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Abstract: This paper reports the development of an efficient evolutionary learning algorithm designed
specifically for real-time embedded visual inspection applications. The proposed evolutionary learning
algorithm constructs image features as a series of image transforms for image classification and is
suitable for resource-limited systems. This algorithm requires only a small number of images and
time for training. It does not depend on handcrafted features or manual tuning of parameters and is
generalized to be versatile for visual inspection applications. This allows the system to be configured
on the fly for different applications and by an operator without extensive experience. An embedded
vision system, equipped with an ARM processor running Linux, is capable of performing at roughly
one hundred 640 × 480 frames per second which is more than adequate for real-time visual inspection
applications. As example applications, three image datasets were created to test the performance of
this algorithm. The first dataset was used to demonstrate the suitability of the algorithm for visual
inspection automation applications. This experiment combined two applications to make it a more
challenging test. One application was for separating fertilized and unfertilized eggs. The other one
was for detecting two common defects on the eggshell. Two other datasets were created for road
condition classification and pavement quality evaluation. The proposed algorithm was 100% for
fertilized egg detection and 98.6% for eggshell quality inspection for a combined 99.1% accuracy. It had
an accuracy of 92% for the road condition classification and 100% for pavement quality evaluation.

Keywords: evolutionary learning; embedded vision sensor; visual inspection; egg quality inspection;
road condition detection; pavement quality evaluation

1. Introduction

Process automation is a current trend and the main focus of many industries to improve their
competitiveness. Labor shortages, increasing labor costs, and the demand for high-quality products are
the forces driving this movement. Locating and hiring experienced workers has become a challenging
administrative task worldwide. Of the many areas in manufacturing that require an upgrade to
cope with these challenges, visual inspection cannot be ignored. It is used to prevent defective or
low-quality products from reaching the market and to detect and correct problematic processes in the
early processing stages to reduce waste. Visual inspection is a labor-intensive process and constitutes
a sizable portion of production expense. These challenges have become even more prevalent in
recent years.

There are many off-the-shelf vision systems that are designed to perform vision tasks at an
affordable price. These systems have simple built-in software tools that are designed to allow an
experienced end user to install, configure, and operate them. Most of these tools use common image
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processing techniques or depend on a human expert to design the relevant features to perform the
desired object recognition or visual inspection tasks. Although the hand-crafted features are able to
describe the object of interest well and produce sound accuracy, specific features created by human
experts that are good for one class of products may do poorly for others. This manual process often
involves the redesigning of the algorithms or fine-tuning of inspection parameters that requires unique
skills and extensive training. Even if possible, these added challenges make these off-the-shelf systems
unsuitable for many vision applications that require sophisticated image classification and visual
inspection capabilities.

The key to building a visual inspection system is to construct distinctive features or representations
of data from high-dimensional observations such as images and videos. A good set of relevant visual
features must be constructed in order to have a good representation of the input data. Methods, such
as feature selection, feature extraction, and feature construction, have been used to obtain high-quality
features [1–3]. Feature selection is the process of selecting a subset of distinctive features from a large
set of features [1]. A subset of features can be generated by gradually adding selective features into an
empty set or removing the less effective features from the original feature space according to some
predetermined criteria. Feature extraction is the process of extracting a set of new features from the
original features by applying functional mappings. Feature construction is the process of discovering
discriminative information or subtle differences among images. All three types of approaches are
developed to improve feature quality and achieve accurate image classification.

Many feature learning approaches using evolutionary techniques have been proposed over the
past few years. A comprehensive survey of the state-of-the-art work on evolutionary computation
for feature selection is presented in Reference [4]. Krawiec and Bhanu [5] used a genetic algorithm
to obtain a fixed-length feature vector that is defined as a sequence of image processing operations
and feature extraction steps. Wang et al. [6] used particle swarm optimization to perform feature
selection and show that particle swarm optimization is effective for rough set-based feature selection.
Sun et al. used a genetic algorithm to select a subset of eigenvectors rather than the traditional method
of simply taking the top eigenvectors. Their method was tested for vehicle and face detection [7].
Sherrah et al. also used a genetic algorithm to determine whether a feature pre-processing step is
necessary before classification [8]. Genetic algorithm has also been used to automatically optimize
the selection of the optimal features for classification or remote sensing data [9]. This method aims to
reduce the feature dimensionality by exploiting the genetic algorithm. Sian and Alfred proposed an
evolutionary-based feature construction approach for relational data summarization [10]. This method
addresses the problem of many-to-one relationships that exist between non-target tables and target
tables and improves the accuracy of the summarized data.

None of the aforementioned feature learning approaches aims at constructing or selecting features
for general image classification. They mostly perform well on a single dataset for a specific application.
We believe that a good feature learning algorithm should be able to automatically generate sufficient
high-quality and unique features to perform accurate image classification.

Genetic algorithms [11], as one of the most popular evolutionary computation techniques,
are inspired by the process of natural selection. A population of candidate solutions to a specific
optimization problem is evolved toward better solutions in genetic algorithms. Each candidate solution
has a set of properties which can be altered during the evolution process.

Evolutionary learning techniques are a good choice for image classification. Genetic algorithm
(GA) is an evolutionary computation technique that automatically evolves solutions based on the
idea of the survival of the fittest. It is a very flexible heuristic technique that allows us to use various
types of feature representations in the learning process. The application of genetic algorithm to object
recognition offers many advantages. The main one is its flexibility which enables the technique to be
adapted for each particular problem [12]. The flexibility of GA in representing and evolving a wide
range of models makes it a very powerful and convenient method with regard to classification.
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Tran et al. used a GA with a multi-tree representation method to construct a much smaller
number of new features than the original set on high-dimensional datasets in classification [13].
A comprehensive survey on the application of GA to classification is given in Reference [12]. Genetic
algorithms have been successfully applied to feature construction methods [14,15]. In those methods,
richer features can be constructed by applying operators to primitive features. Genetic algorithms are
also used to construct multiple high-level features by adopting an embedded approach and the result
shows that those high-level features constructed by the GA are effective in improving the classification
performance, in most cases, over the original set of features [16].

In this work, we aimed at developing an efficient evolutionary learning algorithm for embedded
visual inspection and mobile computing applications. Compared with more general object recognition
tasks, visual inspection applications often have a small number of classes and are inconvenient,
if possible, to obtain a large number of images for training. Our goal was to find an efficient algorithm
that can achieve an acceptable balance between the accuracy and simplicity of the system for embedded
visual inspection applications.

This work built upon our previous success in using a genetic algorithm for feature construction
tasks for object recognition and classification [17,18]. As a data-driven approach, the ECO-Feature
algorithm automatically discovers salient features from a training dataset without the involvement of
a human expert. It is a fully automated feature construction method. Experimental results confirmed
that it is capable of constructing non-intuitive features that are often overlooked by human experts.
This unique capability allows easy adaption of this technology for various object classes when the
differentiation among them is not defined or cannot be well described.

We improved our algorithm since its first introduction by constructing global features from
the whole image to make it more robust to image distortions than the original version that used
local features [19]. We then reduced the feature dimensionality to speed up the training process [20].
Constructing global features proven to increase classification performance [19]. The main weakness of
the ECO-Feature algorithm is that it is designed only for binary classification that cannot be directly
applied to multi-class cases. We also observe that the recognition performance depends heavily on
the size of the features pool from which features can be selected and the ability of selecting the best
features. This makes it difficult to determine how many features need to be constructed from the
images in order to achieve the best performance.

An enhanced evolutionary learning method for multi-class image classification was developed to
address the aforementioned challenges. Among other improvements, boosting was added to select the
features and combine them into a strong classifier for multi-class classification. These characteristics
allow the proposed algorithm to require fewer features for classification and, hence, make it
more efficient. There is no doubt that other classification methods can perform as well as the
proposed evolutionary learning algorithm but most of them either require handcrafted features or
computational power. We included three experiments in this paper to demonstrate the performance of
the proposed algorithm.

Most egg farms use manual labor to grade and inspect eggs. Human visual inspection only detects
broken eggs during the process. Very few egg farms use machines to measure the size of an egg, detect
defects, or to separate fertilized eggs to improve hatching efficiency. To increase revenue and ensure
product quality, an automated grading and inspection machine is needed. We created one dataset for
the combined experiment of two applications. It included images of fertilized and unfertilized (normal)
eggs for unfertilized egg detection and removal application for the chicken hatching process. It also
included images of normal eggs and eggs with dirt or cracks on the shell for egg quality evaluation
applications for egg production. These were two completely different applications. We combined
them to make it a challenging experiment for testing the robustness of the proposed evolutional
learning algorithm.

Just as a human driver changes his or her defense mechanisms against road surface conditions,
a self-driving car or an advanced driver assistance system (ADAS) must do the same. Without the
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input of the road condition, the system will not be able to adapt its control of the vehicle for different
road conditions. Using standard autonomous driving actions for all road conditions increases the risk
for accidents. Automatic evaluation of road surface condition is considered an important part of an
autonomous vehicle driving system [21]. We created two datasets for this experiment. One dataset
included images of dry, wet, and sandy roads as well as roads covered with snow, ice, and a puddle
of water for road condition detection. The other dataset included images of pavement with different
levels of damage for pavement quality evaluation.

2. Algorithm

Although quite successful, our original ECO-Feature algorithm was designed only for binary
classification that cannot be directly applied to multi-class cases [17,18]. We also observe that the
recognition performance depends heavily on the size of the features pool from which features can
be selected and the ability of selecting the best features. This makes it difficult to determine how
many features need to be constructed from the images in order to achieve the best performance.
We developed an enhanced evolutionary learning method for multi-class image classification to
address the aforementioned challenges and applied it to four applications.

Our evolutionary learning algorithm uses evolutionary computation to construct a series of
image transforms that convert the input raw pixels into high-quality image representations or features.
This unique method extracts features that are often overlooked by humans and is robust to minor
image distortion and geometric transformations. It uses boosting techniques to automatically construct
features from training data without the use of a human expert. It is developed for multi-class
image classification.

In this work, we aimed to develop an efficient image classification algorithm using evolutionary
strategies for multi-class visual inspection applications for embedded vision systems. We recognize
that there are many other more sophisticated and powerful methods such as machine learning and new
and popular deep learning approaches that could be more capable than the proposed evolutionary
learning algorithm [22,23]. Most of them are often overkill for our applications and require expensive
computational power, a large number of images for training, long training time, and slow classification.
Because of their complexity, they can hardly be considered friendly for hardware implementation.
All these requirements are viewed as constraints to providing a low-cost embedded vision system for
automatic visual inspection which is the main objective of this research. Our algorithm is able to run at
close to 100 frames per second with an ARM processor running Linux.

2.1. Evolutionary Learning

In our algorithm, phenotypes in the genetic algorithm represent our evolutionary image
transformations or the often-called image features. The genes which make up a phenotype consist of a
number of select basic image transforms and their corresponding parameters. The number of genes
that can be modified for each evolutionary transformation varies, since both the number of transforms
and the number of parameters for each transform vary.

Each phenotype in the population represents a possible evolutionary image transformation.
A fitness score is computed for each phenotype using a fitness function. A portion of the population is
then selected to create a new generation. We used a tournament selection method to select phenotypes
from the overall population in the genetic algorithm. In order to produce a new transformation,
a pair of parent phenotypes is selected to undergo certain evolution operations including crossover
and mutation.

The crossover in our method is done by rearranging the image transforms from both parents.
By using crossover and mutation, a new phenotype, typically sharing many characteristics of its parents,
is created. This process results in the next generation of image transformations that are different from
their parent generation. Hence, the new phenotypes are likely to have a different number of image
transforms and parameters. This process is repeated for several generations, evolving image features
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with high fitness. The evolution is terminated when a satisfactory fitness score is reached or the best
fitness score remains stable for several iterations. Figure 1 shows an overview of the training process
of the proposed algorithm.Electronics 2019, 8, x FOR PEER REVIEW 5 of 18 
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2.2. Evolutionary Image Transformation

The representation of a phenotype in our genetic algorithm is an important factor influencing
the performance of the algorithm. An evolutionary image transformation or an image feature is
constructed using a series of image transforms that is created by the genetic algorithm. Rather than
applying a single image transform to the image, we constructed the transformation by applying a
sequence of basic image transforms to the input image. This process is defined in Equation (1), where V
is the evolutionary image transformation output vector, n is the number of transforms an evolutionary
image transformation is composed of, I defines an input image, Ti represents each transform at step i,
and φi is the corresponding parameter vector of each transform at step i.

V1 = T1(I, φ1)

Vn − 1 = Tn−1(Vn − 2,φn − 1)

V = Tn(Vn − 1,φn)

(1)

Based on this definition of the evolutionary image transformation, the output of one transform is
the input to the next transform. An evolutionary image transformation is learned through the evolution
of this sequence of transforms. All transforms included in our algorithm are basic image transforms
that can be found in almost all open source computer vision libraries. Twenty-four transforms were
included in our original version [17,18]. In this improved version, we focused on efficiency and
included only those that are filter-based and hardware friendly. Six transforms chosen for our genetic
algorithm were Gabor (two wavelengths and four orientations), Gaussian (kernel size), Laplacian
(kernel size), Median Blur (kernel size), Sobel (depth, kernel size, x order, y order), and Gradient (kernel
size), with the parameters in parentheses. We chose these six simple transforms for their simplicity
and noise removal, edge detection, and texture and shape analysis characteristics. They were not
chosen for any specific applications. This set of transforms can be extended to include almost any
image transforms, but we are mostly interested in those transforms that are able to extract important
information from images and are simple and efficient. Using these image transforms in our method
provides the system with the basic tools for feature extraction and helps speed up the evolutionary
learning process.

For each transformation sequence during the evolution, its length or the number of transforms
that make up the transformation sequence is not fixed. Rather, it is randomly selected by the genetic
algorithm. During training, for example, our algorithm tries out different sizes of kernel for the
Gaussian (variance is dependent on the kernel size), Median (blurring level is dependent on the kernel
size), Laplacian (blurring and sharpening level is dependent on the kernel size), and Gradient (gradient
is dependent on the kernel size) filters and automatically selects their sizes to be the most discriminant
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for classification. The other two transforms (Gabor and Sobel) have 6 and 4 parameters to be tried and
selected by the algorithm also automatically. The type and order of the transforms in a transformation
sequence and their parameters are determined by the evolution process. As a result, it is possible that
any one transform from our list can be used more than once in a sequence but with different parameters.

The number of transforms, n in Equation (1), used to create an initial evolutionary transformation
varies from 2 to 8 transforms. The range of 2 to 8 transforms allows the algorithm to yield good result
while keeping the computation efficient and simple.

2.3. Fitness Score Calculation

As described above, a candidate image transformation or feature is constructed using a sequence
of selected image transforms with their selected parameter values. Its performance must be evaluated
to determine if it is indeed a good and discriminative feature for classification. A fitness function,
which is designed specifically for classification, is used to compute a fitness score to evaluate how good
the image transformation is during the evolution process.

We calculated a fitness score for each evolutionary image transformation based on its classification
performance using a simple classifier. The classifier is trained for each image transformation using the
training images and the classification performance is computed with the validation images. The fitness
score is an indication of how well this classifier performs on the images.

The fitness score for each evolutionary image transformation is computed using Equation (2). It is
defined based on the classification accuracy of the classifier that is associated with each constructed
evolutionary image transformation. It reflects how well the classifier classifies images. Classification
accuracy is a fairly generic measure for optimization; quality measures other than accuracy can be
used depending on the application.

f itness =
100× #correctly classi f ied

#total images
(2)

Due to the fact that the evolution requires iterating over several generations to produce satisfactory
results, this classification-based fitness function must be efficiently computable. It also should be a
multi-class classifier that can be easily applied to many multi-class image classification cases. Random
forest classifier was chosen as the classifier to evaluate the performance of each image transformation
in our method. Random forest classifier is ranked as one of the top classifiers among the 179 classifiers
that have been evaluated in extensive experiments [24]. The authors claim that the best results are
achieved by the random forest classifier. Random forest shows the advantage of high computational
efficiency over other popular classifiers such as SVM [25]. Random forest is regarded as a multi-class
classifier that is robust against noise, has high discrimination performance, and is capable of training
and classifying at high speed [26].

Random forest is an ensemble learning algorithm that constructs multiple decision trees. It works
by randomly selecting training samples for tree construction, resulting in the construction of a classifier
that is robust against noise. Random forest classifier has shown to be efficient with good generalization
performance due to the fact of its randomness in training [25]. Also, the random selection of features
to be used at each node enables fast training, even when the dimensionality of the feature vector is
high [24].

2.4. Selection and Combination of Learned Features

Genetic algorithm simulates the survival of the fittest among individuals over generations and
one best evolutionary image transformation is obtained at the end of each simulated evolution run.
Though one single evolutionary image transformation usually has a high discrimination ability in
image classification, using multiple transformations can often increase performance. It is difficult
to determine how many learned transformations are needed for a specific application, and due to
the randomness of our method, it may require a large pool of learned transformations in order to
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maintain stable performance. For this reason, boosting is employed in our framework to maintain high
classification performance even with a small number of learned image transformations due to the fact
that sequential training in boosting constructs complementary classifiers from the training examples.

AdaBoost is one variant of a popular boosting algorithm proposed by Freund and Schapire [27]
and is used to combine a number of weak classifiers to make a stronger classifier. Various multi-class
boosting algorithms such as AdaBoost.M1 and AdaBoost.MH were proposed [28,29]. They both deal
with multi-class classification problems with combinations of binary classification. Reference [30]
proposed a novel multi-class boosting algorithm which is referred to as Stagewise Additive Modeling
using a Multi-class Exponential loss function (SAMME). The SAMME algorithm directly extends the
AdaBoost algorithm to multi-class classification rather than reducing it to two-class classifications.
It is the natural extension of the AdaBoost algorithm to the multi-class case, and its performance is
comparable with that of AdaBoost.MH and sometimes slightly better [30].

The training process of the SAMME classifier in our method involves reweighting the training
examples within each iteration right after an evolutionary image feature is learned from the raw
pixel images. The SAMME iteratively builds an ensemble of multi-class classifiers and adjusts the
weights of each training example based on the performance of the weak classifier that is associated
with the learned image feature in the current iteration. Examples that are misclassified will have
their weights increased, while those that are correctly classified will have their weights decreased.
Therefore, in subsequent iterations, the resulting classifiers are more likely to correctly classify examples
that are misclassified in the current iteration.

In particular, given a training dataset {(x1, y1), . . . , (xm, ym)}, where xi ∈ X is the input signal and
yi ∈ Y = {1, 2, . . . , K} is the corresponding class label, SAMME sequentially trains M weak classifiers
with the training dataset and calculates a weight αm for the mth classifier Tm based on the following
equation:

αm = log
1− errorm

errorm + log(K − 1), (3)

where errorm is the error calculated for the weak classifier Tm.
The SAMME algorithm is very similar to AdaBoost but with a major difference in Equation (3).

In order for αm to be positive for each weak classifier, we only need the accuracy of each weak classifier
to be better than the random guessing accuracy rate 1/K which depends on the number of classes.
When comparing the SAMME algorithm with the AdaBoost algorithm, AdaBoost breaks after the error
goes above 50%. Thus, in AdaBoost, it is required that the error of each weak classifier be less than
50%, and this requirement is much harder to achieve than 1/K in SAMME. However, for the SAMME
algorithm, because of the extra term log(K − 1) in Equation (3), αm can still be positive even though the
error of each weak classifier goes over 50%.

After training, the resulting SAMME model consists of a list of weak classifiers and coefficients
αm that indicate how much to trust each weak classifier in the model. The output of all weak classifiers
is combined into a weighted sum that represents the final output of the boosted classifier:

C(x) = argmax
k

M∑
m: Tm(x) = k

αm (4)

where M is the number of weak classifiers in the SAMME model, Tm is the mth weak classifier, αm is
the weight for classifier Tm, and k is the classification label for each class.

3. Experiments

We created three datasets for visual inspection and mobile visual computing applications. The first
dataset included images of fertilized and unfertilized eggs for detecting and removing unfertilized eggs
and images of good eggs and eggs with two common defects (crack and dirt) that are to be detected
and removed during egg production process. Detecting and removing unfertilized eggs is important
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for chicken hatcheries as a means to cut production costs. Egg defect detection is important for egg
production to ensure high product quality. We combined these two applications to perform a more
challenging test with four classes. The second dataset included images of dry, wet, and sandy roads as
well as roads covered with snow, ice, and puddles of water for road surface condition detection. The last
dataset included images of pavement with different levels of damage for pavement quality evaluation.

We performed the training multiple times for all three experiments on a desktop computer
using our training images for 80 iterations to obtain between 30 to 50 features. We then ran the
classification using the learned features on an embedded system equipped with a Cortex-A15 2 GHz
processor. The processing time was approximately 10 milliseconds per prediction or 100 frames per
second. Our algorithm proved to be efficient for very high frame rate performance even with a small
ARM-based processor.

We recognize that these three sample applications might be viewed as straightforward cases
and many other approaches could work just as well as the proposed method. As emphasized
previously, our aim was to develop an efficient (fast and requiring very few training images) and
easy-to-configure method that is versatile and does not depend on handcrafted features or manual
tuning of parameters. These three applications clearly demonstrate the versatility of the proposed
evolutionary learning algorithm.

3.1. Egg Quality Evaluation

Figure 2a shows a photo taken from an egg processing plant. It shows a candling station where a
worker uses a handheld sensor to point to and register the defective eggs in the system which then
directs the machine to remove them. As shown in Figure 2a, the best and most common lighting
for manual visual inspection is backlight, often referred to as candling. Figure 2b illustrates the egg
candling setup. This manual candling is slow and often unreliable. In our study, all collected samples
are imaged with backlight.
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Figure 2. (a) Egg candling and (b) backlight.

Samples of egg images captured with backlight are shown in Figure 3. From left to right, they are
a good egg, egg with cracks and dirt, and a fertilized egg. The size of the egg is graded by weight
using the load cells on the machine and is not discussed here. The samples used in this study were all
white-shelled eggs of which 500 were good eggs, 139 had cracks, 233 had dirt on the shell, and 498
were fertilized eggs (hatched between 5 to 9 days). We used 75% of these samples for training and 25%
for testing.
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3.1.1. Performance

The proposed evolutionary learning algorithm obtained a 99.1% classification accuracy on our
egg dataset. Figure 4 shows the confusion matrix for this experiment. All good and fertilized eggs
were correctly classified. Two eggs with cracks were misclassified as dirt and one egg with dirt was
misclassified as crack. All other test images were classified correctly. The classification performance
of each iteration in the evolutionary learning on this dataset is shown in Figure 5. It took our
evolutionary learning algorithm only six learning iterations or evolutionary generations to reach its
steady-state performance.
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3.1.2. Features from Evolutionary Learning

Our evolutionary learning method is generalized that it can be easily applied to different
applications without a human expert to adjust any parameters or design specific image features.
We took a closer look at what those image features obtained from the learning process were composed
of and the proposed evolutionary learning algorithm constructed for this application.

Our method constructed a group of evolutionary image transformations or features that are
composed of a series of image transforms. The information these transformations discovered can
be analyzed by examining the output of each image transform in the learned transform sequences.
The image transform output of each training image is different, because every training image in the
same class is slightly different. We selected one image transform output of the training images used for
each specific class to visualize the feature.

Figure 6 shows two of ten features (genes) learned from the egg dataset used in this paper.
Each row represents a class of the egg and each column represents a particular transform that is used
in that feature. These transforms (from left to right) are shown in the order they appear in the feature.
To be more specific, the first feature (Figure 6a) had 2 median blur transforms, both with a kernel size
of five. The second feature (Figure 6b) had three transforms. This feature consisted of a Laplacian
transform with a kernel size of nine, a median blur transform with a kernel size of five, and a Sobel
operator with kernel size of seven. These are only two of the thirty features that were learned from
the evolutionary learning. They may not seem significant or distinctive but are sufficient for our
simple task.Electronics 2019, 8, x FOR PEER REVIEW 11 of 19 
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3.2. Road Condition Detection

We evaluated our evolutionary algorithm on another two datasets that were created for this
work. These two datasets consisted of images obtained from the Internet and recorded videos in
real-world conditions. We implemented our multi-class boosting algorithms using resampling rather
than reweighting because it performs just as well or significantly better in some cases [31]. In our
boosting model, we used sampling with replacement to reflect example weights. A new training
dataset with the same size as the original training dataset was assembled by sampling from the original
training dataset, where the probability that any example to be selected is proportional to its assigned
weight. The image feature learned from this resampled training data therefore places more emphasis
on those examples with higher weights.

We used event data recorder video resources and other online video resources to collect our road
surface condition images. Figure 7 shows sample images from this dataset. We collected 1200 images
for our road surface condition dataset with six categories; each had 200 images. We split the dataset
into 900 images (75%) for training and 300 images (25%) for testing.
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The road surface condition dataset was created with six road surface conditions including dry, wet,
snow, ice, puddle of water, and sand. The original images, as shown in Figure 7, contained information
on the road surface and the surrounding background. The algorithm is designed for a forward-looking
embedded vision sensor mounted on the rear-view mirror or dashboard. Only the area in front of
the vehicle is of interest. The original images were divided into several blocks and only those road
surface blocks of interest are extracted to create our road surface condition dataset. This sample image
collection process helped us build a high-quality dataset for experiments.

3.2.1. Performance

The proposed evolutionary algorithm obtained a 92% classification accuracy on our road surface
condition dataset. For comparison, we also evaluated the boosted random forest method on this dataset
without evolutionary learning. This simple random forest method obtained an 89.33% classification
accuracy. This comparison demonstrated that our evolutionary learning method did discover useful
features for classification. The classification performance of each iteration in the evolutionary learning
on the road surface condition dataset is shown in Figure 8. It took the evolutionary learning algorithm
approximately 40 learning iterations to reach its steady-state performance. The confusion matrix of the
classification performance is shown in Figure 9. The dry and wet cases were easily confused because
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of the subtle differences between them. Ice and snow were the easiest to recognize. Whereas, puddle
of water was the hardest because of its similarity with icy road surface.
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We also performed experiments using four different sizes of the population generated in the
genetic algorithm. Figure 10 shows the performance comparison using different population sizes.
It seems that using a relatively small population resulted in better performance. This is most likely
because using a smaller population size allows for the exploration of those transform combinations
which tend to mature more slowly than others but could eventually result in a higher fitness score.
We ran the genetic algorithm in our evolutionary learning method using a population size of 10.
The advantages of this population size are its computational efficiency and its ability to provide
diversity in the learned features.
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3.2.2. Visualization of Features from Evolutionary Learning

We took a closer look at the learned evolutionary image transformations or image features from
our learning process. Specifically, we would like to visualize what the proposed method constructed
for the road surface condition dataset. For visualization, we averaged the image transform outputs of
all training images used for each specific class. The resulting average outputs were then normalized to
be viewed as images. The output of each image transform in the learned transformation sequences
was examined to show what information these transformations discovered.

As examples, Figure 11 shows two of thirty features learned from the road surface condition
dataset. Each row represents a class of the road surface condition dataset which includes six road surface
conditions including dry, wet, snow, ice, puddle of water, and sand (from top to bottom). Each column
represents a particular transform that is used in that feature for all six classes. These transforms
are shown in the order they appear in the feature from left to right. To be more specific, the first
feature (Figure 11a) consists of three transforms, a Gaussian transform (Column 1), a Sobel transform
(Column 2), and a Gradient transform (Column 3). The second feature (Figure 11b) consists of three
Sobel transforms (Columns 1–3) and a Gaussian transform (Column 4).
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As shown in Figure 11, texture is the most important piece of information that both features
(Figure 11a,b) focus on extracting from the training images. Just like a human expert would rely heavily
on texture information to classify these six classes, our evolutionary algorithm extracts image features
that emphasize the image texture.

3.3. Pavement Quality Evaluation

Besides the road surface condition dataset, we also created a road pavement quality dataset to
test our evolutionary algorithm. This dataset had four typical road pavement conditions including
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good pavement, line crack, net cracks, and potholes. These four conditions are the most common road
pavement conditions in the real world. As with the road surface condition dataset, we also included
200 images for each pavement condition which gave us a total of 800 images in the road pavement
condition dataset. Samples of this dataset are shown in Figure 12.
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3.3.1. Performance

We carried out two experiments for pavement quality evaluation application. In the first
experiment, we used our evolutionary learning algorithm on the road pavement condition dataset to
evaluate its performance. Our classification accuracy on this dataset was 100%. The confusion matrix
was not included because of perfect performance.

For the second experiment, we tested the boosted random forest method on the dataset without
evolutionary learning to prove that our learning algorithm helps extract useful features for classification.
We used boosting techniques on the raw image dataset without using any feature extraction methods.
The classification accuracy dropped to 98.5%. Even though both methods performed well on the road
pavement quality dataset, our evolutionary learning method was able to discover more useful features
to obtain perfect classification accuracy.

The classification performance of each iteration in the evolutionary learning on the road pavement
quality dataset is shown in Figure 13. It took the algorithm only seven training iterations to reach
100% accuracy.
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3.3.2. Visualization of Features from Evolutionary Learning

An approach for understanding and visualizing these evolutionary image transformations or
image features obtained from our learning process was developed to interpret what the proposed
method constructed for the road pavement quality dataset. The output of each image transform in
the learned transformation sequences was examined to show what information these transformations
discovered. For visualization, the image transform outputs of all training images used for each specific
class were averaged and then normalized to be viewed as images.

Figure 14 shows four features learned from the road pavement condition dataset. This dataset had
four pavement conditions. In Figure 14, each row represents a class of the road pavement condition
dataset and each column represents a particular transform that was used to construct that feature for
all four classes. These transforms are shown in the order they appear in the feature from left to right.
The four features in Figure 14 have three or four transforms as a result of our evolutionary learning
process. Both the first (Figure 14a) and the last (Figure 14d) features have three transforms. The second
(Figure 14b) and the third (Figure 14c) features have four transforms. More specifically, the first feature
consists of two Sobel transforms (Columns 1 and 2) and a Gabor transform (Column 3). The second
feature consists of a Gaussian transform (Column 1), two Median Blur transform (Columns 2 and 3),
and a Sobel transform (Column 4). The third feature consists of a Sobel transform (Column 1), a Gabor
transform (Column 2), a Gaussian transform (Column 3), and a Gabor transform (Column 4). The last
feature consists of two Gaussian transforms (Columns 1 and 2) and a Laplacian transform (Column 3).
All these learned features have various transform sequences.
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 Figure 14. Visualization of features that are learned from the road pavement condition dataset.

Like the features that were trained from the road surface condition dataset, the features shown
in Figure 14 also indicate that the texture information was the most distinctive information being
extracted from the images. Our model reached 100% classification accuracy with these features which
shows a perfect classification performance on the dataset.
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4. Conclusions

The aim of this work was to develop an efficient evolutionary algorithm specifically for embedded
vision applications for visual inspection. The goal was to trade slight accuracy for processing efficiency
in real-time performance. The proposed algorithm was not only capable of automatically learning
global information from training images but also improving performance through the use of boosting
techniques. The main advantage of the proposed method is its simplicity and computational efficiency,
which makes it suitable for real-time embedded vision applications. We used 375, 104, 175, and 374
images for good, crack, dirt, and fertilized eggs, respectively, and 150 images for each class in both
the road condition and pavement quality datasets for training. These are reasonably small numbers
of images for data collection and training. The training time for our three example applications
was 10 to 30 min on a PC depending on the number of iterations to reach steady-state performance.
The processing speed was approximately 100 frames per second with an ARM processor running
Linux, demonstrating its efficiency.

This algorithm accurately separated fertilized and unfertilized eggs and detected two common
eggshell defects (i.e., dirt and crack). It distinguished six road surface conditions including dry,
wet, snow, ice, puddle of water, and sand. It also recognized different road pavement qualities to
detect cracks and potholes. For the three datasets created for the experiments, it obtained almost a
perfect classification performance that is comparable to the performance obtained using other more
sophisticated classification methods.

We recognize that these three sample applications might be viewed as straightforward cases and
many other approaches could work just as well as the proposed method. As emphasized previously,
our aim was to develop an efficient (fast and requiring very few training images) and easy-to-configure
method that is versatile and does not depend on handcrafted features or manual tuning of parameters.
These three applications clearly demonstrate the versatility of the proposed evolutionary learning
algorithm and prove its suitability for real-time visual inspection applications that need to classify a
small number of classes.

A hardware-friendly version of the algorithm was developed [32]. Our hardware simulation shows
that the modifications and optimizations made to the algorithm for hardware implementation did not
affect its performance. The hardware-friendly version was implemented in a field programmable gate
array (FPGA) [32]. Our VHDL design can be used for building application-specific integrated circuits
(ASICs) for applications that require a compact, low-cost, and low-power vision sensor.
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