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Abstract: Arc-array synthetic aperture radar (AA-SAR) has become a novel imaging scheme for full
azimuth observation. However, the exiting arc-array monostatic SAR system is placed on a single
platform and is easy to detect. Arc-array bistatic SAR (AA-BiSAR) with a stationary transmitter is
proposed in this paper, which can obtain high data acquisition efficiency and reduce vulnerability of
arc-array monostatic SAR. Furthermore, since the azimuth resolution with full azimuth observation is
not related to the location of the stationary transmitter, the transmitter can be placed far away from the
receiver. Compared with imaging algorithms for other modes, the key points of AA-BiSAR imaging
algorithms are a square root in the bistatic slant range equation and an arc synthetic array in azimuth.
According to the imaging geometry of AA-BiSAR, a novel imaging approach for AA-BiSAR based on
keystone transform (KT) is proposed, and the KT implements range-cell migration correction (RCMC)
in conditions of trigonometric function under square root in the range history and arc synthetic
array in azimuth via reformatting the AA-BiSAR raw data. Besides presenting the proposed imaging
approach, a complete resolution analysis of AA-BiSAR is given. Results of numerical simulation
experiments on point targets validate the proposed imaging approach.

Keywords: bistatic radar; synthetic aperture radar; arc antenna array; wide angle view imaging
keystone transform; range cell migration correction (RCMC)

1. Introduction

A synthetic aperture radar (SAR) has all-weather, all-day, high-resolution and multi-dimensional
imaging capabilities [1–7]. The traditional linear array SAR (LA-SAR) [8–11] can only observe the front
area of the antenna array unit from a single angle of view. Compared with LA-SAR, arc-array SAR
(AA-SAR) [12–21] is a novel array microwave imaging mode with full azimuth observation, which
breaks through the limitation of the single observation angle of conventional LA-SAR. Furthermore,
AA-SAR can realize quickly high-resolution imaging in area around the imaging platform. Therefore,
rapid perception and dynamic monitoring of the surrounding environment can be easily achieved
in AA-SAR. However, the receiver and the transmitter of conventional arc-array monostatic SAR are
placed on the same platform, which is easy to detect, and this will affect abilities of target detection
and recognition especially for military applications.

Bistatic SAR (BiSAR) attracted widespread interest, and it has become an important means of
target detection and surface surveillance in recent years [22–28]. BiSAR inherits the advantages
of SAR, and the transmitter and the receiver are separated, which is seen as an effective means of
countering the vulnerability of conventional monostatic SAR. On this basis, an arc-array bistatic
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SAR (AA-BiSAR) with a stationary transmitter is proposed in this paper. AA-BiSAR has advantages
of both BiSAR and AA-SAR, which could obtain highly efficient data acquisition and reduce the
vulnerability of arc-array monostatic SAR. In AA-BiSAR, high-range resolution can be achieved by the
high-power wide-bandwidth linear frequency modulation (LFM) signal transmitted by the stationary
transmitter far away from the passive receiver, while in the azimuth direction, multiple antenna array
elements are arranged along a cylinder to form an arc-synthetic aperture, the switched array antenna
channels scan quickly over circular aperture. Therefore, high resolution, high-speed and wide view
angle data acquisition is realized. Since the transmitter is mounted on a stationary platform or a
low-speed platform in the AA-BiSAR system, a moving passive receiver platform is the only factor to be
considered when solving problems for instance motion compensation and parameter estimation [29–33].
Furthermore, as the variation of the transmitting slant range does not or hardly impacts on the azimuth
resolution, AA-BiSAR can be used in the fields of emergency landing, self-landing, air-drop supplies,
terminal guidance, moving target indication etc. Moreover, due to the receiver and the transmitter
being fixed on different platforms, this imaging scheme can avoid physical attack to the imaging
platform and reduce the vulnerability for military applications.

For SAR imaging, range-cell migration (RCM) [34] is an inherent and key problem for all kinds of
SAR systems with a high-resolution, and SAR imaging ability is greatly affected by the performance of
RCM correction (RCMC). In this paper, a novel imaging approach for AA-BiSAR based on keystone
transform (KT) is proposed. KT is a kind of data scale remapping method, which is usually applied
to a target’s range migration correction [35–39]. In the LA-SAR system, it can correct the walk of the
target cross range unit by eliminating the coupling term of the elements of range direction and azimuth
direction. Nonetheless, since there are both of the angle element of the azimuth and the trigonometric
function in the slant range equation in AA-BiSAR, the transform is a non-linear transform, rather
than a simply linear reformatting. In AA-BiSAR, the KT implements RCMC under conditions of
trigonometric function under square root in the slant range history and arc synthetic array in azimuth
via reformatting the AA-BiSAR raw data.

This paper is arranged as follows. In Section 2, the basic principle and imaging geometry of
AA-BiSAR imaging is introduced, while the echo signal model based on the imaging geometry is
established. In Section 3, the proposed processing method of AA-BiSAR imaging based on KT is
presented. In Section 4, the spatial resolution of AA-BiSAR is analyzed. In Section 5, numerical
simulation experiments on point targets are carried out, and imaging results of point targets validate
the proposed imaging approach. Finally, conclusions are reported in Section 6.

2. Arc-Array Bistatic Synthetic Aperture Radar (SAR) System

As shown in Figure 1a, the passive arc-array receiving antenna system contains three major parts:
the arc antenna array, the microwave switch network, and the data-receiving model. The high-speed
microwave switch network is used to select the different independent elements of the passive arc-array
antenna and control the reception. The data receiving center is used to receive the electromagnetic
signal at the same time to complete the process of data acquisition. A passive arc-array antenna is
an important part of AA-BiSAR, and it relates to whether the whole imaging system can achieve full
azimuth imaging quickly. The structure of the passive arc-receiving antenna array is shown in Figure 1b,
where “AB” represents the passive receiving antenna elements. As we can see from Figure 1b, multiple
antenna array elements are arranged along the part of cylinder, the angle interval between adjacent
antenna elements is set to ∆θInterval, and the radius of the arc-array antenna is Rr. θs stands for the
synthetic aperture angle of the arc antenna array, θa represents the azimuth beam width of the antenna
array element along the arc antenna array direction, while the effective azimuth direction observation
area of the system is determined by the size of θs and θa. Nr is the number of antenna array elements
used to form an arc synthetic aperture angle. By contrast with the mechanical movement of traditional
LA-SAR systems, the electronic scanning mode of the passive arc-array antenna in AA-BiSAR has
significant advantages such as instantaneous data acquisition, large-angle view imaging, and azimuth
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direction stable sampling positions etc. Furthermore, it is worth to noting that the arc configuration
adopts rigid baseline structure, on the one hand it avoids the influence of helicopter fuselage shaking
on the antenna, on the other, it is conducive to the realization of the system [12–14].
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Figure 1. The receiving system of an arc-array bistatic synthetic aperture radar (AA-BiSAR). (a) The
configuration of the receiving system; (b) the structure of the passive arc antenna array.

The imaging principle of AA-BiSAR is simplified as shown in Figure 2a. The helicopter platform
receiver sends a request signal to the transmitting platform, then the transmitter emits high-power LFM
signal to the desired area, and next, the passive receiving arc antenna array uses high-speed microwave
switch network control the reception of echo signal. The echo signal from one target can be received by
multiple antenna elements. Due to the special circular structure of the arc-array antenna, for those
targets that are at the same distance, the number of the reception antenna elements is the same. The
transmitter can be fixed on the mountain far from the desired scene, which reduced its vulnerability
to physical attack. The receiver is mounted on the belly of the helicopter platform, which can be
completely passive so it does not advertise its position by radio frequency emissions. Meanwhile, the
bistatic synchronization is achieved by using the continuous transfer of time and frequency standards
between two platforms.

The imaging geometry of the AA-BiSAR is shown in Figure 2b, the top view and the side view of
the imaging geometry are shown in Figure 2c,d, respectively O. As we can see from the figure of the
imaging geometry, O′ is the center of the passive arc-array antenna, is the origin of coordinate. The
instantaneous slant range distance between Pr and Pn is given as dr, dt is referred to the instantaneous
slant range distance from the transmitter antenna to the target. d denotes the projection of dr at XOY
plane, ρ is the distance between Pn and arc-array antenna center O′, βr represents the angle between

the arc-array antenna plane and OPn, which can be calculated by cos βr =
√
ρ2 −H2

t /ρ. Pr(Rr,θr, Hr)

stands for the polar coordinate of equivalent sampling point Pr at arc-array antenna, Pn(Rn,θn, Hn)

stands for the position of the point target Pn, and the transmitter’s position is located at Pt(Rt,θt, Ht).

â For the position of equivalent sampling point Pr(Rr,θr, Hr), Rr stands for the radius of the
arc-array antenna, θr denotes the azimuth direction angle of Pr, Hr stands for the height of the
arc-array antenna.

â For the position of point target Pn(Rn,θn, Hn), Rn is referred to the distance from Pn to the origin
of coordinate O, θn represents the azimuth direction angle of Pn, Hn stands for the height of Pn.

â For the position of transmitter Pt(Rt,θt, Ht), θn represents the angle of Pt in polar coordinates. Rt

is referred to the ground distance from Pt to O, Ht is the height of Pt
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Figure 2. The imaging principle and geometry of the AA-BiSAR system. (a) The work mode; (b) the
imaging geometry; (c) the top view of the imaging geometry; (d) the side view of the imaging geometry.

3. Imaging Algorithm Based on Keystone Transform

3.1. Signal Model

The transmitted chirp signal is as follows:

p(τ) = rect
(
τ
Tr

)
exp

(
j2π fcτ+ jπkτ2

)
(1)

where rect(τ/Tr) represents the rectangular envelope with the duration Tr, k is referred to as the
frequency modulation rate, the carrier frequency is shown as fc, and τ is the range time.

After demodulation to baseband, the signal reflected from the target Pn to the equivalent sampling
point Pr can be calculated in terms of the range time τ and the azimuth angel θr as:

s(τ,θr; Rn,θn) = σn(Rn,θn, Hn)rect
[
θr−θn
θa

]
rect

[
τ−R(θr;Rn,θn)/c

Tr

]
exp

{
− j 2π fc

c R(θr; Rn,θn)
}

exp
{

jπk
[
τ−

R(θr;Rn,θn)
c

]2
} (2)

where σn(Rn,θn, Hn) stands for the reflectivity of the point target Pn, θa is the beam width in azimuth,
rect[(θr − θn)/θa] represents the envelope with θa, and c is the speed of light. According to the imaging
geometry shown in Figure 2b, the bistatic slant range R(θr; Rn,θn) can be written as:
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R(θr; Rn,θn) = dt(Rn,θn) + dr(θr; Rn,θn)

dt(Rn,θn) =

√
(Rt cosθt −Rn cosθn)

2 + (Rt sinθt −Rn sinθn)
2 + (Ht −Hn)

2

dr(θr; Rn,θn) =

√
(Rr cosθr −Rn cosθn)

2 + (Rr sinθr −Rn sinθn)
2 + (Hr −Hn)

2

θr = ∆θinterval ×m, m = 1, 2, 3, . . . , Nr

(3)

Echoes of the whole observation scene can be generally written as:

s(τ,θr; Rn,θn) =
∑

σn(Rn,θn, Hn)rect
[
θr−θn
θa

]
rect

[
τ−R(θr;Rn,θn)/c

Tr

]
exp

{
− j 2π f0

c R(θr; Rn,θn)
}

exp
{

jπk
[
τ−

R(θr;Rn,θn)
c

]2
}  (4)

3.2. Range Process and Keystone Transform

The signal in Equation (2) is transformed into the range frequency domain via the principle of
stationary phase (POSP), and the result can be computed as follows:

Sr f ( fτ,θr; Rn,θn) = FFT[s(τ,θr; Rn,θn)] =
∫

s(τ,θr; Rn,θn) exp(− j2π fτ)dτ

= σn(Rn,θn, Hn)rect
(
θr−θn
θa

)
rect

(
fτ

kTr

)
exp

[
− j 2π( fc+ fτ)

c R(θr; Rn,θn)
]

exp
(
− jπ fτ2

k

) (5)

where FFT[·] represents fast Fourier transform operation. After range compression, Equation (5) can be
expressed as:

Ss f _c( fτ,θr; Rn,θn) = Ss f ( fτ) ·Hr( fτ)

= σn(Rn,θn, Hn)rect
(
θr−θn
θa

)
rect

(
fτ

kTr

)
exp

[
− j 2π( fc+ fτ)

c R(θr; Rn,θn)
] (6)

where Hr( fτ) stands for the range matched filtering function, and can be described as:

Hr( fτ) = rect
(

fτ
kTr

)
exp

(
j
π fτ2

k

)
(7)

If Equation (6) is applied with range-inverse fast Fourier transform:

ss f _c(τ,θr; Rn,θn) = IFFT
[
Ss f _c( fτ)

]
=

∫
Ss f _c( fτ) · exp( j2π fττ)d fτ

= σn(Rn,θn, Hn)rect
(
θr−θn
θa

)
pr

(
τ−

R(θr;Rn,θn)
c

)
exp

(
− j 2π fc

c R(θr; Rn,θn)
) (8)

where IFFT[·] represents the inverse fast Fourier transform operation, pr
{
t− [R(θr; Rn,θn)/c]

}
is the

inverse Fourier transform of rect( fτ/kTr), be represented as a sinc-type envelope, which contains the
target range migration R(θr; Rn,θn)/c. From Equation (8), we can see that R(θr; Rn,θn) related to the
azimuth direction element cause the envelope of the range to vary.

Afterwards, the Equation (3) can be written as:

R(θr; Rn,θn) = dt(Rn,θn) + dr(θr; Rn,θn)

= dt(Rn,θn) +
√
ρ2 + R2

r − 2ρRr cos βr cos(θr − θn)
(9)

Since the arc-array radius is Rr << ρ, and R(θr; Rn,θn) can be approximated as:

R(θr; Rn,θn) ≈ dt(Rn,θn) + ρ−Rr cos βr cos(θr − θn) (10)
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Substituting Equation (10) into Equation (6):

Sr f _c( fτ,θr; Rn,θn) = σn(Rn,θn, Hn)rect
(
θr−θn
θa

)
rect

(
fτ

kTr

)
exp

{
− j 2π( fc+ fτ)

c [dt(Rn,θn) + ρ−Rr cos βr cos(θr − θn)]
} (11)

For facilitate the analysis, Equation (11) is reorganized as:

Sr f _c( fτ,θr; Rn,θn) = σn(Rn,θn, Hn)rect
(
θr−θn
θa

)
rect

(
fτ

kTr

)
exp

[
− j 2π( fc+ fτ)

c [dt(Rn,θn) + ρ]
]

exp
[
j 2π fc

c Rr cos βr cos(θr − θn)
]

exp
[
j 2π

c Rr fτ cos βr cos(θr − θn)
]

(12)

With reference to Equation (12), it can be observed that the range frequency variable fτ couples
with the azimuth variable element θr in the third index term, which is the main cause of the range
envelope movement. The couple eliminating must be carried before the azimuth focusing step.

The keystone transform decouples fτ and θr by reformatting the axis as Equation (13), and the
angle ϕ is a redefined virtual azimuth direction sampling:

cos(ϕ− θn) =
fc + fτ

fc
cos(θr − θn) (13)

Since this transform contains trigonometric functions, its uniqueness must be ensured. As is
shown in Figure 2c, multiple antenna array elements are arranged along the part of circular to form
an arc synthetic aperture in the AA-BiSAR system. The aperture angle of array synthesis θs mainly
affected by the geometric relationship between the target and the array, then θs can be about less or
equal to the azimuth beam width θa, that is, θs ≤ θa. In general, θs is about equal to θa to obtain better
azimuth direction resolution [14]. Due to the electronic scanning mode, the high-speed microwave
switch network can select and control on/off of the antenna array elements according to the target’s
position. Consequently, the variation range of (θr − θn) is less than or equal to the half array beam
width θa/2, and θa/2 is generally less than 90◦. As cos(θr − θn) is a monotonous function with the
angle range of 0◦~90◦, the uniqueness of this transform can be ensured. Substituting Equation (13) into
Equation (11):

Sr f _ck( fτ,ϕ; Rn,θn) = σn(Rn,θn, Hn)rect
(ϕ−θn
θa

)
rect

(
fτ

kTr

)
exp

{
− j 2π fc

c [dt(Rn,θn) + ρ−Rr cos βr cos(ϕ− θn)]
}

exp
{
− j 2π fτ

c [dt(Rn,θn) + ρ]
} (14)

and when range inverse Fourier transform is applied, we then obtain:

sr_k(τ,ϕ; Rn,θn) = IFFT
[
Sr f _ck( fτ)

]
=

∫
Sr f _ck( fτ) exp( j2π fττ)d fτ

= σn(Rn,θn, Hn)rect
(ϕ−θn
θa

)
pr

[
τ−

dt(Rn,θn)+ρ
c

]
exp

{
− j 2π fc

c [dt(Rn,θn) + ρ]
}

exp
[
j 2π fc

c Rr cos βr cos(ϕ− θn)
] (15)

The echo signal after the range movement correction is presented in Equation (15). It can be seen
that the coupling term is eliminated via keystone transform. The range envelope does not vary with
the azimuth element any more, and echoes of different range units are corrected to the same range unit.
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3.3. Azimuth Process

The azimuth-matched filtering process need to be carried out in the range frequency domain, so
an azimuth Fourier transform is applied on Equation (15). In the imaging approach proposed, the
azimuth-matched filter can be achieved by the fast convolution which contains conjugate operation
and FFT operation. The kernel function for the convolution is calculated as:

ha(ϕ) = exp
[
j
2π fc

c
Rr cos βr cos(ϕ− θn)

]
(16)

The azimuth-matched filtering function is calculated as:

Ha
(

fϕ
)
=

{
FFT[ha(ϕ)]

}∗ (17)

where []∗ is referred to the complex conjugate operation. After the azimuth matched filtering and
azimuth inverse fast Fourier transform operation, the signal is compressed as:

sr_ka(τ; Rn,θn) = σn(Rn,θn, Hn)pa(ϕ− θn)pr

[
τ−

dt(Rn,θn)

c

]
exp

[
− j

2π fc
c

[dt(Rn,θn) + ρ]

]
(18)

where pa(ϕ− θn) is the envelope in the azimuth direction. The proposed imaging approach can be
summarized as shown in Figure 3. Since the acquired echo data is stored in a polar coordinate system,
it can be converted into Cartesian coordinate through following formula:

xt = Rt sinθt, yt = Rt cosθt, zt = Ht

xr = Rr sinθr, yr = Rr cosθr, zr = Hr

xn = Rn sinθn, yn = Rn cosθn, zn = Hn

(19)

where (xn, yn, zn) is the position of target in the Cartesian coordinate system, (xt, yt, zt) is the position
of the transmitter in the Cartesian coordinate system, (xr, yr, zr) is the position of the receiver in the
Cartesian coordinate system.
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4. Resolution Analysis

4.1. Azimuth Angular Resolution

Different from other SAR modes, the azimuth resolution along arc antenna array direction in
AA-BiSAR, also called azimuth angular resolution or array angular resolution (unit is degree) [14–21],
is achieved by an arc synthetic aperture formed with several antenna elements and echo signal coherent
integration. As shown in Figure 1b, due to the structure of the receive arc-array antenna of AA-BiSAR,
the instantaneous azimuth frequency fθ is always perpendicular to the radius of the arc-array antenna.
That is, the direction of fθ changes with the sampling position. Therefore, according to Equations (8)
and (10), the instantaneous azimuth frequency fθ is:

fθ =
∂
∂θr

{
arg

[
Ss f _c(τ,θr; Rn,θn)

]}
=

2πRr cos βr sin(θr − θn)

λ
(20)

where arg[·] represents the argument operation. As we have discussed in Section 3.2, the variation
range of (θr − θn) is less than or equal to the half azimuth beam width θa/2, and θa/2 is generally
less than 90◦. In general, fθ is a monotonous function with the angle range of 0◦~90◦. As a result, the
azimuth angular resolution of the AA-BiSAR can be approximate calculated as:

ρθ =
2π

max
{
fθ
}
−min

{
fθ
} ≈ λ

2Rr sin(θa/2) cos βr
(21)

As it can be seen from Figure 2b,d, βr represents the angle between the arc-array antenna plane

and OPn, and can be calculated by cos βr =
√
ρ2 −H2

t /ρ. Then Equation (21) can be expressed as:

ρθ =
λ

2Rr sin(θs/2)
ρ√

ρ2 −H2
r

=
λ

2Rr sin(θs/2)
ρ

Rn
(22)

where λ is wavelength of the signal, θs is the aperture angle of array synthesis, θs ≈ θa. With reference
to Equation (22), the azimuth angular resolution of AA-BiSAR is related to radius of the arc-array
antenna, the synthesis aperture angle of array and the height of platform. Furthermore, it not varies
with bistatic slant range distance, but related to the ground distance from target to the arc-array antenna.
The azimuth angular resolution of different point targets is shown in Figure 4a, it can be seen that,
the azimuth angular resolution of AA-BiSAR is independent of the azimuth angle of each target and
whether it is at the beam edge, and for those targets that are at the same distance, the azimuth angular
resolution stays the same.

4.2. Ground-Range Resolution

In AA-BiSAR, as the receiving platform and transmitting platform are fixed at two separate places,
the instantaneous bistatic slant range contains distances in two different directions, and the projection of
the slant range at the ground range will not derived by simple linear transformation [40–43]. Therefore,
since the physical meaning of “range direction” in AA-BiSAR cannot clearly be defined, the resolution
ability of AA-BiSAR on the ground cannot be simply described with bistatic-range resolution. Thus, the
slant range resolution of AA-BiSAR is more complex and difficult than that of traditional monostatic
SAR. Thus, the ground-range resolution of AA-BiSAR is considered directly in this paper.

The geometry of AA-BiSAR is shown in Figure 2b, the transmitter and receiver are located at
(Rt,θt, Ht) and (Rr,θr, Hr), respectively, while the target point’s position is (Rn,θn, Hn). According to
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Equations (3) and (19), for an arbitrary point (xn, yn) at ground plane, the instantaneous bistatic slant
range R can be calculated as:

R =

√
(xn − xt)

2 + (yn − yt)
2 + z2

t +

√
(xn − xr)

2 + (yn − yr)
2 + z2

r (23)

The gradient of the instantaneous bistatic slant range in AA-BiSAR can be expressed as:

∇R = (sin ξt cosφt + sin ξr cosφr)
→

i x + (sinφt + sinφr)
→

i y (24)

Then, the magnitude of ∇R can be present as:

|∇R| =
√
(sin ξt cosφt + sin ξr cosφr)

2 + (sinφt + sinφr)
2 (25)

where ξt, ξr, φt and φr are, respectively, expressed as:

ξt = arcsin

 xn − xt√
(xn − xt)

2 + z2
t

 (26)

ξr = arcsin

 xn − xr√
(xn − xr)

2 + z2
r

 (27)

φt = arcsin

 yn − yt√
(xn − xt)

2 + (yn − yt)
2 + zt2

 (28)

φr = arcsin

 yn − yr√
(xn − xr)

2 + (yn − yr)
2 + zr2

 (29)

As the resolution magnitude of the AA-BiSAR bistatic slant range is c/Br, the ground range resolution
of AA-BiSAR at (xn, yn) can be derived as:

ρr =
c/Br

|∇R|
=

c/Br√
(sin ξt cosφt + sin ξr cosφr)

2 + (sinφt + sinφr)
2

(30)

where Br is the bandwidth of signal. Substituting Equations (26) and (27) into Equation (30), the final
result can be presented as:

ρr =
c/Br√√√

 xn−xt√
(xn−xt)

2+z2
t

 cosφt + s

 xn−xr√
(xn−xr)

2+z2
r

 cosφr

2

+ (sinφt + sinφr)
2

(31)

In the following, suppose that the stationary transmitting platform is located at (200 m, 3000 m,
600 m), the height of the receiving platform is 650 m. Simulation result of bistatic SAR ground-range
resolution with different target position is shown in Figure 4b. It can be seen that the ground range
resolution under this simulation condition is worse when the receiving platform is close to the
transmitter platform. Hence, generally, in order to maintain the consistency of the range ground
resolution in the imaging scenario, it is preferable to set the receiving and transmitting platforms at a
position away from the imaging scenario.
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5. Numerical Simulation Experiments

In order to validate the proposed imaging approach based on keystone transform for AA-BiSAR
in this paper, numerical simulation experiments on point targets are carried out. The transmitting
platform position is located at (200 m, 3000 m, 600 m), which is stationary, and the height of the
receiving platform is 650 m. The main simulation experiment parameters are shown in Table 1.

Table 1. Numerical simulation experiment parameters.

Symbol Definition Value

f0 Carrier Frequency 40.5 GHz
Br Signal Bandwidth 650 MHz
Tr Sweep Time 0.15 ms
Rr Arc-Array Radius 0.6 m
θa Array Beam width (−3 dB) 56◦

Hr Height of Receiving Platform 650 m
(Xt, Yt, Ht) Position of Transmitting Platform (200 m, 3000 m, 600 m)

An imaged scene with a total of 17 targets located around the passive receiving platform is
designed and shown as in Figure 5a. The imaging result of the designed scene is shown in Figure 5b.
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In order to further validate the proposed imaging approach, point targets P1, P2, P3 and P4, where
position is located at (350 m, 0◦), (750 m, 0◦), (550 m, −10◦), (550 m, 10◦), respectively, are chosen to be
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measured and analyzed. The contours and the range direction and azimuth response function of the
four targets P1, P2, P3 and P4 are shown in Figure 6, and all four imaged targets have good focusing
behavior. Figure 6a,d show the focus results of the targets with the same angle but with different target
distance, while Figure 6b,c show the focus results of the targets with the same target distance but
different angles. As shown in Figure 6a,b, the ground range resolution has a poor performance when
the target is close to the transmitter. With reference to Figure 6c,d, the azimuth angular resolution
consists of the same radius distance. The specific imaging performance of targets P1, P2, P3 and P4 is
computed and summarized in Table 2, where PSLR represents peak sidelobe ratio and ISLR refers to the
integrated sidelobe ratio. In Table 2, the results of the actual measured ground-range resolutions and
azimuth angular resolutions of the four selected targets are listed, and compared with the theoretically
resolutions. Measured performance of imaging results listed in Table 2 is consistent with the theoretical
analysis result, and also validates the proposed method.
Electronics 2019, 8, 1389 12 of 15 

 

  

(a) (b) 

  

(c) (d) 

Figure 6. Imaging results of targets with different distances and different azimuth angles. (a) Point 
P1 at (350 m, 0°); (b) Point P4 at (750 m, 0°); (c) Point P3 at (550 m, –10°); (d) Point P4 at (550 m, 10°). 

Table 2. Measured parameters of the selected targets. 

Target 

Range Azimuth 
Ground-Range 
Resolutions(m) PSLR 

(dB) 
ISLR 
(dB) 

 Azimuth Angular 
Resolutions(°) PSLR 

(dB) 
ISLR 
(dB) Theoretical 

Values 
Actual 
Results 

Theoretical 
Values 

Actual 
Results 

 0.478 0.481 –13.206 –9.498 0.951 0.955 –12.702 –8.879 
 0.493 0.495 –13.213 –9.499 0.633 0.634 –12.683 –8.851 
 0.462 0.464 –13.402 –9.536 0.722 0.726 –12.697 –8.985 

0.551 0.557 –13.193 –9.212 0.722 0.729 –12.636 –8.803 

6. Conclusions 

1P
2P
3P
4P

Figure 6. Imaging results of targets with different distances and different azimuth angles. (a) Point P1
at (350 m, 0◦); (b) Point P4 at (750 m, 0◦); (c) Point P3 at (550 m, −10◦); (d) Point P4 at (550 m, 10◦).
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Table 2. Measured parameters of the selected targets.

Target

Range Azimuth

Ground-Range
Resolutions (m)

PSLR
(dB)

ISLR
(dB)

Azimuth Angular
Resolutions (◦)

PSLR
(dB)

ISLR
(dB)Theoretical

Values
Actual
Results

Theoretical
Values

Actual
Results

P1 0.478 0.481 −13.206 −9.498 0.951 0.955 −12.702 −8.879
P2 0.493 0.495 −13.213 −9.499 0.633 0.634 −12.683 −8.851
P3 0.462 0.464 −13.402 −9.536 0.722 0.726 −12.697 −8.985
P4 0.551 0.557 −13.193 −9.212 0.722 0.729 −12.636 −8.803

6. Conclusions

In order to obtain full azimuth imaging quickly and counter the vulnerability of the conventional
monostatic SAR, a novel BiSAR with a passive arc antenna and a stationary transmitter named as
AA-BiSAR was proposed in this paper. The imaging geometry of AA-BiSAR was presented, and
the echo signal model was developed. To implement the special RCMC under conditions of the
BiSAR range history and the azimuth direction arc synthetic array, a novel imaging algorithm based
on keystone transform was proposed according to the imaging geometry. In the proposed imaging
approach, the movement of the target cross range unit was corrected through the keystone transform.
Furthermore, both azimuth angular and ground-range resolution of AA-BiSAR were analyzed, and the
azimuth angular resolution was independent on the location of the stationary transmitter. As a result,
the transmitter could be located far away from the passive arc-array receiver, and this phenomenon
makes AA-BiSAR attractive especially for military reconnaissance. The results of numerical simulation
experiments on point targets validated the proposed imaging approach.
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