize Equation (9) simultaneously. The final target is seeking a series of Qg, named Q∗,
to make the intra-group weight distance sum as small as possible while inter-group weight distance sum as large
as possible, i.e.,

Q∗ = argmin
(

IntraDist
(
Qg
)

,−InterDist
(
Qg
))

(10)

3.2. Solving Method

Considering the group assignment matrix Q, Equation (10) is a multi-objective 0–1 programming
problem. As seeking the optimal solution for this kind of problem is NP-hard (i.e., a deterministic
algorithm to solve it cannot be found in polynomial time), we choose an evolutionary algorithm
to seek a numerically approximate solution. Taking the 0–1 programming into account, we can
improve the traditional multi-objective optimization algorithm by adjusting its search space. Compared
to single-objective optimization, the multi-objective optimization problem involves more than one
objective function to be optimized simultaneously, and seeks one or more solutions (generally denoted
as Pareto-optimal) to make each objective reach optimum [28]. In this case, the objective functions are
generally conflicting, which results in no single solution that simultaneously optimizes each objective.
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For the sake of better understanding, we first provide some general concepts. The multi-objective
optimization problem can be expressed as follows [28]:

min z = f (x) =
(

f1 (x) , f2 (x) , · · · , fq (x)
)

s.t. gi (x) ≤ 0, i = 1, 2, · · · , m

where x ∈ Rn is the solution belonging to the feasible region S = {x ∈ Rn|gi (x) ≤ 0, i = 1, 2, · · · , m}.
In mathematical terms, a feasible solution x1 is regarded to dominate another solution x2, written

as x1 ≺ x2, if:

(1) fi (x1) ≤ fi (x2) for all indices i ∈ {1, 2, · · · , q} and

(2) f j (x1) < f j (x2) for at least one index i ∈ {1, 2, · · · , q}

Due to conflicting objectives, there exist several Pareto-optimal solutions which construct the
Pareto front. A solution is called nondominated, Pareto-optimal or noninferior, if it cannot be
dominated by any other solutions. In another word, none of the objective functions can be improved
in value without degrading some of the other objective values.

Because of the insensitivity to the shape and continuity of Pareto front, the evolutionary algorithm
can approximate the non-convex or non-continuous optimal front well, so it is suitable to solve
the multi-objective optimization problem. In recent decades, several nature-inspired evolutionary
algorithms have been proved very efficient in solving multi-objective problems. Within these
algorithms, particle swarm optimization(PSO) [29], proposed by J. Kennedy and R. Eberhart, tries
to find an optimal solution by mimicking the social behavior of birds flock. Compared with other
evolutionary algorithms, PSO has its advantages such as few parameters, faster convergence rates
and so on. Moreover, due to its simple structure, PSO has been successfully developed for solving
the multi-objective optimization problem. Therefore, in this work we apply the multi-objective PSO,
named MOPSO [30], to solve Equation (10). Please note that this work just pays the emphasis on the
application of MOPSO rather than the development of MOPSO algorithm.

The basic idea of classical PSO and MOPSO refers to the literature [29,30]. Here we provide the
main step of application of MOPSO in this work, as follows. The brief flowchart of MOPSO can also be
found in Figure 3.

Step 1. Initialize the swarm size and number of generations. Initialize the present location and
fitness value of each particle by generating randomly the group assignment matrix Q for each group.
The intra-group weight distance sum shown in Equation (5) and the minus of inter-group weight
distance sum shown in Equation (9) are taken as the fitness function to evaluate the goodness of the
solution. Please note that the fitness value from Equation (9) must be added minus, as shown in
Equation (10).

Step 2. Update the noninferior archive by adding the particles which are nondominated by others.
Step 3. Update the particles’ velocity and position by following the best particle in the swarm

(gBest) and best individual particle (xBest). Here gBest is randomly selected from the noninferior archive.
Step 4. Calculate the fitness value of new particles. Update xBest by checking the domination

relationship between the current xBest and new particles.
Step 5. Update the noninferior archive by merging xBest into the current noninferior archive with

domination relationship checked.
Step 6. Go to Step 3 or stop if a stop criterion is satisfied.
In the framework described above, three tricks in solving Equation (10) need to be highlighted:
(1) In the initialization of particles, the dimension of a particle is equal to the number of features,

i.e., the ith particle’s position is Xi = [xi,1, xi,2, ..., xi,d]. To assign the jth feature to group m, the value of
xi,j should be m (m ∈ {1, 2, · · · , G}), where G is the pre-assigned group amount. Through this method,
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every particle gets one-to-one correspondence to the group assignment matrix Q.
(2) The velocity of xi,j in kth iteration is updated by [29]:

Vij
k+1 = wVij

k + c1r1

(
Pk

ij − Xk
ij

)
+ c2r2(Pk

gd − Xk
ij) (11)

Considering the trick (1), the position of jth feature of ith particle Xk+1
ij which indicates the group

assignment index is then updated by:

Xk+1
ij =

{
dte t 6= 0
dr3Ge t = 0

(12)

where :
t =

∣∣∣Xk
ij + Vk+1

ij

∣∣∣%G (13)

In Equations (11)–(13), Vk+1
ij is the velocity of jth feature, c1 and c2 are values that weight the

contribution of the individual and social information, r1, r2, r3 ∈ [0, 1] are uniformly distributed
random numbers, pibest is the best previous position of the ith particle and gbest is the best particle in
the swarm, dtemeans the top integral function for t.

In our experiment, all particles X are randomly initialized in the range of [0, G], and the
corresponding velocities V are initialized to 0. In the searching process, the value of velocity is
influenced by w, c1 and c2. To guarantee the searching efficiency, we set the value of w linearly
decreasing from 1.2 to 0.2, while c1 and c2 are both set 0.8. Consequently, the value scope of the velocity
V is easily determined, just around [−X, X]. We mainly restrict the searching scope of X. If a particle
exceeds the bound, we will pull the particle back to the searching scope by adding a random value in
reverse direction.

(3) To improve the global search ability, the linear decreasing weight w in Equation (11) is
updated by:

w = wmax− k · (wmax− wmin)
MaxIt

(14)

where k is the current iteration number, MaxIt is the maximum iteration number, wmin and wmax are
the minimal and maximal value of weight w respectively.

After assigning features into different groups, it needs to choose representative features from
each group. In this work, information gain is introduced to conduct this selection. Information gain is
an effective tool to evaluate the relatedness between two variables. For a classification problem, the
information gain of one feature xi to the classification label Y is defined as the change in information
entropy H only for classification label Y to a state with this feature given, as follows:

IG (xi) = H (Y)− H (Y|xi) (15)

The bigger the information gain is, the larger the relatedness between this feature and classification
label is. As a result, we choose the features with the biggest information gain in each group as the
representative ones, and finally combine them as a discriminative feature set. Using this feature set,
we can apply SVM to construct the fault diagnosis model.

3.3. Method Description

Following the sections above, we give a total description of the proposed method: (1) Extract
heterogeneous features of bearing fault, and combine them into a feature pool; (2) Use SVM to
calculate the each feature’s weight, and build the weight distance matrix; (3) Apply the MOPSO
algorithm to determine the optimal grouping structure; (4) Use information gain to choose the most
representative feature in each group; (5) Combine the obtained features again into a new feature set,
and run SVM with this feature set to construct fault diagnosis model. The key part of the proposed
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method is determining the inner structure among features to guarantee the feature’s discriminant
ability. Moreover, as linear SVM has some advantages such as fast speed, simple structure for the
extension to the big data problem, we choose it as the baseline algorithm to generate feature vectors.

For better understanding, we provide the flowchart of the proposed fault diagnosis method based
on structural feature selection in Figure 3. Furthermore, we provide the pseudocode of the proposed
structural feature selection algorithm, as shown in Algorithm 1.

Figure 3. Flowchart of the proposed fault diagnosis method based on structural feature selection.
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Algorithm 1 The proposed fault diagnosis method based on structural feature selection.
Input: Training sample set Xtrain with extracted heterogeneous feature
Output:Representative feature set Rep_Feature

1: Begin
2: Run Linear SVM on Xtrain to calculate feature’s weight vector, and then build weight distance

matrix A;
3: Initialize grouping assignment matrix Q;
4: Use Equation (5) and (9) to calculate Intra-group weight distance sum and the minus of

inter-group weight distance sum, respectively, as initial fitness value.
5: while i does not reach the maximal iteration number:
6: Use Equation (5) and (9) to calculate fitness value;
7: Update the positions of best individual particle and best particle in swarm Pk

ij ,Pk
gd respectively;

8: Update the noninferior set;
9: Run the multi-objective PSO, with using Equation (10) to update particle’s velocity Vk+1

ij , and
using Equation (13) to guarantee the particle’s position reaching the search space’s requirement;

10: Set i = i + 1;
11: end while
12: Obtain the optimal grouping assignment matrix Q∗;
13: Use Equation (15) to choose the feature with biggest information gain from each group, and

combine them into a new feature set Rep_Feature;
14: Train fault diagnosis model by using SVM on Rep_Feature.
15: End

4. Experimental Results

In this section, we use two kinds of data sets to testify the effectiveness of the proposed method.
Please note that before using bearing fault data for test, we also introduce four widely used UCI data
sets [31] to evaluate the performance of the effect of the proposed structural feature selection method.

In this experiment, we use LibSVM [26] which is a popular open source SVM toolbox to conduct
classification of SVM. By implementing the sequential minimal optimization (SMO) algorithm and
various model selection algorithms, LibSVM can provide fast and stable prediction results with no
need for tuning hyper-parameters repeatedly. For simplicity, the proposed method is called Structural
Feature Selection-SVM (SFS-SVM). The proposed method is compared with some typical feature
selection algorithms, i.e., Relief [32], SVM-RFE [27], feature selective validation(FSV) [33] and SVM
without feature selection. The principle of SVM-RFE and SVM without feature selection have been
elaborated in Section 2. Relief is a Filter-method approach which calculates a feature score for each
feature to rank and select top scoring feature. In Relief, the feature scoring is based on the identification
of feature value differences between nearest neighbor instance pairs. FSV is a widely used feature
selection method which verifies the correlation of data to measure feature importance. We think these
four methods can provide a comprehensive comparison.

Moreover, to evaluate the effect of the proposed method on deep learning techniques, we also
compare the proposed method with two deep learning algorithms in fault diagnosis experiment.
One is named DLSVM [34] which adds a linear SVM in SoftMax layer on deep neural network and
minimizes a margin-based loss instead of the cross-entropy loss. We run the proposed method to
further choose the most discriminant features from DLSVM, named SFS-DLSVM. The other one is
stacked denoising auto-encoder (SDAE) [35] which feeds the frequency spectrum of vibration signal
into SDAE model and adopts the hidden neurons as the extracted features. Finally, SDAE uses SoftMax
layer to conduct classification. As SFS-DLSVM and SFS-SVM both adopt the same feature selection
strategy, the results of these two methods can both demonstrate the comparative advantage of the
proposed structural feature selection method. It is worth noting that the methodology of the proposed
method SFS-SVM on UCI datasets and fault diagnosis datasets are the same, both including learning
the inner structure of features, choosing typical features by means of information gain and building
SVM model. The only difference is the original features.
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4.1. UCI Data Sets

In this section, we select four datasets (wdbc, ionosphere, breast cancer and SPECTF heart) from UCI
Machine Learning Repository [31] for test. Here we provide a brief introduction of these four datasets.
The wdbc and breast cancer datasets are both the record data of breast cancer case. For the dataset of
breast cancer, the first 30 features are collected from a digitized image of a fine needle aspirate of a
breast mass and used to describe characteristics such as radius, texture and perimeter of the cell nuclei
present in the image. For the dataset of wdbc, the features are computed from an image of cell nucleus
with most of attributes being same to the breast cancer dataset. The dataset of ionosphere is collected to
record the radar data of a system in Goose Bay, Labrador. This system consists of a phased array of 16
high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. The targets were
free electrons in the ionosphere. The dataset of SPECTF heart describes diagnosing of cardiac Single
Proton Emission Computed Tomography (SPECT) images. The database of 267 SPECT image sets
(patients) was processed to extract features that summarize the original SPECT images. As a result,
44 continuous feature patterns were created for each patient. Some statistics of these four data sets are
listed in Table 1. These datasets are randomly divided into training and test set. The partition ratio is
as listed in Table 1. All the experimental results are the mean value of 30 random partitions of data set.

Table 1. Description of the used UCI datasets.

Name Training Test Attribute Class

wdbc 431 138 30 2
ionosphere 250 101 34 2

breast cancer 155 39 33 2
SPECTF heart 187 80 44 2

For the proposed method, the group number G can be directly set according to domain knowledge,
or determined by cross validation. In this experiment, we set the group number G for data sets wdbc
as 7, ionosphere as 8, breast cancer as 7, and SPECTF heart as 9, via cross validation. Larger swarm
size will lead to a better searching effect of MOPSO, but the cost time will increase as well. In our
experiments, we find different datasets need different swarm size to get a satisfactory result. To make
a comprehensive comparison, we set the swarm size for datasets wdbc and ionosphere both as 50, breast
cancer as 100, and SPECTF heart as 200. Also, to guarantee the optimization effect, the iteration number
for the four data sets are all set 200 that is large enough in our experiment. Correspondingly, the value
of parameter k of SVM-RFE and Relief is the same to G on each data set.

First, we check the performance of multi-objective PSO used in Section 3.2. Figure 4 provides
the best individuals found in four datasets. It is clear that all the individuals have distribution
approximated to the Pareto-optimal front, which indicates the intra-group weight distance sum and
inter-group weight distance sum are approximately contradict. It is worth noting that Figure 4 is not
the real Pareto-optimal front distribution, unless flipping the y-axis vertically. Compared with the
single-objective optimization, the proposed method can get a set of Pareto-optimal solutions, which
could provide the adaptable grouping structure.

From the grouping structure shown in Figure 4, a new representative feature set can be built
by means of information gain. As mentioned before, we run two classical feature selection methods,
SVM-RFE and Relief, and SVM with no feature selection for comparison. Considering that this
comparative experiment is not for model selection but to evaluate the effect of structural feature
selection, we directly set the regularization parameters of SFS-SVM, SVM-RFE and SVM as 50.
The comparative results in terms of classification accuracy are shown in Table 2.
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Figure 4. Best individuals found on (a) wdbc, (b) ionosphere, (c) breast cancer and (d) SPECTF heart
data sets. It is clear that all the individuals have distribution approximated to the Pareto-optimal front.

Table 2. Comparative results on four UCI data sets in terms of classification accuracy.

Name SFS-SVM SVM-RFE Relief SVM

wdbc 98.55% 95.65% 92.03% 92.03%
ionosphere 92.03% 86.14% 87.13% 91.09%

breast cancer 94.87% 92.31% 79.79% 82.50%
SPECTF heart 89.50% 85% 80% 72.50%

From Table 2, we observe that almost all feature selection methods perform better than the SVM
without feature selection except Relief, but the proposed method gets the highest classification accuracy
on all four data sets. Relief is a typical Filter-kind method which does not rely on the classifier, therefore
on a small-scale dataset, it may generate classification bias. The comparative results in Table 2 indicate
that the proposed method can get benefit from the structural analysis for features and then find the
most representative feature set for classification.

We also check the effect of the group number G. From Section 3.3, different grouping structure
can generate different representative feature set. Therefore, we set different numbers of G from 2 to
16, and examine the classification accuracy of the proposed method on four UCI data sets, as shown
in Figure 5. Obviously, the accuracy on wdbc and SPECTF heart data sets change less with the group
number G increasing, while the accuracy on breast cancer fluctuates drastically. We also observe the
accuracy on ionosphere rising heavily at an earlier stage and then remains almost constant with G
increasing. These results demonstrate that the group number plays a key role in the proposed method.
With a different number of G, the representative features vary and the redundant features may not be
eliminated well. If the group number is less than the optimal group number, it will result in fewer
representative features which could provide insufficient domain knowledge as well as reduce the
classification accuracy. Conversely, with excessive group number, the representative features will
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increase, which will keep some redundant features. In practical applications, the group number G can
be chosen via cross validation.
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Figure 5. Classification accuracy of the proposed method on four UCI data sets.

4.2. Bearing Fault Data Sets

To further evaluate the performance of the proposed method on bearing fault diagnosis, two
bearing fault data sets, CWRU and IMS, are introduced to run computer experiments. For comparison,
we first extract heterogeneous fault features with a high dimension by referencing the feature extraction
methods in [7]. Second, we run the proposed method SFS-SVM and FSV, Relief and SVM-RFE on the
extracted heterogeneous features to compare the diagnosis accuracy. We use LibSVM toolbox [26] for
SVM-based methods with linear kernel selected. The proposed method with the linear kernel can
directly be applied to DLSVM for conducting structural feature selection on deep neural network,
and the linear kernel has no more kernel parameter for selection. To test the effectiveness of the
grouping strategy used in this work, all SVM-based methods use same regularization parameter (i.e.,
the parameter C in Equation (1) and the same parameter in the other SVM-based models) which is
set 512. Moreover, the proposed method is initially set 7 groups in the experiments for both two
datasets. Correspondingly, all other methods for comparison are all set to select 7 representative
features. For SDAE, the network architecture is set [512, 50, 30, 7]. For DLSVM, two convolutional
layers with 5× 5 filter are adopted. To keep in line, DLSVM also generate 7-dimensional features.
After feature extraction, the sample set is randomly partitioned into a training set and a test set with
the ratio 7:3. To make an impartial comparison, we get the mean value of 100 repeated trials as the
final result.

4.2.1. Data Description

The CWRU bearing dataset came from Case Western Reserve University (CWRU)
ElectrotechnicsLab [36]. In this dataset, all kinds of bearing fault were generated by using
electro-discharge machining at inner race, outer race and ball with crack size of 0.007 inch, 0.014
inch, 0.021 inch and 0.028 inch, respectively. Then the vibration signals with different fault location and
crack size are recorded under motor loads of 0, 1, 2 and 3hp. Besides normal condition, this dataset
adopts the fault data with sampling frequency of 12 kHz at Fan End (FE) and Drive End (DE) as well
as the fault data with sampling rates of 48 kHz at drive end. Therefore, this dataset contains four kinds
of health condition: normal condition, inner race fault, outer race fault and ball fault.

The IMS bearing dataset was generated by the NSF I/UCR Center for Intelligent Maintenance
Systems(IMS) with support from Rexnord Corp. in Milwaukee, WI [37]. This dataset provides two
different test-to-failure experiments including outer race fault and ball fault. The recording duration
with outer race fault is from 22 October 2003, 12:06:24 to 25 November 2003, 23:39:56. The recording
duration with ball fault is from 12 February 2004 10:32:39 to 19 February 2004, 06:22:39. The sampling
rate is 20 kHz. At the end of experiment, bearing 3 and 4 come out outer race fault and ball fault,
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respectively. As IMS bearing data are run-to-failure data with whole degradation process, we choose
the data which were collected at 164 h as the outer race fault signal and the data at 827 h as the ball
fault signal.

To provide an intuitive understanding of the problem of bearing fault diagnosis, We take CWRU
dataset as an example to show the raw vibration signals and their Fast Fourier Transform (FFT) for all
four health conditions, as shown in Figure 6. Here the signals with 1024 time points are collected at
Fun End with sampling rate 12 kHz. The load is 3 hp, and the crack size is 0.007 inch. Besides CWRU
dataset, the raw signals and their FFT of IMS dataset are also shown in Figure 7.
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Figure 6. Four health conditions of CWRU dataset with (a) raw time signals and (b) their FFT.
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Figure 7. Three health conditions of IMS dataset with (a) raw time signals and (b) their FFT.

It is clear that different health conditions have different patterns both in time domain and
frequency domain, which provides discriminant mode for classification. Especially in Figure 6a,
the raw signal of outer race fault has more obvious fluctuation in time domain, but the ball fault
changes less than the other fault classes, which indicates the ball fault is more difficult to be classified.
The same comparative phenomenon happens in Figure 6b, as the frequency spectrum of outer race
fault changes much more than the other two faults. In Figure 7, the raw signal of outer race fault
still fluctuates dramatically more than the ball fault, while the frequency spectrum of outer race fault
appears more changing modes, which also means the applicability of machine learning for fault
diagnosis problem. To further testify the separability, we show the feature distribution of different
health conditions, as shown in Figure 8. For the sake of illustration, in Figure 8a we randomly choose
the first IMF component of EMD and the 4-th sub-frequency coefficient of WPT as two coordinate
axes, and plot the distribution of 50 samples of normal condition and 50 samples of inner race fault.
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Similarly, in Figure 8b, we plot 200 samples of normal condition and 200 samples of ball fault with the
second IMF component of EMD and the first sub-frequency coefficient of WPT selected. Obviously, no
matter CWRU or IMS dataset, the extracted features are all able to provide a separable distribution of
different health conditions, which is the base of our following experiments.
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Figure 8. Data distribution using EMD and WPT feature on (a) CWRU and (b) IMS datasets.

4.2.2. Results on CWRU Dataset

In this experiment, we choose the vibration signals with crack size 0.007 inch, 0.014 inch and 0.021
inch under motor load 1, 2, and 3 as ball fault data, and the normal signals under load 1, 2, 3 as normal
condition data. The sampling rate here is 12 kHz. After feature extraction, we get 50 samples for each
ball fault normal condition respectively, i.e., 450 ball fault samples and 150 normal condition samples
in total, as shown in Table 3.

Table 3. Sample size of ball fault and normal condition.

Ball Fault Normal Condition Total Sample Size

Load\Crack 0.007 inch 0.014 inch 0.021 inch Load Size

600

1 50 50 50 1 50
2 50 50 50 2 50
3 50 50 50 3 50

Each sample includes 1024 signal points. For each sample, we extract heterogeneous features
by using the methods in [5]. These methods contain not only the time domain/frequency domain
statistical features, but also some time-frequency domain features such as EMD/WPT as well as
temporal features, as shown in Table 4. Please note that to generate heterogeneity of features, we both
collect the signals from Fan End (FE) and Drive End (DE) of the motor housing of the CWRU testbed.
The sensors at DE, although with less confidence, can detect the faults at FE, and vise verse [5].
This phenomenon is called cross detection which duplicates the number of features and makes the
features contain redundancy and noise. Hence, although Table 4 provides 71-dimension features,
we finally obtain a feature pool whose cardinality is 142.
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Table 4. Definition of 71-dimension fault features.

Method Formula Dimension

Bispectrum Analysis Bx(w1,w2)=
∞
∑

τ1=−∞

∞
∑

τ2=−∞
c3x(τ1,τ2)e−j(w1τ1+w2τ2) 10

GARCH Model

rt = c1 +
R
∑

i=1
φirt−i +

M
∑

j=1
φjεt−j

t

+ εt

εt = µt
√

ht

ht = k +
q
∑

i=1
Giht−i +

p
∑

i=1
Aiε

2
t−i

4

EMD x(t) = rn +
n
∑

i=1
IMFi 10

WPT
Ej(n) =

S/2j−1
∑

s=0

[
cs

j,n

]2

xn =
Ej(n)

∑2j
m=0 Ej(m)

16

Complex Envelope Analysis h̃ (t) : H{h(t)} := h(t) ∗ 1
πt =

1
π

∞∫
−∞

h(t) dτ
t−τ 18

Impulse Factor Xi f =
max(|xi |)
1
N ∑N

i=1 |xi |
1

Margin Factor Xm f =
max(|xi |)(

1
N ∑N

i=1

√
|xi |
)2 1

Shape Factor Xs f =
max(|xi |)

( 1
N ∑N

i=1 x2
i )

1/2 1

Kurtosis Factor Xk f =
1
N ∑N

i=1

(
xi−x̄

σ

)4

( 1
N ∑N

i=1 x2
i )

2
1

Crest Factor Xc f =
max(|xi |)

( 1
N ∑N

i=1 x2
i )

1/2 1

Peak-to-Peak Value Xppv = max(xi)−min (xi) 1
Skewness Value Xsv = 1

N ∑N
i=1
( xi−x̄

σ

)3 1
Kurtosis Value Xkv = 1

N ∑N
i=1
( xi−x̄

σ

)4 1

Square Root of the Amplitude Xsra =

(
1
N

N
∑

i=1

√
|xi|
)2

1

Root Mean Square Xrms =

(
1
N

N
∑

i=1
x2

i

)1/2
1

Frequency Center X f c =
1
N

N
∑

i=1
fi 1

RMS Frequency Xrms f =

(
1
N

N
∑

i=1
f 2
i

)1/2
1

Root Variance Frequency Xrv f =

(
1
N

N
∑

i=1

(
fi − X f c

)2
)1/2

1

For comparison, the whole 142-dimension feature pool without feature selection and the
sub-feature set from FSV, Relief and SVM-RFE are input into linear LibSVM respectively to conduct
diagnosis on CWRU fault data. First, we check the best solutions to the proposed method for three
fault types, as shown in Figure 9. Please note that one solution in Figure 8 means a grouping structure
Qg in Section 3. Similar to Figure 4, it is also clear that the distribution of these solutions all approach
the Pareto-optimal front, which indicates the strategy of multi-objective optimization suits the CWRU
fault data.
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Figure 9. Distribution of best solutions to the proposed method on CWRU dataset for (a) inner race
fault, (b) outer race fault and (c) ball fault.

We randomly select one of the best solutions shown in Figure 9 as the optimal group structure,
and run the proposed method SFS-SVM for comparison with the other seven methods. Please note that
for SFS-DLSVM, we run the proposed structural feature selection strategy on the features extracted by
DLSVM. The diagnosis results of all eight methods for inner race fault, outer race fault and ball fault
are listed in Tables 5–7, respectively. As the collected data is sort of class imbalanced, here we provide
the classification accuracy on the test set for each bi-classification problem. Moreover, we also provide
G-mean value which is suitable for data imbalance problem. G-mean value is the square root of the
product of two classes’ accuracy; therefore, the G-mean value will improve only when the accuracy of
two classes both improve.
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Table 5. Diagnosis accuracy for inner race fault and normal condition on CWRU dataset.

SVM SVM-RFE Relief FSV SFS-SVM DLSVM SFS-DLSVM SDAE

Accuracy of normal condition(%) 99.21 98.98 31.3 99.46 100 100 100 100
Accuracy of inner race fault(%) 99.47 99.65 99.91 99.29 99.65 99.53 99.96 99.61

Whole test accuracy(%) 99.40 99.47 82.33 99.33 99.73 99.78 99.98 99.80
G-mean value 0.9934 0.9931 0.496 0.9937 0.9982 0.9976 0.9998 0.9980

Table 6. Diagnosis accuracy for outer race fault and normal condition on CWRU dataset.

SVM SVM-RFE Relief FSV SFS-SVM DLSVM SFS-DLSVM SDAE

Accuracy of normal condition(%) 98.73 87.34 36.71 96.20 100 100 100 100
Accuracy of outer race fault(%) 99.55 98.19 99.10 100 100 99.92 100 99.56

Whole test accuracy(%) 99.33 95.33 82.67 99.0 100 99.96 100 99.78
G-mean value 0.9914 0.9261 0.6031 0.9808 1 0.9996 1 0.9978

Table 7. Diagnosis accuracy for ball fault and normal condition on CWRU dataset.

SVM SVM-RFE Relief FSV SFS-SVM DLSVM SFS-DLSVM SDAE

Accuracy of normal condition (%) 100 95.92 42.60 100 100 100 100 100
Accuracy of ball fault (%) 100 98.58 93.26 100 100 100 100 100
Whole test accuracy (%) 100 97.87 80.07 100 100 100 100 100

G-mean value 1 0.9722 0.6054 1 1 1 1 1

From Tables 5–7, it is clear that SFS-GLSVM outperforms the other seven methods for all
three fault types, while the propose method SFS-SVM performs the second-best. We observe that
the accuracy using the whole feature pool may have good diagnosis accuracy, but with proper
feature selection method (just like Relief in Table 5, FSV in Table 6), the diagnosis accuracy will be
further improved. This is because some redundant information exists in the feature pool. However,
by introducing grouping information among features, SFS-SVM and SFS-DLSVM both get the
most representative features and then obtain the best performance in all methods, which exactly
demonstrates the effectiveness of the structural feature selection strategy, no matter on traditional
shallow model or deep model. We also observe that SDAE cannot get the best results, which means on
small-scale data, deep learning methods would not guarantee the generalization performance.

We also notice that the ball fault is mostly easy to be classified. As in Table 7, no matter SVM,
FSV, SFS-SVM and three deep models, the accuracy of these methods are all 100%. However, in
this scenario, Relief still has low accuracy for normal condition but high value for ball fault as well,
which indicates FSV suffers from data imbalance problem. This comparison means improper feature
selection may instead reduce the diagnosis performance. Getting help from the structural feature
selection strategy, SFS-SVM and SFS-DLSVM always get the highest accuracy and G-mean value for
three fault types.

Moreover, we introduce receiver operating characteristic (ROC) curve to evaluate the diagnostic
performance of these methods. ROC curve is a commonly used error index that comprehensively
reflects sensitivity and specificity. Setting sensitivity and specificity as vertical and horizontal
coordinates, the total area under ROC curve (AUC), determines the performance of classification.
For this experiment, the larger the AUC is, the better the method performs. Considering the illustration
effect, we take the outer race fault diagnosis as an example, and give the ROC curve of five methods in
Figure 10. As the effect of three deep learning methods are too dense to be distinguished, here we only
choose five methods for analysis. Other fault types have a similar comparative effect. It is clear that
the proposed method SFS-SVM gets a larger AUC area (0.9996) than SVM (0.9926), FSV (0.9889), Relief
(0.6783) and SVM-RFE (0.9457) for outer race fault.
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Figure 10. ROC curve of five methods for outer race fault diagnosis.

4.2.3. Results on IMS Dataset

Because IMS dataset comes from two test-to-failure experiments, we choose the vibration signals
in the first hour of bearing 3 and bearing 4 as the data of normal condition. Correspondingly, we
choose the signals in the last hour of bearings 3 & 4 as the data of outer race fault and ball fault,
respectively. As a result, this experiment constructs 300 samples for outer race fault and 300 samples
for ball fault, with 300 samples for normal condition, respectively. Each sample has 1024 signal points.
We also use the feature methods in Table 4 to extract fault features, and finally obtain 53-dimension
features, including 10 bispectrum features, 4 GARCH model features, 10 EMD features, 13 time domain
statistical features and 16 WPT features. The network architecture and parameters of three deep
learning methods are same to the ones on CWRU dataset.

First, we check the best solutions to the proposed method for two fault types, as shown in
Figure 11. Here the group number is set 7. Similar to Figure 9, it is also clear that the distribution of
these solutions approach the Pareto-optimal front, which indicates the optimization strategy used in
the proposed method suits to the IMS fault data.
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Figure 11. Distribution of best solutions to the proposed method on IMS dataset for (a) outer race fault
and (b) ball fault.
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Randomly select one solution in Figure 11, and then get an optimal grouping structure. Same
with Table 5, we run the proposed methods for comparison. The comparative results are listed in
Tables 8 and 9.

Table 8. Diagnosis accuracy for outer race fault and normal condition on IMS dataset.

SVM SVM-RFE Relief FSV SFS-SVM DLSVM SFS-DLSVM SDAE

Accuracy of normal condition (%) 95.53 96.22 96.88 96.92 97.42 96.59 98.95 98.11
Accuracy of outer race fault (%) 89.66 98.07 91.55 94.95 98.60 97.85 99.33 98.87

Whole test accuracy (%) 92.57 97.13 94.27 95.90 98.0 97.72 99.20 98.48
G-mean value 0.9252 0.9713 0.9411 0.9591 0.98 0.9722 0.9914 0.9849

Table 9. Diagnosis accuracy for ball fault and normal condition on IMS dataset.

SVM SVM-RFE Relief FSV SFS-SVM DLSVM SFS-DLSVM SDAE

Accuracy of normal condition (%) 95.96 96.67 96.78 98.03 97.46 97.56 98.87 98.13
Accuracy of ball fault (%) 87.57 97.36 88.97 96.17 98.28 98.16 99.13 97.45
Whole test accuracy (%) 91.83 96.97 92.93 97.13 97.83 97.86 98.99 97.76

G-mean value 0.9166 0.9701 0.9269 0.9708 0.9786 0.9786 0.9901 0.9779

In this experiment, we choose the signals in the last hour of total 827 h as fault data. At that
time, the fault is fully formed, therefore, the fault state is easily to be classified with high diagnosis
accuracy of all five methods. However, in these methods, SFS-DLSVM still gets the best results and
SFS-SVM get almost equal results with the other two deep learning methods. Just a little different
from Tables 5–7, here SVM with no feature selection all gets the lowest accuracy in all methods, which
indicates the effect of feature selection. For outer race fault diagnosis, SVM-RFE gets a higher accuracy
than FSV, but for ball fault, this comparison is just the opposite, which means different fault type needs
proper selection method. By getting help from structural information among heterogeneous features,
SFS-SVM always gets the best performance in all shallow models in terms of whole accuracy and
G-mean value. Same comparative effect also exists in deep learning methods where SFS-DLSVM gets
the best results. Thus, we can conclude that the structural feature selection strategy works well no
matter on heterogeneous features or deep features.

Actually, we test different parameters and sample split for the proposed method, and it always
gets the best or the second-best diagnosis performance, which gives a firm demonstration about the
effect of the structural information for fault diagnosis. Please note that in this experiment, two classes
have almost same samples for training, so G-mean value is just close to the whole test accuracy.

Figure 12 provides the ROC curve of five shallow methods for outer race fault and ball fault diagnosis.
It is clear that the proposed method SFS-SVM has the largest AUC area in all methods, even though the
other four methods already have large area. This comparison also keeps line with Figure 10.
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Figure 12. ROC curve of five methods on IMS dataset for (a) outer race fault and (b) ball fault diagnosis.
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5. Conclusions

In this paper, a new bearing fault diagnosis method is proposed based on structural feature
selection. In contrast to most of common fault diagnosis methods, the proposed method transfers
the problem of fault diagnosis into a new multi-objective 0–1 programming problem, and then uses
the MOPSO algorithm to exploit the structural relationship among heterogeneous fault features.
This operation is helpful to choose the most representative fault features for constructing diagnosis
model. Then the proposed method is universally applicable to various rotating machineries. From the
experimental results, we have the following conclusions:

(1) Heterogeneous features of bearing may have intrinsic structures such as group or others, which
will provide useful information for fault diagnosis;

(2) The proposed method does not guarantee the highest diagnosis accuracy each time, but it can
almost get the second-best performance at least, which shows the effect of structural information.

(3) Feature selection does not always work well for fault diagnosis. Too few selected features may
perform worse than no feature selection. To guarantee the diagnosis performance, structural
information should be used to select more representative features in the case of limited
feature number.

(4) The proposed structural feature selection strategy works well on not only traditional
heterogeneous features but also deep features. Even extracted by deep neural networks, the deep
features still have some inner structure which is also helpful for fault diagnosis.

In our next work, we plan to study theoretically the generalization analysis of the proposed
method. Ideally speaking, if we can estimate an upper error bound, the inner structure of
heterogeneous features can be evaluated more accurately. Moreover, incipient fault diagnosis generally
has inconspicuous fault features. How to exploit the inner structure of such kind of features is still
challenging.
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