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Abstract: In current Chip Multi-Processor (CMP) systems, data sharing existing in cache hierarchy
acts as a critical issue which costs plenty of clock cycles for maintaining data coherence. Along with
the integrated core number increasing, the only shared cache serves too many processing threads
to maintain sharing data efficiently. In this work, an enhanced router network is integrated within
the private cache level for fast interconnecting sharing data accesses existing in different threads.
All sharing data in private cache level can be classified into seven access types by experimental
pattern analysis. Then, both shared accesses and thread-crossed accesses can be rapidly detected
and dealt with in the proposed router network. As a result, the access latency of private cache is
decreased, and a conventional coherence traffic problem is alleviated. The process in the proposed
path is composed of three steps. Firstly, the target accesses can be detected by exploring in the router
network. Then, the proposed replacement logic can handle those accesses for maintaining data
coherence. Finally, those accesses are delivered in the proposed data deliverer. Thus, the harmful
data sharing accesses are solved within the first chip layer in 3D-IC structure. The proposed system is
also implemented into a cycle-precise simulation platform, and experimental results illustrate that
our model can improve the Instructions Per Cycle (IPC) of on-chip execution by maximum 31.85
percent, while energy consumption can be saved by about 17.61 percent compared to the base system.
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1. Introduction

In modern Chip Multi-Processor (CMP) systems, cache hierarchies are too large to support
highly-parallel computing as the number of cores stacked in one chip is increasing rapidly. Since
those cores and caches crowd into the single-chip area, data flows in many concurrent threads become
too complicated to achieve the desired throughput [1]. Thus, the routing network is promising to
efficiently solve the interconnection problem, which can transmit vast amounts of data among cores
and caches [2]. Furthermore, the recently proposed stacked on-chip architectures can efficiently work
by allocating cores and cache hierarchies into different layers, which leads to on-chip components
in adjacent layers in 3D by Through Silicon Vias (TSVs) [3], thereby decreasing the physical routing
distance and latency.

During highly-parallel computing, sharing data in cache hierarchy happen frequently and cause
serious data coherence issue, where the sharing data are defined as the target data of the current
private cache accesses while those data are already existing in the private caches of other threads.
However, conventional CMP architectures (i.e., dance-hall structure) can maintain sharing data with
the aid of complex and expensive device operating in the shared cache [4]. For example, as shown in
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Figure 1a, sharing data in two private caches requires very complex data maintenance operations if any
alteration happens to those sharing data. And if an access request from some core encounters an access
miss in both its private cache and partitioned bank group [5], but the target data are already existing
in other bank groups, complex target data migrating operations are required (i.e., directory-based
coherence protocol), thereby consuming plenty of clock cycles. Inspired by data interconnecting among
Processing Elements (PEs) in the Network On a Chip (NoC), we are motivated to establish a specialized
router network for detecting sharing data and maintaining data coherence. As shown in Figure 1b,
if those detected sharing data can be handled in the private L1 cache level, a large proportion of access
latency can be saved in the proposed path rather than the slow and expensive conventional path.
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In our previous work [6], we proposed a filter router for an efficient stacked shared cache and
further designed the router architecture to evaluate its performance and energy consumption in
detail. However, limited improvements can be achieved because the amount of harmful shared cache
accesses filtered by the previous router is far less than the one of private cache accesses on both
emerging frequency and scale, where those harmful accesses in private caches cause much more serious
performance degradation. Thus, in this work, we are motivated to propose a router-integrated private
cache architecture to make a novel processing path on sharing data based on the previously designed
router architecture. In our proposed system, firstly, the proposed router can dynamically identify some
sharing data by spreading access requests in the router network. Then, detected data will be handled
in the replacement logic for the purpose of maintaining data coherence. Finally, those data can be
delivered to the targeted private caches by the router network. The latency of the longest path in the
proposed router is tested as 0.82 ns, which is far less than the processing latency of the conventional
path. Furthermore, the proposed router-integrated private cache architecture is implemented into a
detail-emulated CMP simulator, and experimental results indicate a highly significant improvement
on system performance.

To sum up, the proposed design makes contributions as follows:

• A novel access pattern analysis scheme is proposed which can identify crossed accesses and
shared accesses to avoid plenty of clock cycles wasting.

• The router network is integrated into cache hierarchy to support data interconnecting among
processing threads while some sharing data can be maintained by the proposed path.

• An enhanced router architecture is designed with the functions of sharing data detection,
replacement, and transmission, that is, private caches are connected by a fast network.

The remaining parts of this paper are arranged as follows—Section 2 explains the issues and
motivation of this work based on experimental analysis. Section 3 describes our system design,
including access path design and router network design. In Section 4, we depict the implementation
and layout reports in detail. Section 5 illustrates the experiment setups and results. In Section 6,
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we discuss why the proposed design works efficiently. Section 7 shows related works and Section 8
concludes this work.

2. Pre-Experimental Analysis and Motivations

2.1. Architecture Descriptions on Base System and Proposed System

The 3D stacked CMP architecture has a unique feature that it can separate high-speed cores
and private caches, shared cache and low-speed DRAM memory into different layers. Thus, we are
motivated to employ such 3D stacked architecture for rapidly solving sharing data of private cache
accesses in the core layer rather than across layers, thereby saving plenty of data maintenance cycles.
And the throughput traffic on the TSV array can be reduced greatly. Thus, a 3-layer 3D stacked
architecture is employed as the base system.

As shown in Figure 2a, the only hardware difference between base system and our proposed
system is that in each private cache of our proposed design is integrated an enhanced router for
detecting and routing sharing data. The shared L2 cache is maintained by MOESI_CMP_directory
coherence protocol from Gem5 simulator [7], and write back strategy is employed. In order to explain
architecture setups well, we make five key assumptions as follows:

• The shared cache is partitioned into several bank groups while each partitioned bank group only
directly link to one private L1 cache and one processing core in the up-layer (like 2D dance-hall
structure). In this work, we employ directory-based coherence protocol into the shared L2 cache
for migrating sharing data among partitioned bank groups.

• The parameter of temperature has a profound influence on the static power and working condition
of layout cells. Thus, we set the temperature parameter as a design constraint. During simulation
tests in Gem5 platform, the static power is achieved by averaging seven overall static power
values which are severally simulated under the temperature of 25 ◦C, 35 ◦C, . . . , 85 ◦C.

• Data interconnection between two layers relies on TSV arrays. As shown in Figure 2b, each private
cache interlinks its partitioned bank group via a TSV array. Based on TSV modelling in [8,9],
we assume that the request data can pass through the TSV array in a constant latency of 0.1 ns
and 1.62 pJ/bit energy, while no delivering congestion and inaccuracy happen.

• Overheating issue in 3D stacked architecture acts as a key design challenge. As shown in Figure 2b,
a 3D stacked 16-core 3-layer architecture is packaged in the heat sink. We consider two methods
to solve this issue that one is an external cooling method by filling cooling materials between
layers and imbedding the chip in heat sink, the other one is an internal cooling method by
dynamically managing overheated chip components cooled down [10]. As shown in Appendix A,
we conduct the thermal simulation to reveal that all chip components are working under a certain
temperature constraint.

• The layout design of the base system refers to previous work in [11]. As shown in Appendix A,
the area values of each layer are evaluated to assume that the design areas of all stacked components
are suitable to pile up in the heat sink.
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2.2. Re-Define Access Patterns of Private Cache

All private cache accesses, including read and write accesses, can be classified into seven access
patterns based on where the target data of current access request is located, and each access pattern is
described as follows:

1. Pure Miss Accesses (PM-A). The target data of private cache access do not exist in both the private
cache of the current thread and the private caches of other threads. For example, consider that
Core0 requests to load or write DataX into its private cache, and all private caches, do not contain
previous DataX. Thus, the pure miss accesses can be handled by loading DataX from shared cache
or writing through DataX to cache hierarchy.

2. Shared Write Accesses (SW-A). The target data of write access on private cache exists in both
the private cache of the current thread and some private caches of other threads. For example,
consider that Core0 makes requests to write DataX into its private cache while previous DataX
copies are existing in the private cache of the current thread and also in the private cache of
CoreN’s thread. In conventional path, the DataX should be written to its partitioned shared cache
banks and then the new DataX is updating to the cache hierarchy of CoreN’s thread with the aid
of directory controller logic while consuming hundreds of clock cycles.

3. Shared Read Accesses (SR-A). The target data of read access on private cache exists in both
the private cache of the current thread and some private caches of other threads. For example,
consider that Core0 requests to load DataX from its private cache while previous DataX copies
are existing in the private cache of current thread and also in the private cache of CoreN’s thread.
In the conventional path, the DataX can be directly read from its private cache.

4. Crossed Write Accesses (CW-A). The target data of write access on private cache does not exist
in the private cache of the current thread; however, previous DataX copies are existing in some
private caches of other threads. For example, consider that Core0 requests to write DataX into its
private cache while previous DataX copies are existing in the private cache of CoreN’s thread.
Similar to the process of shared write accesses, the DataX should be written to its partitioned
shared cache banks and then the new DataX should be updated to the cache hierarchy of CoreN’s
thread with the aid of directory controller logic while consuming plenty of clock cycles.

5. Crossed Read Accesses (CR-A). The target data of read access on private cache does not exist in
the private cache of current thread; however, previous DataX copies are existing in some private
caches of other threads. For example, consider that Core0 makes requests to load DataX from its
private cache while previous DataX copies are existing in the private cache of CoreN’s thread.
In the conventional path, such access will bring about a miss in its private cache or even a miss in
its partitioned bank group (private L2 slice), thereby consuming many clock cycles to load DataX.
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6. Repeated Write and Read Accesses (RW-A and RR-A). The target data of any repeated access on a
private cache only exists in the private cache of the current thread. For example, consider that
Core0 requests to access DataX at its private cache while no previous DataX copies are existing in
the private cache of other threads. In the conventional path, such access can be directly handled
by hitting at the private cache of the current thread.

In essence, crossed read and write accesses will finally shift as shared access types after the target
data are delivered to the private cache of the current thread. As a result, DataX is indirectly shared
by two copies in private caches which serve to different threads. Meanwhile, each data modification
by any core (i.e., CoreN) will lead to shared data asymmetry, and in order to keep data coherence,
the modified DataX needs to a written update for all other copies or all other copies are written
invalidated, but these two methods need sophisticated hardware to detect all copies and then update
them across private caches and partitioned banks of shared cache [4]. It can be observed that there are
no straightforward access paths among private caches, and even among different partitioned bank
groups of the shared cache. Thus, shared data existing in different threads are difficult to be transported
directly, and the coherence protocol needs to do complex and costly operations across those threads.
Thus, we intend to bridge each thread for disseminating information through the router network in the
first layer, which can be acting as a far faster access path rather than the path in virtue of directory
logic or even off-chip memory.

As shown in Figure 2a, decoded requests from each core can be spread to the linked router and
further to other routers with the aid of enhanced router network. Once any sharing data is detected,
data interconnection from any thread to any parallel thread can be easily implemented by the meshed
router network. Quite sensibly, the router can act as a fast data repeater among those parallel threads.
In other words, the data requested from CoreN to DataX can spread from RouterN to Router0 and then
return the target data through the router network if Router0 has already stored the DataX. Besides,
if each router can record some previous data, subsequent requests from CoreN to DataX can be fleetly
returned as long as one of the routers has a copy. Hence, the conventional router should be enhanced
with the ability to firstly record some previous sharing accesses, secondly maintain sharing data and
finally transport target sharing data. Note that the router can only buffer some frequently requested
data rather than all data due to hardware and latency costs. As a consequence, the access distributions
of all private cache access patterns should be counted for feasibility analysis on the potential promotion
of handling those accesses, and those distributions are represented as follows.

2.3. Private Cache Access Distributions

In order to calculate the distributions among all private cache accesses, we employ PARSEC
benchmark suite [12] to run on the test platform. During each test, we employ 16 copy caches for
one by one recording all contents in 16 private caches dynamically. Any private cache access should
explore all copy caches to check which copy caches it will hit. Thus, all private cache accesses are
classified into seven groups corresponding to each access pattern.

Figure 3 represents the hit distributions of each access pattern, where shared read and write
accesses take up on average 3.82 percent and 0.95 percent of all private cache accesses, respectively.
Typically in shared write accesses, the target data should be transported to other private caches for
updating previous target data, and such processing path costs even a dozen times of clock cycles over
the processing path on shared read accesses. Moreover, each shared read access acts as potential shared
write access whenever there is a further modification on the shared data. Thus, shared read and write
accesses retard the performance of data throughput in cache hierarchy.
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In parallel computing threads, there are existing plenty of crossed accesses which are first identified
as misses on the current thread and hits on other threads. Statistically, crossed read and write accesses
can take up on average 2.98 percent and 1.31 percent of all private cache accesses, respectively. For a
crossed read access, it tends to endure a miss on private cache or even partitioned bank group of shared
cache in the conventional processing path, thereby consuming many cycles to load target data. For a
crossed write access, the target data should be updated to relevant private caches of other threads while
such updating process is similar to the one of shared write access. As a consequence, both crossed read
and write accesses will bring about complex and costly operations in the conventional path, where
extra misses and data non-coherence are concomitantly handled.

Hence, we are motivated to bridge all private caches for rapidly handling some harmful private
cache accesses in a much faster way so that it is preferable to enable all private caches with data
interconnecting ability by establishing an enhanced router network in caches. The network is enhanced
with the ability of detection particular access, data replacement, and data transportation, whereby
many harmful accesses can be rapidly handled. Ideally, target data of shared write accesses can be
quickly updated to other private caches through the router network rather than the conventional
processing path; Any modifications on the target data of shared read accesses can be easily spread
to all appropriate destinations; The access misses in crossed read accesses can be rapidly handled by
loading target data from other relevant private caches with the aid of proposed network; The new data
generated in current private cache can be fleetly written to all related caches by means of bypassing
target data across the network. As a consequence, the private caches integrated with proposed router
network can achieve significant improvement on access latency if some harmful accesses are relieved
with the aid of this network. The design details of the network are described as follows.

3. Stacked 3D Router Network Design

3.1. Base Router Design

In this work, the proposed router only delivers a number of sharing data and repeated read and
write data which are existing at its history buffers. Thus, the main requirement of router design is
to sacrifice some throughput performance for a very small integrating scale, unlike throughput first
in conventional routers [13]. Thus, we make a tradeoff decision on buffer and Virtual Channel (VC)
scales. Our five-port router supports fifty flits of buffering operation (65-bit flit, one packet contains
five flits), and those flits are allocated to five VCs where each VC serves to two input buffers of each
port. Under the design constraint of requested throughput (guarantee a maximal flow of sharing data),
the above decisions on allocating input buffers to VCs are set as minimal hardware overhead. For the
VC allocator, we build a free VC table and a reserved VC table to arbitrate VC occupations.

3.2. Router-integrated Cache Architecture Design

Figure 4 represents the router-integrated cache architecture, which consists of conventional
up-down core-private cache-shared cache structure and enhanced router structure. The core sends out
access requests including write and read accesses to private cache, and once the address information
(i.e., tag bits) of any access request is decoded in the private cache, such information is concurrently
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employed for exploring in the private cache and as well as delivered to the lookup buffer of linked
router for exploring previous existence location of target data among entire router network. Thus,
in case of write access, the new target data can easily be written to any previous location through
transporting within router network, and in case that read access encounters a miss on private cache,
the target data can be loaded from any previous location with the aid of router network.
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To proceed with cache accesses efficiently, proposed router architecture is enhanced based on a
previous router design [13]. Based on the base network architecture, our proposed design supports
three extra functions as follows:

1. Target accesses exploration. Our proposed router is integrated with history data buffers for
saving the recent private cache accesses, and any decoded request can explore in the lookup
buffer (only records several entries) and further this request is spreading in the router network for
detecting all previous accesses. If there is an access request sent to a router, two concomitant access
mechanisms are triggered—one is to deliver the access package to the next layer inconsistent with
conventional routing path, the other one is to spread the access request in the router network to
explore whether the history buffer of current router contains the previous target data, or whether
the history buffers of other routers contain the previous target data. Thus, such request can be
identified to mark any crossed access or shared access out. Furthermore, this access request can
be efficiently handled through redesigned processing path corresponding to each access type.

2. Data replacement. The history buffer should be updated with the recent access results,
and furthermore, some current results will be retired based on the Least Recently Used (LRU)
replacement algorithm. Concerning each alteration on the history buffer of one router, altered
data should be spread into four locations: private cache, the partitioned bank group connected to
this router, the history buffers of other routers which contain the shared target data, and further
both private caches and partitioned groups linked to other routers.

3. Data delivery. The data deliverer is proposed to selectively export both target data and tag
information to different destinations concurrently. Firstly, the data delivery should support echo
target data back to the linked core. Meanwhile, any sharing data should be updating all related
copies for data coherence, and any address information should be fleetly bypassing all other
routers [14]. Finally, stored history data should be retired out old data and also be updated with
new data.

To sum up, the proposed routers can be featured in a concurrent path. As the conventional shared
cache access path (including data routing path) is much longer over the concurrent processing path,
access latency on many filtered accesses can be significantly shortened. Moreover, the proposed routing
path only works well when each access type can be detected fleetly, in addition to handling them in
very few cycles. Thus, we propose a novel router architecture based on the above function descriptions,
and the router hardware will be described in the next subsection.
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3.3. Enhanced Router Architecture

The routing pipeline of our proposed router is formed based on the conventional routing path,
where the enhanced path and conventional path are integrated to work concurrently. The enhanced
path contains three key components which demonstrate one to one correspondence to the function
descriptions in the last subsection, and the internal details of each component are depicted in the
subsequent subsections.

3.3.1. Target Explorer Design

Figure 5a represents the Target Explorer (TE) architecture, which is employed to handle two kinds
of data inputs from the linked private cache and other routers [6]. For each decoded request from
private cache, the address information is compared with a tiny but fast lookup table (i.e., four entries)
to detect prior accesses, and concurrently this address is spread forward to other routers through
broadcasting across the routing network. Then, this address is further compared with the history tag
buffer (maintained under LRU replacement policy) for exploring previously-stored target data which
had been identified as sharing data, and if there is a hit on the current buffer, the last target data can
be rapidly echoed to the processing core unit (Read access), or the new target data can be written to
the history data buffer and further to other related routers (Write access). In case of a miss on current
buffer but hit on other routers, the target data can be loaded from other routers or the new target data
is written to other routers. Otherwise, if any sharing data misses at history buffers, this data will be
maintained by the directory logic of the shared cache, and further this data will be loaded to update
history buffer. Once a target data is detected as sharing data, this data will be saved in the history tag
and data buffers. Additionally, those buffers only store the latest access results which are generated
from any concurrent access detected in lookup buffers or are echoed from directory monitor of shared
cache. Furthermore, the retired sharing data will be delivered to data replacement logic to update all
related copies in the router network.
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Figure 5. Architecture design on target explorer logic: (a) Hardware structure including lookup buffer
and history tag and data buffers; (b) Critical path latency of target explorer when the history buffers
contain 32 entries.

Figure 5b describes the approximate critical path latency of target explorer logic, where each
latency is counted by calculating the access delay from source_CLK to sink point of each component
in the IC Compiler. The address information of private cache accesses can bypass across the target
explorer within 25 ps, and further can arrive at all routers by three times routing on an interlinked4x4
router network. Concurrently, such address information needs to explore in the lookup buffer and then
is controlled to output within 58 ps. Furthermore, this information will be compared to the history tag
buffer for identifying previous sharing data with 104 ps. The longest critical path of target explorer
consumes 162 ps latency while the most prolonged latency of identifying one access from the time
point of request address arriving to the end of finishing target exploration in the outermost router can
be calculated as n times bypass * (25 + 17 output latency) + 162 = 162+42n ps (n stands for the router
number of bypassed routers), which is far less than the latency of private cache access.
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3.3.2. Data Replacement Design

Figure 6a shows the internal architecture of Data Replacement (DR) logic [6], which is designed
for maintaining data coherence on detected sharing data. In case of detecting sharing data in lookup
buffers, this data will be loaded into history buffers with shared state, and further several extra bits
are generated to link related routers. Meanwhile, each tag address should search for the history tag
buffers across router network and any hit on those buffers will trigger data replacement check for
data coherence. Moreover, the sharing data which are detected by the directory-based coherence logic
of shared cache will be echoed to private cache and history buffers of related routers, and further,
those data should import to data replacement logic for integrating extra interlink bits. Finally, marked
address information should be sent to data deliverer for also updating sharing data on related routers.
Figure 6b represents the critical path latency of DR logic. The address information of sharing data
will be exploring to the directory within 78 ps, and then the state transition is conducted within 15 ps.
Counting in the output latency, the overall latency of data replacement path is about 93 ps.
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3.3.3. Data Deliverer Design

Figure 7a shows the internal architecture of Data Deliverer (DD) logic [6], where the crossbar
switch is extended from the crossbar of the conventional router. The DD logic can handle three kinds
of input data, including bypass data, treated shared data, and retired history data. As the bypass
data need to be quickly spread to all routers, the DD logic is designed to directly export those data
by Muxes logic while the output delay is about 17 ps. Moreover, treated shared data will be selected
to echo back to the processing core or bypass to other routers based on output signals of the channel
controller. As to retired data from history tag and data buffers, they will be sent to private cache and
further to the shared cache for data coherence. Especially, the target data delivered from other routers
to the current router, which have been handled by DR logic, should be updating to history tag and
data buffers by data switching. Figure 7b shows the critical path latency of DD logic. The data can be
bypassed within 17 ps. Meanwhile, the output data can be driven to the crossbar for data switching
within 68 ps, and then those data are driven to export within 23 ps, thereby the overall latency of DD
path is about 108 ps.
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3.3.4. Coherence Protocol Modifications.

Beyond the baseline coherence protocol of MOESI directory, we only do modifications on two
situations: a) Updating the already-handled sharing data from the first layer until to memory; b) Retiring
sharing data from L1 cache level. In the first situation, if a write request to sharing datum is handled in
the first layer, the cache line state in requester’s L2 slice should be changed to ‘Owned’ state and state
in sharer’s L2 slices are changed to ‘Shared’ state. If a read request to sharing datum is handled in the
first layer (i.e., a crossed read access), the cache line state in both requester’s L2 slice and other sharer’s
L2 slice should be changed to ‘Shared’ state. In the other situation, if the cache line of a sharing datum
is retired from L1 cache level, relevant cache line state in its L2 slice should be changed to ‘Shared’ state.

3.4. Routing Path and Topology Design

In this section, the routing path details of proposed router network are depicted, and also the
potential latency savings of each path are calculated corresponding to each access type of detected
private cache accesses. As shown in Figure 8a, four access types, including shared read/write and
crossed read/write accesses, are handled in the proposed path as follows:

1. Shared read access. For shared read access, its address information will be spread in the router
network, and then the previous read can be detected in TE stage within 162 ps. Then, the target
data stored in history tag buffer should be sent to DR logic for marking interlink bits within 93 ps.
Finally, the current DD logic will export the target data to processing core within 108 ps. As a
result, the shared read access can be handled with 363 ps, which is far less than the latency of the
conventional path

2. Shared write access. Once shared write access arrives, its address information will be spread
in the router network for locating previous target data addresses at history tag buffers of both
other routers and current router while those operations are done in TE stage. Then, the address
of this write access should be sent to DR logic for marking interlink bits. Thus, the current
DD logic will export the target address and related data to the present history tag and data
buffers. Meanwhile, the target data of this write access will be bypassed to the relevant routers,
and further, the target address of this write access marked with interlink bits should be sent to
DR logic. Finally, both target address and data will be exported to update the last target data
stored in history tag and data buffers of related routers and furthermore update the previous
data existing in the private caches corresponding to those related routers. As a result, the new
data of shared write access can be easily replaced to all old data existing in different threads
within 564 + 42n ps rather than the significant latency (approximate to 23 ns) of writing through
processing threads

3. Crossed read access: In conventional path, a crossed read access will miss in private cache and
also possibly would get missed in partitioned shared cache banks, thus, a shared cache access is
required with about 12 ns latency, or even an off-chip memory access costs approximately 72 ns
latency, or a series of complex directory matching operations are needed to handle this access.
However, in the proposed path, the address information of this access will be explored in lookup
buffer and current history tag buffer in TE stage. Meanwhile, such address information will
be directly exported in DD logic, and then that information will be bypassed across the router
network for detecting previous read data existing in other routers. Following that, the target
address will be sent to DR logic, and subsequently, the target data will be exported to the current
router in DD logic. Finally, the target data can be echoed to the processing core, and the history
tag and data buffers of the current router will be updated with the borrowed data from other
routers. As a result, the crossed read access can be handled within 471 + 42n ps, which is far less
than the latency of the conventional path

4. Crossed write access: The address information of crossed write access will be firstly spread in
the router network for locating previous target data addresses at history tag buffers of other
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routers in TE stage. Then, the address of this write access should be sent to DR logic for marking
interlink bits. Thus, the current DD logic will export the target address and related data to the
present history tag and data buffers. Meanwhile, the target data of this write access will be
bypassed to the relevant routers, and further, the target address of this write access marked with
interlink bits should be sent to DR logics of other routers. Finally, both target address and data
will be exported to update the previous target data stored in history tag and data buffers of other
routers, and also, to update the old target data existing at private caches. Hence, the new data
of shared write access can be easily spread to replace the last data living in other threads with
the latency of 471+42n ps rather than the significant latency (approximate to 23 ns) of writing
through processing threads
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read/write accesses, while approximate access latency values of proposed path and conventional path
are compared. Where 42n stands for the latency of bypassing n routers and n is less than or equal
to six for XY routing in a 4 × 4 router network; (b) Data exchange examples on proposed path and
conventional path, where dashed line stands for data routing in proposed network and dark-filled
steps represent directory based coherence path.

Figure 8b represents sharing data read and write examples. For a detected access, target data can
be allowed to route between sharers and requester. Thus, complex and expensive steps routing in low
cache level can be saved. As those access types take a portion of private cache accesses by on average
3.82 percent, 0.95 percent, 2.98 percent and 1.31 percent, respectively, many potential improvements
can be achieved because the access latency on handling detected sharing data in proposed path is
dozens of times less than the latency in conventional path. Moreover, the meshed XY routing topology
is employed with our 4x4 router network, where routing data in the horizontal direction have high
priority, and the data in vertical direction contain low priority. In the case of a many-core situation,
other routing topologies are selectable on the proposed router network, which is beyond the scope of
this work.

Moreover, the proposed router network can only detect a portion of sharing data accesses as there
is a trade-off between integration scale and working speed on history tag and data buffers. Thus,
the quantity of buffer entries is preferable under the principle of the highest Instructions Per Cycle
(IPC) won. As to sharing data access misses in the router network, the directory controller of the
shared cache will be triggered to handle those accesses and further, the handled target data will be
saved into related history tag and data buffers for data reuse.
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4. VLSI Implementation

4.1. Setups on Router Architecture Layout

Our proposed router architecture is implemented through a series of operations including Verilog
modeling, timing analysis in ModelSim 10.4, synthesis and implementation with IC Compiler, which
employs process as our previous work [6]. Based on CACTIv6.5 cache model [15], we use sixteen
32KB caches as the private cache and a 16MB/128 bank cache as the shared cache in a 16-core platform.
Meanwhile, the proposed router architecture is enhanced based on the conventional router design [13],
and all input and output ports of the proposed router are described as follows:

1. Target Explorer. 45-bit address hits in lookup buffer. The record entry table receives 69-bit address
(45-bit address, 8-bit flow control, 13-bit interlink bits including 4-bit coherence bits and 3-bit
miss status) from data deliverer, and retires 69-bit address to the replacement coherency logic.
The linked data buffers also exchange 256-bit data blocks in step with the history data buffer.

2. Data Replacement. Both detected shared data and retired data are handled to be transported to
the data deliverer at 69-bit address length and 256-bit block length (325 bits in total).

3. Data Deliverer. The deliverer allows data output to the network or updates linked history buffers
at 325-bit length, and exports data to the current thread at the 301-bit length.

4.2. Area, Power and Latency Reports

Figure 9 represents the physical design, in which critical components of the router are highlighted
with frames to show their probable area details. As shown in Table 1, the proposed router contains
2237 ports, and there are 153944 gates counted in a five-level logic frame while those gates occupy
approximately 0.68 mm2 design area and consume about 48.61 mW dynamic power and 5.17 mW
leakage power. As to access latency, the longest path in the router is counted as 0.262 ns under
2865 clock sinks. When the router is tested to route a vast amount of no-load data, the maximum
throughput speed in the proposed router can reach at 1.37 Tbits/s at 10 percent activity under 2.0 GHz
clock frequency.
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Compared to a 32 KB private cache [15], the design area of our proposed router only takes up
about 8.93 percent area overhead. Furthermore, compared to a recent-released commercial chip named
Intel Xeon E5-2683v4 (14 nm) which has 16 cores, 45 × 52.5 mm2 package area and 120 W power as an
example [16], the overall area overhead of 16 proposed routers is about 16 × 0.6815 = 10.9 mm2, which
takes up 0.58 percent of the on-chip area (assume package ratio of intel chip as 1.25). And the overall
power overhead of those routers is about (48.6053 mW + 5.1749 mW) × 16 = 0.86 W, which takes up
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0.72 percent of the on-chip power. As a consequence, the hardware overhead of our proposed router is
small and insignificant compared to on-chip integration scale.

Table 1. Layout reports on integration scale, area and power details 1.

Report Type Quantity Report Value (ICC)

Setups

Clock frequency 2.0 GHz
Supply voltage 1.1 V

Temperature 55 ◦C
Technology library 45 nm

Integration Scale

Levels of logic 5
Number of ports 2237

Cell number coun 14189
Gate number count 113944

Area Report

Combinational area 0.2996 mm2

Non-combinational area 0.1182 mm2

Cell area 0.4179 mm2

Net area 0.2637 mm2

Design area 0.6815 mm2

Power Report

Cell internal power 31.1685 mW
Net switching power 17.4368 mW
Total dynamic power 48.6053 mW
Cell leakage power 5.1749 mW

Latency Report
Clock sinks 2865

Longest path 0.262 ns
CTBuffers 729

1. The history buffer size is set as 32 entries.

Moreover, the relationship between the integration scale of the history buffer and performance
of the proposed router is investigated as follows. In case of small buffer scale, it has small access
latency but can only detect a small amount of sharing accesses; however, in case of large buffer scale, it
can detect a large amount of sharing accesses but handling each sharing access in proposed router
costs significant access latency. Thus, the access latency values of history buffer whose size ranges
from 16 entries to 1K entries are calculated through counting the access delay from source_CLK to sink
point of history buffer hardware in IC Compiler. As shown in Table 2, the latency values are rapidly
increasing along with the allocated entry scale, where 16-entry buffer only has 97 ps access latency,
but 1K-entry buffer contains the insufferable access latency of 476 ps. As a consequence, there is a
trade-off existing on allocating the optimal scale of the history buffer, which can be set as 32 entries
based on performance and energy consumption evaluations described in the next section.

Table 2. Access latency values (ps) of history buffer with different entries allocated.

Buffer Entries 16 32 64 128 256 512 1K

Wr/Rd Decode 26 26 27 29 33 43 59
Bit Line Compare 71 78 89 115 162 255 417

Tag Explore Latency 97 104 116 144 195 308 476

5. Experimental Evaluation

5.1. Platform Setups

Simulation platform: The accurate gem5 simulation model is employed to form a 16-core simulation
platform which has three on-chip layers [7]. Table 3 lists the detailed parameters of processing cores,
private cache, shared cache, off-chip memory and router architecture. As to the private cache and
shared cache, they are established based on the CACTI cache model [15]. Furthermore, the simulator
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can integrate PIN tool for tracing instruction-driven simulation flowing in each customized model,
thereby both performance and energy consumption values can be rapidly calculated in detail [17].

Table 3. Parameter configurations on the simulation platform.

On-Chip Component Parameter Configurations

Processing Core 2.0 GHz, 16 cores, single thread per core, 1.1 V supply voltage, 128 IW entries, 45
nm technology library, 30 cycle TLB miss latency.

Private Cache 32KB for a core (private) including 16KB L1I cache and L1D cache, 4-way, 64 B
line size, 4 cycle latency.

Shared Cache 16 MB total size D-NUCA, 128 banks, 1 MB partitioned for a core (shared), 8-way,
128 B line size, 20 cycle latency.

Off-chip Memory 4 GB Double Data Tate (DDR4 2133MHz, 1.2V), 8KB page size, 120 cycle latency.

Router Network Mesh_XY Topology. 5 ports per router, 65-bit flit, 5 flits per package.

Router model: The layout results including path latency, area and power details are integrated
into the conventional router architecture for establishing the enhanced router based on mesh_XY
topology. As the integration scale of history tag and data buffers is highly related to the number of
detected accesses (more massive size, more accesses detected) and also the latency of handling each
access, seven kinds of entry numbers including 16, 32, 64, . . . , 1K entries are simulated for selecting
the optimal scale based on the overall on-chip performance values.

Benchmarks: The PARSEC benchmark suite covers up different application domains and supports
large-scale multi-threaded simulations [12], meanwhile its contained benchmarks have large working
set, diverse locality and data sharing. Thus, those benchmarks are suitable to be our simulation
workloads. During the simulation, each workload is allocated to sixteen threads while each processing
core contains only one thread. Moreover, the initial one billion dynamic instructions are skipped
for warming up, and the next ten billion dynamic instructions executed in all threads are counted
uniformly for fair evaluations.

Comparisons: All values of the proposed system on throughput, performance and energy should
be normalized with related values of the base system for the purpose of revealing improvements.
Meanwhile, values of the base system with 64KB private cache size is compared with related values
of base system to represent some improvements on allocating larger private cache, and the values
of Proactive Resource Allocation (PRA) mechanism which acts as a related work over the proposed
system are compared with related values of proposed system [18].

Evaluating metrics: In order to normalize the performance speedup and energy saving across
those methods, three evaluation metrics defined as private cache throughput, speedup IPC and energy
consumption are employed for counting runtime details during the period of executing fixed ten billion
dynamic instructions, mean that each simulation test should start when the first one billion dynamic
instructions are skipped, and the simulation must be stopped if the amount of dynamic instructions
executed in all threads reaches ten billion dynamic instructions. Equation (1) represents the average
throughput of private cache accesses, which is defined as the average number of handled private
cache accesses counted in each thread per second (N stands for the number of concurrent threads).
Equation (2) represents the speedup IPC metric, which is defined as the average IPC meant among
all parallel threads, and Equation (3) shows that each energy consumption value calculated through
counting overall energy consumed by all on-chip components during the period of executing ten
billion dynamic instructions.

Throughput on private cache =
1
N

∑
|
N
i=1

∑
Request Bandwidth +

∑
Echo Bandwidth

Execution Time
(1)
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Speedup IPC =
1
N

∑
N
i=1IPCi

Core (2)

On-chip Energy =
∑

Energyon-chip component (3)

5.2. Experimental Results

Throughput improvement: To represent the throughput variations among benchmarks, Table 4
describes the average throughput values of private cache accesses within the base system and proposed
systems with different history buffer entries. For different benchmarks executed in the base system,
their throughput values range from 43.5 Gbps (dedup) to 120.7 Gbps (swaptions) while the average
throughput value among all criteria is about 77.1 Gbps. Once the proposed router network is applied
into the simulation platform, throughput values in all benchmarks are improved greatly, and the
average value is about 100.5 Gbps with 16 history buffer entries allocated, and in case of 32 entries
allocated, the average value reaches the peak throughput by 117.9 Gbps which is improved by 52.92
percent over the one of base system. As the integration scale of history buffer entries is ranging from
32 entries to 1K entries, the average throughput improvement tends to be decreasing from 115.3 Gbps
(64 entries) to 89.2 Gbps (1K entries). In case of 1K entries allocated, only 15.69 percent of average
throughput has been improved over the one of the base system.

Table 4. Private cache throughput values of both base system and proposed system (Gbps stands for
×109 bits per second), where history buffer scale ranges from 16 to 1K entries 1.

Benchmark\Sys. Base 16 32 64 128 256 512 1K

blackscholes 70.8 96.5 111.5 107.2 103.6 97.9 91 80.5
bodytrack 82.6 104.6 125.9 123.8 119.5 112.1 104.7 95.8

canneal 62.9 82.6 99.1 93.7 90.4 85.6 80.9 73.2
dedup 43.5 62.1 79.7 75.1 71.8 67 62.3 56.7
facesim 83.7 101.1 122.5 119.8 114.5 105.9 99.7 89.2
ferret 63 81.7 95.6 93.4 90 86.3 80.5 71.2

fluidanimate 67.1 91.2 107.2 104.5 100.4 95.2 89.8 81.4
freqmine 92.1 116.5 135.5 134.5 129.8 124.3 118.4 106.8

streamcluster 71.8 98.5 114.1 113.2 109.3 103.9 95.7 83.9
swaptions 120.7 147.4 165.9 162.7 161.8 155.2 147.4 135.8

vips 88.9 114.2 131.3 129.6 125.2 120.6 113.8 103.6
x264 78.2 109.6 126.2 125.8 121.7 107.2 100.3 91.4

Ave. Value 77.1 100.5 117.9 115.3 111.5 105.1 98.7 89.2
1. The proposed router only transports detected sharing data, so that the efficiency of proposed router is highly
related on the history buffer scale, existing a tradeoff on detected data number and per-routing latency.

Performance improvement: Figure 10 represents the speedup IPC values while the history
buffer scale of the proposed system ranges from 16 to 1K. Although there are 16 entries allocated to
history buffer, proposed router-integrated system surpasses the base system in speedup IPC about
23.91 percent. When 32 entries are allocated to the history buffer, the average speedup IPC of proposed
method outperforms the one of base system with the highest 31.85 percent. Then, the improvement
on speedup IPC tends to be decreased along with allocated entries ranging from 64 to 1K, where
30.56 percent of speedup IPC improvement can be achieved by allocating 64 entries. However, in the
case of allocating 1K entries, there is only 12.61 percent of speedup IPC improvement over the one of
the base system.
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Energy-saving: Figure 11 represents the on-chip energy consumption values while the history
buffer scale of the proposed system ranges from 16 to 1K. As all groups of simulation tests should be
uniformed with the same amount of workload, each test on simulating any benchmark must count
ten billion dynamic instructions during the executing period between the one-billionth instruction
and the eleven-billionth instruction. Thus, the energy consumption of the proposed system can be
improved over the one of base system, because that proposed system consumes far less executing
time than the base system with the same workload. Experimentally, the energy values counted in our
proposed system (allocated with 32 history buffer entries) can be saved about 17.61 percent over the
ones of base system. Along with allocated entry scale increasing, the amount of energy saving tends to
be decreasing from 15.93 percent (64 entries) to 7.85 percent (1K entries) over the base system.
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Related work comparison: Figure 12 represents the speedup IPC comparisons on four methods.
And the PRA based system is compared with our proposed system (32 history buffer entries) to show
significant improvement achieved by the proposed design. As the performance of private cache is
highly related with the cache scale trade-off between hit rate and hardware cost, the speedup IPC
values of the base system (64 KB private cache size) are marginally inferior to the values of the base
system with an average of 0.82 percent. Meanwhile, PRA based system can achieve about 11.62
percent speedup IPC improvement. However, our proposed scheme can achieve about 31.85 percent
improvement over the base system. Figure 13 represents the energy consumption values of those
methods, where PRA-based system can save some on-chip energy by an average of 10.93 percent,
while about 17.61 percent improvement is attained in the proposed system. However, allocating large
private cache from 32KB to 64KB results in a proportion of 0.95 percent energy overhead. Note that
PRA based system is necessitated to predict the cache accesses with extra hardware, and to predict
precisely, this system requires a large scale of additional hardware which leads to the limitation of both
speedup IPC improvement and energy saving in this system.
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6. Discussion

Initially, two trade-offs on selecting the optimal private cache size and history buffer scale should
be clearly discussed as follows:

• Trade-off on private cache size. As the hit rate of a private cache is increasing along with allocated
cache size rising, the access latency of each private cache hit is also increasing as well. However,
enlarging private cache size can gain some improvements only when the benefits from increased
hits outperform the losses due to increased access latency. Moreover, large cache size will cost
extra energy consumption on hardware overhead

• Trade-off on history buffer scale. With larger buffer scale allocated, more sharing data which
are in larger reuse distance can be detected and further handled by router network. However,
the enlarged scale will bring about extra latency on handling each detected sharing data. Similar to
the former trade-off, the history buffer scale can also be enlarged when the benefits outweigh losses

Thus, the optimal private cache size can be tuned based on both speedup IPC and energy
consumption comparisons, and 32 KB size is reasonably selected as the optimal one. Similarly,
the history buffer scale can be determined as 32 entries based on the comparisons of private cache
throughput, speedup IPC and on-chip energy consumption.

As described in Section 2.2, four kinds of access patterns, including shared accesses and crossed
accesses together take up only an average of 9.06 percent of all private cache accesses. Moreover,
both lookup buffers and history buffers can only detect recently reusable sharing data with limited
hardware scale, and undetected accesses are handled by the shared cache. Thus, the amount of
detected sharing data must be less than 9.06 percent of all private cache accesses, because that the
history buffer scale is limited. However, for each detected access on shared data, the shared read access
can be handled in the proposed router network within 363 ps rather than 2 ns latency of processing
conventional read access. And shared write access can be processed within 564 + 42n ps (n ≤ 6 in
4 × 4 network) rather than 23 ns latency of a conventional write-through operation (up to 40 times
faster). And crossed read access can be handled within 471 + 42n ps rather than 12 ns latency on
processing shared cache access. And crossed write access can be handled within 471 + 42n ps rather
than approximate 23 ns latency on processing a write-through operation. As a consequence, even if
there are only small amount of shared data handled in the proposed router network, plenty of clock
cycles consumed on those shared data can be saved considerably to a great extent with the proposed
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router network, thereby the throughput on a private cache is improved by 52.92 percent on average,
and the speedup IPC is enhanced by 31.85 percent on average over the ones of the base system.

For fair comparisons, all simulation tests are unified to count the same amount of workload. Thus,
the energy consumption with the proposed system can be reduced about 17.61 percent over the base
system, due to the cause that, the execution time of the proposed system is far less than the base system
even though the power of the proposed system is larger than the base system. The proposed system
contains extra hardware overhead, but it is ignorable.

7. Related Works

The stacked 3D architectures flourishing in recent years tend to be the next generation on-chip
architectures as they combine the good parts of parallel computation in CMP architectures and
high-density integration in 3D architectures together. And emerging TSV techniques [3] actualize fast
and wide, transferring bandwidths between layers in the vertical dimension. Thus, many researchers
are motivated to employ stacked 3D architectures for easing the ‘Memory Wall’ issue in different
angles. Some researches aim at boosting throughput performance by solving cache write overhead in
3D network level [1], or managing cache migration to reduce access latency [19]. Some researchers try
to reduce energy consumption by applying the dynamic voltage and frequency scaling technique to
manage the shared cache network [20], or proposing novel tree-based directory to bridge plenty of
shared cache portions in 3D network [21]. The research in [22] proposed a novel narrow-width-value
based stacked 3D cache architecture for both energy saving and yield improvement. The research
in [23] tried to use thermal information in the shared cache to adaptively balance runtime status.
Based on many mature 2D techniques, lots of attempts are propelling for the purpose of throughput
performance, energy saving, thermal reduction and so on, implementing at the shared cache, private
cache, router network or other combined on-chip components.

To simulate proposed designs precisely, cycle-accurate simulators are desired to build on-chip
models. The updated SIMICS platform [24] can support the full system simulation with various
instruction sets, but all built modules only can be plugged in this closed-source simulator integrally
and unalterably. For open-source simulators, both MARSSx86 simulator [25] and Gem5 simulator [7]
support cycle-accurate full system simulation, and the MARSSx86 simulator works well in particular
CMP implementation. However, the Gem5 simulator integrates the excellent CMP simulator from M5
and the excellent cache memory simulator from GEMS together, which is suitable for studying cache
network designs.

8. Conclusions

In this work, an enhanced router network is efficiently integrated into the private cache level for
bridging parallel processing threads in the first layer of a stacked 3D on-chip system. The proposed
router can rapidly detect all sharing data existing in different threads, and then those data can be
maintained for data coherence by delivering target data across threads with the aid of a router network,
thereby saving plenty of clock cycles on sharing data management. Moreover, the proposed router is
implemented to evaluate a hardware overhead like area, power and integration scale. Resultantly,
those overheads are ignorable. Finally, the simulation system integrated with the proposed router
network can outperform the base system about 31.85 percent on the improvement of IPC and about
17.61 percent on the improvement of energy consumption.
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Appendix A

The appendix consists of three parts: thermal evaluation of proposed 3D architecture, area
evaluation of stacked 3D layers and area evaluation on TSV array.

Thermal evaluation: in order to analyze the reliability under a thermal constraint, we employ
the HotSpot 6.0 tool [26] for simulating proposed 3D architecture. Table A1 lists key parameter
configurations in thermal models, and we achieve the trace power on three layers from Gem5
simulating platform and then insert to HotSpot tool for conducting grid model simulation. As shown
in Figure A1, the steady temperature in three layers ranges from 337.81 K to 359.25 K which is lower
than the temperature threshold of 363.15 K. Typically in the top layer, the processing cores contribute a
lot of heat, where efficient heat dissipation methods are desired to apply in this layer.

Table A1. Parameter configurations in HotSpot thermal model.

Parameter Value Parameter Value

Chip thickness 0.00026 m Specific heat capacity 1.75 MJ/(m3-K)
Thermal conductivity (Si) 110 W/(m-K) Initial temperature 328.15 K

Stacked layer number 3 Ambient temperature 298.15 K
Heat sink thickness 0.0039 m Temperature threshold 363.15 K

Thermal conductivity 350 W/(m-K) Model grid 32 × 32
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Area evaluation on layers—we summarize the core model from Gem5, cache and memory 
models from CACTI tool, router model from layout report and TSV model from previous work in 
[3,8,9]. As listed in Table A2, components stacked in each layer are evaluated. In the first layer, 16-
core integration area can be calculated as 291.04 mm2. The middle layer occupies 153.61 mm2 and the 
bottom layer takes up 214.34 mm2. The area ratio among three layers is about 1.36:0.72:1. Moreover, 
the middle layer remains some margin area for further extending the shared cache scale. 
  

Figure A1. Thermal profile of proposed 3D three-layer architecture (steady temperature evaluated,
size scale in Meter, temperature in Kelvin).

Area evaluation on layers—we summarize the core model from Gem5, cache and memory models
from CACTI tool, router model from layout report and TSV model from previous work in [3,8,9].
As listed in Table A2, components stacked in each layer are evaluated. In the first layer, 16-core
integration area can be calculated as 291.04 mm2. The middle layer occupies 153.61 mm2 and the
bottom layer takes up 214.34 mm2. The area ratio among three layers is about 1.36:0.72:1. Moreover,
the middle layer remains some margin area for further extending the shared cache scale.

Table A2. Area evaluations on three stacked layers.

Layer Quantity Value (mm2)

First layer

Core die 9.29
L1I+ITB 3.47

L1D + DTB + W/RQu 4.16
Router + TSVs 1.27

Second layer

L2 tag + array + output 79.49
Directory logic 35.17

Cache controller 18.63
Router + TSVs 1.27

Third layer Memory (×4 stacked) 194.02
Router + TSVs 1.27
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TSV area evaluation: our TSV array, which contains 5 × 65 TSVs, refers to the TSV model in [9].
Each TSV is set as 20 µm diameter and 80 µm pitch in scale, and those TSVs are distributing at the area
shown in Figure A2. We can calculate the layout area of one TSV array to be 0.59 mm2.
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