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Abstract: The analysis of frame sequences in talk show videos, which is necessary for media mining
and television production, requires significant manual efforts and is a very time-consuming process.
Given the vast amount of unlabeled face frames from talk show videos, we address and propose a
solution to the problem of recognizing and clustering faces. In this paper, we propose a TV media
mining system that is based on a deep convolutional neural network approach, which has been
trained with a triplet loss minimization method. The main function of the proposed system is
the indexing and clustering of video data for achieving an effective media production analysis of
individuals in talk show videos and rapidly identifying a specific individual in video data in real-time
processing. Our system uses several face datasets from Labeled Faces in the Wild (LFW), which is
a collection of unlabeled web face images, as well as YouTube Faces and talk show faces datasets.
In the recognition (person spotting) task, our system achieves an F-measure of 0.996 for the collection
of unlabeled web face images dataset and an F-measure of 0.972 for the talk show faces dataset. In the
clustering task, our system achieves an F-measure of 0.764 and 0.935 for the YouTube Faces database
and the LFW dataset, respectively, while achieving an F-measure of 0.832 for the talk show faces
dataset, an improvement of 5.4%, 6.5%, and 8.2% over the previous methods.

Keywords: face clustering; face recognition; face detection; CNN; KL divergence; triplet loss

1. Introduction

Many methods have been studied to achieve the target of producing, processing, and recording
of talk show videos in an effective way. However, a meaningful analysis of media content requires
substantial manual efforts. This problem is encountered in TV production analysis and media mining
applications, where the number of faces of individuals can be on the order of millions. Many talk
show hours are broadcasted daily. The majority of these talk shows contain millions of frames. We
consider clustering these large amounts of face images into a few hundred discrete identities to
properly organize these vast amounts of data. In our research, a frame-based analysis is needed to
make talk show videos searchable for identities (public figures) and useful for media mining and TV
production analysis.

Video face clustering is a challenging problem. In talk show videos, the faces of individuals have
high variations in appearance due to the diversity in head pose, facial expression, scale, illumination
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and occlusions caused by other matters, such as glasses, hair, and hands. Other uncontrolled
circumstances add challenges such as complex background, low resolution, image blurring, and
motion speed. In our case of face clustering, we encounter other challenges, including the scalability
of an algorithm; thus, it can be linearly extended to a larger number of frames. Some people may
appear very often, whereas other people may appear less frequently; thus, the number of frames per
individual is unbalanced.

In this study, we address the problem of partitioning numerous unlabeled face frames into the
identities present in talk show videos. This paper presents an efficient method of indexing and
clustering video data for achieving a media production analysis of identities in talk show videos. We
present experimental results of the face clustering method and analyze them in terms of clustering
accuracy and run time.

In addition to the indexing and clustering of all faces that appear in a video, the proposed system
includes a face recognition function for public figures with training data.

In this paper, we present a TV media mining system that is based on deep convolutional neural
networks (DCNNs) algorithms for face detection, face recognition, and face clustering. In recent
years, DCNN approaches have made significant contributions in advancements in computer vision
domains. Using these new technologies in media production analysis and mining in videos enables
media production companies and TV channels to index their vast multimedia data with high accuracy
and speed.

The remainder of the paper is organized as follows: Section 2 presents related studies. Section 3
describes the proposed system. Section 4 presents and discusses the experimental results and datasets
in our research. Section 5 concludes the paper and outlines future research.

2. Related Research

The aim of object recognition is to recognize important objects in video frames. The aim of
person spotting (face recognition) is to identify the appearance of a specific identity in TV talk shows.
The appearance data includes the duration of the appearance and the title used to identify this
appearance. The aim of the face clustering task is to partition individuals faces in TV talk show videos
into a group of similar faces (cluster) that have the same appearance.

Numerous techniques have been suggested in the literature to address face recognition and face
clustering problems [1–5]. Most of these techniques rely on the creativity of researchers to extract
better features. These techniques remain inferior to their human vision counterpart. Thus, a paradigm
shift is needed to develop face recognition techniques that can approach the performance of the human
visual system. Inspired by the powerful structure of the human brain and the recent development
in the neuroscience field, researchers paid more attention to the visual cortex. The researchers were
able to partially mimic the visual cortex and achieved substantially higher accuracy than classical
techniques [6–8]. With the recent developments in deep neural networks, the DCNN was proposed as
an object or face recognition technique that can close the gap between computational models and the
human vision system. Various DCNN approaches have been proposed in the literature.

In the following subsections, we provide a summary of face recognition and face clustering
surveys. We first briefly introduce the classical methods followed by remarkable convolutional neural
network (CNN) models.

2.1. Classical Techniques

In recent decades, classical techniques of object recognition, face recognition and clustering have
played a very important role in advancing machine learning fields. In classical techniques, hand-crafted
feature extractors are used to gather related information from an input image and eliminate the related
variability. This process reduces the required memory and computation power, prevents overfitting,
and generates a feature vector. Subsequently, a trained classifier categorizes the feature vectors into
the corresponding classes. Classifiers include standard fully-connected feed-forward neural networks,
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multi-layer neural networks and other classifiers such as support vector machine (SVMs). Therefore,
the power of a classic technique depends on its feature extractor.

Table 1 shows a comparison of three examples of classical face recognition systems.

Table 1. Examples of classical face recognition systems.

Publication Dataset Features Method

Mozhde Elahi et al. [1] ORL face dataset Wavelet transform, PCA, DCT SVM
Sanjeev Kumar et al. [2] Yale face PCA, LDA, BPN SVM

Bo Dai et al. [3] AT&T face, AR face SIFT, PCA, 2DPCA SVM

Elahi et al. [1] compared the performance of principal component analysis (PCA) and discrete
cosine transform (DCT) methods for feature reduction in a face recognition system. The researchers
also applied wavelet transform for feature extraction and an SVM classifier for training and recognition.

Kumar et al. [2] investigated various methods for face recognition, such as PCA, linear discriminant
analysis (LDA), neural networks, backpropagation networks (BPNs), and radial basis function networks
(RBFNs) and discuss their advantages and disadvantages.

Dai et al. [3] reviewed well-known face recognition methods such as the scale-invariant feature
transform (SIFT), PCA, and 2DPCA. Their results demonstrated that SIFT has significant advantages
over both PCA and 2DPCA.

Belalia et al. [9] proposed a region-based image retrieval (RBIR) approach using Shape adaptive
discrete cosine transform (SA-DCT). The features can be extracted directly from compressed images
by using a discrete cosine transform (DCT). First, low-level features for each region are constructed
from the coefficients of quantized block transforms, then histograms of local image features are used
as descriptors of statistical information, and finally the combination of histograms of image regions
(objects) is defined to integrate high-level semantic information.

Belhallouche et al. [10] presented an RBIR using shape adaptive discrete wavelet transform
(SA-DWT). The features can be extracted using multi-features color, texture, and edge descriptors.
SA-DWT represented the best way to exploit the coefficients characteristics and properties such as
the correlation.

Table 2 shows a comparison of four examples of face clustering systems.

Table 2. Examples of face clustering systems.

Publication Dataset Features Method

Zhao et al. [4] Personal photo album 2DHMM, Contextual Hierarchical clustering
Cui et al. [5] Family photo album LBP, clothing color, Texture Spectral clustering
Ho et al. [11] CMU PIE, Yale Face Gradient, pixel intensity Spectral clustering

Tian et al. [12] Four disjoint datasets Image + contextual Partial clustering

Zhao et al. [4] clustered a personal photo album dataset by combining contextual information
(time of clustering and the probability that faces simultaneously appear in images) with identities
obtained by a two-dimensional hidden Markov model (2DHMM) and hierarchical clustering results.

Cui et al. [5] developed a tool that employs spectral clustering as an initial method for organizing
photographs. Local binary pattern (LBP) features and color and texture features are extracted from
detected faces and detected bodies, respectively.

Ho et al. [11] developed a spectral clustering algorithm that is based on variations in the affinity
matrix by computing the probability that two face images depict the same object.

Tian et al. [12] developed a probabilistic clustering model that enables an algorithm to reject
clusters that do not have distributed samples.
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2.2. Deep Neural Network Techniques

From the feature extractor perspective, generating handcrafted features is a difficult task that
should be performed by an expert for better performance. In addition, the feature vector becomes too
long to obtain advanced techniques. CNNs eliminate the need for feature vectors and automatically
extract features [13,14].

From the classifier perspective, techniques such as fully connected neural networks comprise a
large number of parameters and, consequently, a large memory for storing weights, compared with
convolutional neural networks of the same size. In addition, they require large training instances to
make them invariant to shift, scale, and distortion, while CNNs are automatically invariant to these
changes via parameter sharing across space. They disregard the topology of the input images using
fixed representations that are not affected by local features, while CNNs extract local features and then
combine them using the concept of local receptive fields [15].

CNN is a popular deep learning technique that is employed for object recognition. CNN is a more
popular solution than other deep learning techniques because CNN is the most relevant technique
for the human visual system among other deep learning techniques. The CNN hierarchical structure
is inspired by the feed-forward hierarchal system of the human visual system. CNN is biologically
inspired by the cat’s visual cortex system based on Hubel and Wiesel research and the Fukushima
model, which is named Neocognitron [6–8].

LeCun et al. provided LeNet-5 [16], which is the first CNN for handwriting recognition and
applied backpropagation for learning. In object recognition and detection, Krizhevsky et al. provided
the first CNN, which is named AlexNet [17] and achieved a better performance than state-of-the-art
methods. Additional research provided various CNNs with different techniques. Zeiler and Fergus
developed ZFNet [18], which was trained using only 1.3 million images compared with AlexNet,
which was trained using the entire ImageNet dataset with approximately 15 million images. ZFNet
outperforms AlexNet with an 11.74% in the top-5 test error. GoogLeNet [19], which was developed by
Szegedy et al., suggested a new CNN architecture named Inception, which won in the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) for both the object recognition field and detection
field. Their main contribution is the usage of very deep convolutional networks and the advanced
utilization of resources.

2.3. Recent Related Research

Recently, a vast collection of face recognition and clustering studies has been proposed. In this
subsection, we only discuss the most recent research that is related to DCNN.

The research of [20] proposes a multi-stage complex system that merges the output of a DCNN
with PCA for dimensional reduction and an SVM for classification.

Zhenyao et al. propose a DCNN that warps faces into a canonical frontal view and then train it to
classify each known identity. The authors also combine PCA of the network output with a collection of
SVMs for face verification [21].

Sun et al. [20,22] present 25 networks, each operating on a different face patch. The authors
combine 50 responses (regular and flipped) for their performance in the Labeled Faces in the Wild
(LFW) dataset. The researchers also employ both PCA and a joint Bayesian model [23] in the embedding
space that effectively corresponds to a linear transform.

Taigman et al. employ a multi-stage approach that aligns faces to a 3D shape model. A multi-class
network is trained on approximately four thousand identities to perform the face recognition task.
The authors also used a Siamese network, where they optimize the L1-distance between two face
features [24].
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Schroff et al. [25] propose a system named FaceNet, which is based on learning a Euclidean
embedding per image using a DCNN. The CNN is trained in a way that makes the embedding space
(squared L2 distances) corresponds to the face similarity. Once this embedding has been produced, face
verification, face recognition, and clustering can be achieved. Schroff et al. explore two different DCNN
architectures that have been recently utilized to achieve success in the computer vision community [24].
The first architecture is based on the Zeiler and Fergus [18] model and the second architecture is based
on the Inception model of Szegedy et al. [19].

The authors in [26] show how Guillaumin et al. employ two methods for learning distance
measures: a logistic discriminant method and the nearest neighbor method. The logistic discriminant
method learns the metric from a set of labeled face pairs, while the nearest neighbor method computes
the probability that a pair of faces are related to the same class.

Shi et al. [27] introduced a representation based on ResNet, which performs very well in
classification problems, and design a Conditional Pairwise Clustering (ConPaC) algorithm, which
estimates the adjacency matrix based on the similarities between faces. This algorithm expresses the
clustering problem as a Conditional Random Field model and uses Loopy Belief Propagation to find
an approximate solution for maximizing the posterior probability of the adjacency matrix.

Zhu et al. [28] introduced a nonlinear subspace clustering (NSC) algorithm for image clustering.
This NSC algorithm exhibits the multi-cluster nonlinear structure of samples via a nonlinear
neural network and achieves improved scalability and clustering accuracy more than kernel-based
clustering methods.

Baoyuan et al. employ face tracking and a frame index to partition all faces from videos into
multiple clusters. Once pairwise correlations between faces can be obtained from the temporal and
spatial data, a clustering model based on hidden Markov random fields can be achieved [29,30].

Gokberk et al. [31] explore the identification problem for unconstrained TV data for face tracks.
They use pairs of faces within a track as positive examples and pairs of face tracks of different people
in the same frame as negative examples.

With advances in deep learning, numerous efforts have been made for face clustering, especially
in videos. Zhang et al. [32] address the clustering problem by training a nonlinear metric function
with a DCNN from the input image to a low-dimensional feature embedding. This network is trained
to optimize the embedding space such that the Euclidean distances correspond to a measure of face
similarity using an improved triplet loss function, which maximizes the distance between the negative
pairs and minimizes the distance of the positive pairs.

Face clustering is a challenging problem that has been addressed only by a few studies given the
vast amount of unlabeled face frames and the number of individuals in talk show videos. A globally
accepted methodology or metric for face clustering does not exist. In talk show videos, the unknown
number of public figures is large, which is difficult in terms of scalability (run-time). Additionally, the
number of images per individual is unbalanced, which is challenging for a lot of previous clustering
algorithms. We developed a DCNN-based system to address the problem of face clustering in talk
show videos to achieve improved scalability and clustering accuracy.

3. Proposed System

The proposed system uses a DCNN model that we design and train from scratch. Figure 1 shows
the architecture of our model, which follows the style of convolutions layers of Zeiler and Fergus [18]
model. We additionally add 1 × 1 × d convolutional layers and max-pooling layers between the
standard convolutional layers and, consequently, produce a model with 19 layers. In the training stage,
our model extracts the face feature vector (embedding) and optimizes the training parameters based
on a triplet loss objective function [33,34].
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Figure 1. Architecture of our model.

The triplet method considers three inputs: fa , fp, and fn, which are the anchor, positive, and
negative, respectively. The anchor image and positive image belong to the same person, while the
negative image is obtained from a different person. The anchor and positive pair use different images
within the same class, from which the triplet method trains the network to extract similar feature
information. The anchor and negative pair have different classes, from which the method trains the
network to extract different feature information.

The triplet loss function forces the network to produce a smaller distance between the anchor and
the positive pair than the distance between the anchor and the negative pair with the margin α. Thus,
we must define a proper distance measurement function to calculate the similarity between the anchor
and the positive pair and the dissimilarity between the anchor and the negative pair.

Unlike [25,33,34], we employ Kullback–Leibler divergence (KLD) [35] in our DCNN model, which
is also referred to as relative entropy, as a distance measurement between two probability distributions.
The KLD can be expressed as follows:

DKL(P ‖Q) = ∑
x∈X

p(x) log
(

P(x)
Q(x)

)
. (1)

KLD is usually employed as the loss function in neural network optimization. Thus, the triplet loss
function that is being minimized is expressed as follows:

Loss =
N

∑
i

max(α + DKL( fai‖ fpi )− DKL( fai‖ fni ), 0). (2)

Although the use of other distance measurements is feasible, most related studies applied the
squared Euclidean distance as a metric. While we chose KLD in this paper, our model accepts other
kinds of distance metrics, such as the Euclidean distance, squared Euclidean distance, total variance,
and Wasserstein distance. While the comparison of the metric functions is not the focus of our primary
research, anyone can explore the advantages of these choices.

In all experiments, we train the model using the stochastic gradient descent (SGD) and start the
training with a learning rate of 0.05. Our proposed system consists of two main tasks: (1) the person
spotting task and (2) the face Indexing and clustering task. Figure 2 illustrates the flow diagram of the
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first task of the proposed system, while the second task is presented in Figure 3. The details of each
task are discussed in the following sections.

Figure 2. Flow diagram of our person spotting system.

Figure 3. Flow diagram of our face clustering system.
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3.1. Person Spotting

The aim of the person spotting task is to identify the appearance information of a specific
individual in TV talk shows. The appearance information includes the duration of the appearance.
Our person spotting (or face recognition) system consists of three main tasks: identify all faces in
the image (face detection), analyze facial features (face encoding), and perform face recognition that
is compared with known faces and make a prediction. The details of each task are discussed in the
following sections.

3.1.1. Face Detection and Alignment

The first step in our system is face detection, in which the faces in a frame are located before they
can be recognized. Face detection and alignment in an uncontrolled circumstance are challenging
due to variations in illuminations, poses, and occlusions. A well-known face detection method [36]
invented by Paul Viola and Michael Jones achieves good performance with real-time efficiency. A more
reliable solution, which was invented by Dalal and Triggs, is the histogram of oriented gradients
(HOG) [37]. However, these detectors may deteriorate the performance in real applications due to
larger variations of human faces. Inspired by the excellent performance of CNNs in computer vision
tasks, various CNN models have been proposed in the last decade [38], which can be used for face
detection approaches.

Our face detection task utilizes a framework developed by Zhang et al. [39], which introduces
a deep cascaded multitask approach that employs the inherent correlation to increase performance.
The CNN framework consists of three stages: the first stage rapidly produces candidate windows
via a shallow CNN. The second stage refines the windows to reject all non-faces windows via a more
complex CNN. The final stage uses a more powerful CNN to refine the results and output facial
landmark positions.

3.1.2. Face Encoding

The approach that we propose to address the face recognition problem is directly based on our
proposed model. Our approach trains the proposed DCNN architecture to generate 128 measurements
(feature vectors) for each face. Our model is trained by employing the triplet loss function that compares
three face images at a time: two face images of the same person and one image of a completely different
person. The algorithm analyzes the measurements that are generated from these three images and
tweaks the CNN to ensure that the measurements for similar faces are closer and the measurements
for different faces are farther away. After repeating this step millions of times on a vast amount of
images of different people, the CNN learns to reliably generate 128 measurements for each person.
This system employs the KLD distance metric, which measures the face similarity as distance.

3.1.3. Face Recognition (Identifying a Person’s Name from Encoding)

In this last step, we identify the individual in the dataset of public figures who have the shortest
similarity distance to the test image. We accomplish this task by training a simple linear SVM based
classifier. The computation time for this classifier is in the range of milliseconds.

3.1.4. Face of Unknown Person

We also modified the developed recognition system to report unknown faces for persons who
are not part of our dataset. The recognition system makes a decision for unknown faces based on
a predefined threshold. However, we perform another experiment by adding a new class for the
unknown faces and train the network with a mix of faces that differ from our known faces to increase
the system accuracy.

The flow diagram of the person spotting task is shown in Figure 2. It starts by extracting a frame
from a talk show video, resizes it to half the original size, detects the face rectangle and crops, and
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resizes the rectangle to 160×160. We apply a pre-whitening technique to process the sequence of
images to help effective training regardless of the illumination conditions of the images. Pre-whitening
is also referred to as zero component analysis (ZCA). The pre-whitening technique subtracts the
average from the pixels to normalize the range of the pixel values of input images, which tends to
simplify the training. The model extracts the face embedding and passes it to a SVM based classifier to
select the best class indices and display the results.

3.2. Face Clustering

In the previous subsection, we focused on face recognition as a methodology to spot known faces
in the media. Although our classifier accurately recognized known faces, we cannot extend these
classifiers to thousands or millions of faces. To build such a classifier, several hundreds of images of
each unknown face should be available to train the classifier, which would not be possible in real time
TV media. Some faces that appear in the media are not immediately recognized but are subsequently
recognized. For these reasons, we addressed the face indexing problem differently from the person
spotting problem.

Instead of building a classifier for known faces, we build a face verifier to differentiate between
two faces and decide if they are the same or different. The face verifier is used to cluster all faces
in a video into similar faces regardless of the face. This clustering process can be referred to as face
indexing since it converts the long video into a set of folders that contain similar faces with their
timestamp. When we are interested in a specific person, the face verifier can be used to determine
when this person appears in the video by comparing its face image against different folders.

Our face verification system consists of three main tasks: face detection with alignment, face
feature extraction, and face clustering (identify common people among these faces). The first two tasks
(face detection and face feature extraction) are equivalent to the tasks for the person spotting system.
Details of the final task (face clustering) are discussed in this section.

The final step in our face verification system is face clustering, which partitions the appearance of
persons in TV talk show videos (identify common people among these faces). Face clustering groups a
large number of faces into clusters in a way that minimizes the distance among faces within the same
cluster while maximizing the distance among faces in different clusters.

Recent studies show that deep learning techniques have achieved notable performance
improvement using a clustering task. Thus, our face clustering task utilizes a deep learning technique
called one-shot learning with Siamese networks [40]. As humans, we can recognize the face of
any person after meeting the person once, which is also the target goal of computer vision systems.
A Siamese network consists of two identical neural networks, each of which takes one of two input
images. The last layers of the two networks are then fed to a loss function, which calculates the
similarity between the two input images (refer to Figure 4).

Siamese networks plays a central role for the tasks of identifying the similarity between two
comparable images. In our study, we employ a deep convolutional neural network architecture to
construct a Siamese network. We adopt the LFW dataset to train the Siamese network model, so it
can differentiate between faces. We then test the network model with our talk show videos dataset.
Since the model was not trained with any frame of our talk show video dataset, we refer to it as
zero-shot learning. We employ a SoftMax loss function to calculate the similarity between two input
feature vectors.
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Figure 4. A Siamese network structure used by the proposed DCNN model.

The SoftMax loss function is expressed as follows:

S(yi) =
exp(yi)

∑K
j=1 exp(yj)

. (3)

Here, i = 1, . . . , K, which enables us to normalize the K-dimensional vector y of arbitrary real
values into the K-dimensional probability vector S. As demonstrated in the next section, our developed
face clustering task achieves superior accuracy over state-of-the-art techniques.

Figure 3 illustrates a flow diagram of the proposed face clustering system, where the primary
functions of clustering start after extracting a face feature vector from our DCNN model. If the input
frame is the first frame, its face feature vector is allocated to the first cluster. Otherwise, its feature
vector (embedding) is compared with the existing clusters using the Siamese network. The face feature
vector is allocated to the correlated cluster if they exhibit high similarity; otherwise, the face feature
vector is allocated to a new cluster. The face clustering task involves thresholding the distance between
the two feature vectors.

4. Experimental Results

In this section, we present the experimental results of the proposed person spotting and face
clustering system. We have implemented, trained, and fine-tuned the proposed neural network models
and algorithms using the TensorFlow framework. The person spotting and face clustering results have
been verified with several datasets that were prepared in different environments. The datasets in our
study are presented in this section.

4.1. Datasets

Datasets have a major role in advancing face recognition, clustering research, and deep learning
techniques. Until recently, computer vision algorithms could not approach the performance of the
human visual system because the available labeled image datasets were relatively not enough and so
they did not represent the diversity of the real world. Face recognition and clustering approaches that
are based on DCNN require a large volume of data and large face dataset for training. The greater the
size of the dataset gets, the more efficient the training process can get and consequently the higher the
recognition performance that can be achieved. Recently, these techniques employing very large-scale
datasets achieved significant improvement in many recognition tasks.

In our study, therefore, we utilize an extensive collection of face datasets—Labeled Faces in
the Wild (LFW) [41], which is a collection of unlabeled web face images for training, the YouTube
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Faces Database [42], and our talk show faces dataset—to evaluate the developed face recognition and
clustering framework.

Labeled Faces in the Wild (LFW): is a dataset of face images created to solve the problem of
unconstrained face recognition. LFW contains 13,233 images of labeled faces of 5749 celebrities and
public figures collected from the web.

YouTube Faces Database (YTF): is a dataset of face videos downloaded from YouTube. The YTF
database contains 3425 videos of 1595 different persons and 621,126 frames that include the persons
of interest.

Our dataset of unlabeled web face images: This dataset contains 2000 face images of 100 public
figures, including 200 face images for each public figure. We constructed this dataset by collecting
images of famous public figures from various TV channels.

Our Talk Show Video Dataset: We constructed a face dataset of talk show videos, which is a
comprehensive dataset of labeled videos of faces in challenging unconstrained environments. This
dataset contains recorded videos of 2160 h captured from TV channels including Sky-News, Al-Arabia,
BBC Arabic, MBC-Masr, and Al-Nahar.

4.2. Evaluation of the Person Spotting System

In the person spotting task, we need to recognize the appearance of a specific person in TV talk
shows and the duration of the appearance. Our person spotting (or face recognition) system consists of
three steps: identify all faces in the image (face detection), analyze and encode facial features, perform
face recognition, which is compared against known faces, and make a prediction.

We trained our proposed DCNN model using the LFW dataset for the face feature extraction
process. We also trained our SVM classifier system for the face recognition process using 180 images
from our dataset of unlabeled web face images and then tested it using 20 images for each person.
For this experiment, we used a system with a 64-bit core i7 processor, 16 GB RAM and Nvidia GeForce
920M GPU (Shantou, China) which operates Linux Ubuntu 16.04. The result of our classifier is the
name of the predicted person.

In the face detection and alignment step, we locate the faces in each frame and then attempt
to recognize them. We observed that the developed face detection and alignment task produces a
superior accuracy to the state-of-the-art methods while maintaining real-time performance. Figure 5
shows a sample of the original images and their detected faces.

Figure 5. Face detection process.

After extracting the face area in the detection process, we generate 128 features for this face.
We pass this feature vector to our classifier to recognize the face. After confirming the accuracy of the
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detection process, we computed the average accuracy of our face recognition process. The average
person spotting accuracy was 99.6%, while the F1 measure was 0.996. Samples of the recognized faces
are shown in Figure 6.

Figure 6. Face recognition process.

We also modified the developed system to report unknown faces for persons who are not part of
our dataset of unlabeled web face images. We used a predefined threshold to determine unknown faces.
After adding the unknown faces, the average accuracy decreased to 98.2% with an F1 measure of 0.98.
To increase the accuracy, we conducted another experiment by adding a new class for the unknown
faces and trained the network with the addition of faces that are differed from the 100 persons in our
original database. The average recognition accuracy increased to 99.2%, with the F1 measure increased
to 0.99.

Another experiment was performed to test our person spotting system using our talk show video
dataset. The average recognition accuracy was 99.1%, while the F1 measure was 0.972.

4.3. Evaluation of Face Clustering System

We developed the proposed Face Clustering system based on a Siamese network and trained it
using our dataset of unlabeled web face images. We then evaluated the system using the LFW dataset,
the YouTube Faces database, and our talk show face dataset.

The developed Siamese network algorithm is capable of clustering unknown faces for persons
who are not part of the training dataset. The proposed algorithm demonstrated an F-measure of 0.764
and 0.935 with the YouTube Faces database and the LFW dataset, respectively. The algorithm also
exhibited an F-measure of 0.832 with our talk show face dataset.

The results of our proposed face clustering system are compared with the results obtained by
classical methods (k-means clustering, spectral clustering and hierarchical clustering) and the results
obtained with a recent deep learning clustering system developed by Otto et al. [43].

We applied K-means clustering with the Euclidean distance metric, spectral clustering from a
graph theory point of view, and hierarchical clustering based on a Euclidean distance to cluster the LFW
dataset. Although K-means, spectral, and hierarchical clustering are the most well-known clustering
algorithms, they are implemented using a prior fixed number of clusters. Thus, we evaluated all
algorithms with several effective number of clusters and recorded the best results.

Table 3 shows the clustering performance on the LFW dataset of k-means and spectral clustering
algorithms with the number of clusters close to the actual number of individuals is very poor. K-means
and spectral clustering algorithms can not handle unbalanced data. Therefore, the optimal value of
the number of clusters in terms of clustering accuracy (F-measure) is relatively low (Approximately
150 clusters).



Electronics 2019, 8, 1394 13 of 17

Table 3. Clustering accuracy on the LFW dataset based on the number of clusters.

Clustering Method No. of Clusters F-Measure Run Time

K-Means 90 0.36 16 s
K-Means 5749 0.072 More than 6 h
Spectral 100 0.25 12 min, 23 s
Spectral 150 0.2 20 min, 18 s

Proposed system 5749 0.935 7 min, 21 s

Table 4 shows the F-measure of each system. The clustering method of [43] was developed using
the same datasets—YouTube Faces database and LFW—as the datasets used for our proposed face
clustering system.

Table 4. Comparison between proposed system and previously reported method.

Clustering Method LFW YouTube Face Talk Show

K-Means 0.36 – –
Spectral 0.2 – –

Otto et al. [43] 0.87 0.71 0.750
Proposed system 0.935 0.764 0.832

When the classical methods (k-means, spectral clustering and hierarchical clustering) are tested
with a pre-determined number of clusters similar to the actual number of identities, they produce very
poor clustering performance. This is attributed to the fact that the classical methods are unable to
handle a vast amount of unbalanced data and thus tend to produce a large number of wrong clusters.

Table 4 demonstrates that our proposed face clustering system significantly outperforms all the
previous methods compared in this experiment in a number of clusters close to the actual number
of individuals.

In terms of runtime measured using our hardware system described above, Table 3 shows that
the k-means and spectral clustering algorithms take a large compute time even for 13k images in the
LFW dataset, while our proposed clustering model is much faster. Figure 7 shows samples of four
different clusters.

Figure 7. Samples of four different clusters.
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If we neglect to confirm the accuracy of the face detection process, our clustering system can
cluster these fault detection images into separate clusters (each image in a specific cluster), as shown in
Figure 8.

Figure 8. Face clustering process with bad detection.

5. Conclusions and Future Research

In this paper, we proposed a DCNN-based system to address the problem of person spotting
and face clustering in talk show videos. The main contribution of the proposed system is training the
DCNN model, indexing, and clustering of video data including unknown faces. The target application
is an effective media production analysis of faces in talk show videos and rapidly searches and
identifies a specific person in the total video data in real-time processing.

We show that our triplet loss minimization method and Siamese network significantly enhance
the average spotting and clustering performance. The proposed system shows the effectiveness of
different datasets in different conditions.

The experimental results demonstrate that our proposed system remarkably outperforms the
previous state-of-the art techniques across several challenging datasets regarding performance
and real-time processing. This improvement is in part attributed to our triplet loss minimization
method, which has been proved to be highly effective in extracting facial appearance features.
In addition, the Siamese network, a key functional element of the proposed DCNN model, exhibited
substantial contribution in representing the similarity of face images under large variations and
different conditions.

For example, the implemented clustering system exhibited performance improvement: our
F-measure values for the LFW, YouTube Faces, and our talk show faces datasets are 0.935, 0.764, and
0.832, respectively, whereas the recent deep learning clustering system [43] reported 0.87, 0.71, and
0.75, respectively—5.4%, 6.5%, and 8.2% improvement. Therefore, the proposed person spotting
and clustering system can be an effective approach to analyzing massive TV production videos and
identifying either known or unknown faces.
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