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Abstract: Recently, device-to-device (D2D) communications have been attracting substantial attention
because they can greatly improve coverage, spectral efficiency, and energy efficiency, compared to
conventional cellular communications. They are also indispensable for the mobile caching network,
which is an emerging technology for next-generation mobile networks. We investigate a cellular
overlay D2D network where a dedicated radio resource is allocated for D2D communications to
remove cross-interference with cellular communications and all D2D devices share the dedicated
radio resource to improve the spectral efficiency. More specifically, we study a problem of radio
resource management for D2D networks, which is one of the most challenging problems in D2D
networks, and we also propose a new transmission algorithm for D2D networks based on deep
learning with a convolutional neural network (CNN). A CNN is formulated to yield a binary vector
indicating whether to allow each D2D pair to transmit data. In order to train the CNN and verify the
trained CNN, we obtain data samples from a suboptimal algorithm. Our numerical results show that
the accuracies of the proposed deep learning based transmission algorithm reach about 85%∼95% in
spite of its simple structure due to the limitation in computing power.

Keywords: D2D; mobile caching; CNN; deep learning; transmission algorithm

1. Introduction

According to a recent study, it was predicted that the total amount of Internet traffic will increase
threefold over five years from 2017 to 2022 and that mobile Internet traffic will increase sevenfold for
the same time period [1]. More specifically, video traffic will be growing more steeply than other types
of traffic. Video traffic, which accounted for about 75% of total Internet traffic in 2017, will account
for about 82% in 2022. Another interesting study showed that the most popular 50 videos account for
almost 80% of the total amount of views for YouTube [2]. Thus, the mobile caching network has been
attracting much attention as a new approach to cope effectively with the explosively growing mobile
Internet traffic [3–7].

A probabilistic caching scheme with a low complexity for minimizing the caching failure
probability was proposed [3]. It was shown that the density of successful reception can be maximized
by optimally placing files on caching servers according to varying channel conditions [4]. The concept
of collaboration in mobile caching was proposed in [5,6]. The collaboration distance was optimized
in [5], and a tradeoff between collaboration distance and interference was investigated in [6]. A joint
non-convex problem for resource scheduling and power allocation in a wireless caching network was
formulated, and an algorithm was designed based on two decomposed convex problems [7]. Contrary
to conventional approaches such as multiple antennas and heterogeneous networks to improve the
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spectral efficiency of cellular networks, the mobile caching network can dramatically reduce the
traffic load, especially for core and backhaul networks, and is based on D2D communication. D2D
communication can shorten the distance between transmitters and receivers compared to conventional
cellular communications. The shortened distance between end points can reduce the end-to-end
latency and power consumption and can enhance data rates. Motivated by these potentials, many
previous studies have investigated mobile D2D communications [8–22].

In this paper, we also investigate the problem of radio resource management for D2D networks,
which is one of most challenging problems. We consider a cellular overlay D2D network where there is
no mutual interference between D2D links and cellular links. To improve the spectral efficiency, all D2D
devices are allowed to share given radio spectra. Thus, we need to choose an optimal set of D2D
links to transmit data considering the interference among D2D devices. Most of the previous studies
adopted heuristic or mathematical approaches to propose algorithms for resource management for
D2D networks, which continuously cause complexities that are repeated every scheduling decision,
and the total complexities will be thus tremendous if accumulated. We propose a new algorithm
based on deep learning, which has been widely used in various fields due to its potential. Especially,
many studies have demonstrated that deep learning can be successfully exploited in the communication
field [23–28]. We formulate a CNN to design an algorithm that chooses D2D links to transmit data.
Even though the CNN based algorithm might result in unignorable complexities in the learning
process, they are only caused during the learning process, and no more complexities are thus required
in the scheduling process. In addition, the complexity of the supervised deep learning is bounded and
predictable compared to deep reinforcement learning (DRL). We also design a sub-optimal scheme to
obtain data samples required to train the designed CNN and verify the trained CNN. Ninety percent
of the obtained data are used to train the designed CNN, and the remaining 10% is used to verify the
trained CNN. An early terminating learning scheme with an adaptive learning rate is used to avoid
over-fitting of the CNN with limited computing power. We analyze the performance of the CNN in
terms of accuracy and average sum rate and compare them with those of the sub-optimal scheme. Our
numerical results confirm that the CNN has accuracies of 85%∼95%, which indicates that the CNN
can yield 85%∼95% identical scheduling results to the sub-optimal scheme.

The rest of this paper is organized as follows. A detailed discussion of relevant studies about
D2D communications is provided in Section 2. In Section 3, our D2D network model and wireless
channel model are described. In Section 4, a sub-optimal scheme to obtain data samples to train and
verify our neural network is described and a deep learning based scheduling scheme is also proposed.
The performance of the proposed scheme is analyzed in terms of accuracy and average sum rate
in Section 5. Finally, the conclusions of this paper are drawn in Section 6.

2. Related Work

Interesting algorithms to select optimal communication modes for D2D devices were studied
for cellular aided D2D networks [8–10]. It was assumed in [8] that mobile devices can select
a communication mode among a mode using dedicated resources, a mode reusing cellular resources,
and a conventional cellular mode, while a D2D mode using dedicated resources was not considered
in [9]. An adaptive mode selection of potential D2D devices was formulated as a follower
evolutionary game, and an evolutionary stable strategy was considered to be the solution [10].
The authors investigated how to manage or mitigate the cross-interference between cellular and
D2D communications in cellular underlay D2D networks [11–13]. In cellular underlay D2D networks,
D2D devices share the same radio resource with cellular mobile devices. The authors of [11] showed
that D2D devices can avoid the harmful interference from cellular networks if they decode signaling
messages broadcast by cellular base stations (BSs) and take advantage of the information for radio
resource management embedded in the decoded signaling messages. A hybrid mechanism based on
fractional frequency reuse (FFR) scheme and an almost blank sub-frame (ABS) scheme was proposed to
reduce the interference caused by cellular networks to D2D networks [12], which is expected to be very
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effective especially in cell edge areas. In [13], it was shown that a game theory based formulation for
resource block allocations can have at least one Nash equilibrium point, and a distributed power control
scheme was also proposed to minimize the cross-interference between cellular and D2D networks.

In addition, various problems of radio resource management for D2D networks have been widely
investigated [14–21]. A channel aware scheduling scheme for D2D links was proposed in [14]. It was
shown in [15] that if a BS can acquire the perfect information of channel gains of all communication
links, multi-user diversity (MUD) gain can optimize the performance of D2D networks without
significantly deteriorating the performance of cellular networks. Contrary to [14,15], the authors
of [16] attempted to reduce the interference caused by D2D networks to cellular networks, and
they proposed a simple heuristic algorithm because of the tremendous complexity of an optimal
algorithm. The interference relationships among D2D and cellular communication links were modeled
as an interference graph and a joint resource allocation scheme, yielding a near-optimal solution with
low computational complexity [17]. An efficient bandwidth allocation scheme to maximize the utility of
both D2D users and cellular users was proposed in [18]. A distributed algorithm with low complexity
was also proposed because the original allocation problem was NP-hard. The convergence of the
proposed distributed algorithm was proven in a static environment. The authors of [19] investigated
how to form spectrum sharing partners between D2D links and cellular links optimally in cellular
underlay D2D networks considering the cross-interference. Centralized and distributed algorithms
for cellular overlay D2D networks were proposed in [20]. It was shown that a distributed algorithm
can significantly reduce the signaling overhead with a marginal loss in performance, compared to
a centralized algorithm. A two phase resource sharing algorithm was designed in such a way that its
computational complexity could be adapted according to the network condition. In the first phase,
the initial set of candidate channels is adaptively determined, and Lagrangian dual decomposition
is used to determine the optimal power for D2D devices, maximizing the network sum rate in the
second phase [21]. Finally, the authors in [22] proposed a novel peer-to-peer (P2P) protocol based on
D2D communication, which combines the conventional application layer P2P protocol and the routing
and scheduling schemes in lower layers.

On the other hand, an overview of the state-of-the-art deep learning architectures and algorithms
relevant to the network traffic control systems was provided [23]. Deep neural network (DNN) based
channel estimation and signal detection in orthogonal frequency-division multiplexing (OFDM) was
studied [24]. A DNN enabled millimeter wave massive multiple-input multiple-output framework for
effective hybrid precoding was also proposed [25]. A radio resource allocation algorithm for cognitive
satellite communications was proposed by leveraging multi-objective deep reinforcement learning
(DRL) and artificial neural network ensembles [26]. An energy efficient DRL based algorithm for
unmanned aerial vehicle (UAV) control was proposed [27]. Despite recent improvements, DNNs tend
to be easily over-fitted, while DRL faces several challenges. For DRL, a policy must be inferred
by trial-and-error interaction with the environment, and agents must deal with long range time
dependencies, which is known as the credit assignment problem [28].

3. Network Model

We investigated a cellular overlay D2D communication network with 2N mobile devices,
as illustrated in Figure 1. We had no mutual interference between D2D links and cellular links
because a dedicated radio resource was allocated for D2D devices, while all D2D devices shared radio
spectra for higher spectral efficiency. If a mobile device wishes to receive data, it must be associated
with another mobile device storing the data. We assumed that the process for associations was beyond
the scope of this paper. We have N associations in Figure 1 because each mobile device was already
associated with another mobile device. Although all N pairs were allowed to share radio spectra,
the overall performance of the network could be enhanced by optimally choosing D2D pairs among
N pairs due to the interference. In this paper, we thus focus on how to choose an optimal set of
D2D pairs among N pairs. hji denotes a channel coefficient between a transmitter i and a receiver
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j, where 1 ≤ i ≤ N and 1 ≤ j ≤ N. We assumed a semi-static Rayleigh fading channel model.
Thus, hji ∀i, j was distributed by a complex Gaussian distribution following ∼ CN (0, 1). All channel
coefficients were independent and identically distributed (i.i.d.). It was assumed that all channels
between transmitters and receivers were reciprocal because a time division duplexing (TDD) scheme
was considered, and thus, hji = hij ∀i, j. In addition, we assumed that all channels were semi-static.
Thus, hji was static during one frame period and varied randomly each frame period. If i = j, hji
denotes the gain of the channel for the ith pair’s data transmission. Otherwise, it denotes the gain
of an interference channel. All mobile devices’ transmission power was identical and denoted by Pt.
We considered a greedy source model as a traffic demand model where all transmitters had infinite
packets to transmit. A greedy source model is a simple packet data model that is effective in analyzing
the maximum throughput or data rate without guaranteeing any quality-of-service. In this paper, we
focus on verifying the feasibility of deep learning in D2D networks and investigating the accuracy of
the deep learning based algorithms. Even though more practical spatial and mobility models such as
stochastic geometry and Manhattan models were not considered for simplicity, they will be able to be
considered in our future work once the feasibility of deep learning has been verified in D2D networks.

Interference

|h1i|2

|hii|2

|hNi|2

Tx 1

Tx i

Tx N

Rx 1

Rx i

Rx N

Figure 1. An illustration of a D2D communication network with N pairs.

If we define T and U as a transmission set consisting of the pairs of devices that will be allowed
to transmit data and a universal set consisting of all N pairs, respectively, then T ⊂ U , {1, 2, · · · , N}.
For a given T, the received signal-to-interference plus noise power ratio (SINR) for the i-pair in the
given T, γi, can be calculated as:

γi =
Pt|hii|2

Pn + ∑j∈T,j 6=i Pt|hij|2
, i ∈ T, (1)

where Pn denotes a Gaussian thermal noise power. If the numerator and denominator of (1) are both
divided by Pn, (1) can be rewritten as:

γi =
Γ|hii|2

1 + ∑j∈T,j 6=i Γ|hij|2
, i ∈ T, (2)

where Γ is defined as Pt
Pn

and denotes a transmission power of the signal-to-noise power ratio (SNR).
Then, the sum rate for the given T can be easily calculated as:

RT = ∑
i∈T

log2 (1 + γi) . (3)
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We can find an optimal set of pairs, T∗, to maximize the sum rate as follows:

T∗ = arg max
T⊂U

RT. (4)

4. Proposed Deep Learning Based Scheme

Supervised deep learning algorithms continuously train neural networks to minimize the error
of the output of the neural networks and the target solution. An extensive amount of data is thus
required for training. In this paper, we repeated the training of our neural network toward optimal
solutions given in (4) and obtained data for the repeated trainings from extensive channel realizations.
In addition, we should verify whether the algorithms have been over-fitted by using extra channel
realizations different from those used for training. If the whole channel gains are available, we can find
the optimal combination given in (4) based on the brute-force searching algorithm. However, the
brute-force searching algorithm will cause a tremendous computational complexity, especially as N
increases. Thus, we formulated a sub-optimal scheme as an alternative to obtain data samples required
to train our deep learning algorithm.

4.1. A Sub-Optimal Scheme to Obtain Data Samples for Training

The main concept of the sub-optimal scheme was proposed in our previous study [20]. It was
shown that the sub-optimal scheme can achieve comparable sum rates to the brute-force searching
scheme with an extremely low computational complexity. The sub-optimal scheme is described
in Algorithm 1. In this paper, we used the sub-optimal scheme to obtain data samples instead of
an optimal scheme merely because of the complexity of the optimal scheme. However, using the
sub-optimal scheme does not cause any change in the proposed algorithm, nor does it limit the
contributions of this paper. For given N pairs, the brute-force scheme requires a maximum of 2N

iterations, while the sub-optimal scheme only requires a maximum of N iterations. In the sub-optimal
scheme, N pairs of mobile devices are sorted according to their channel gains in descending order,
ignoring interference channels. The sorted pairs are re-indexed by î, 1̂ ≤ î ≤ N̂. Thus, the sorted
pairs satisfy:

|h1̂1̂|2 ≥ |h2̂2̂|2 ≥ · · · ≥ |hN̂N̂ |2. (5)

Algorithm 1 A sub-optimal algorithm to obtain training samples.

Sort |hii|2 in descending order
Initialize: T = ∅ and R0 = 0
for k = 1 to N do

for i = 1 to k do
Calculate the SINR for the îth pair, γî

end for
Rk = ∑k

i=1 log2(1 + γî)

if Rk−1 ≤ Rk then
T = T∪ {k̂}

else
break

end if
end for

In the k(1 ≤ k ≤ N)th iteration, the sub-optimal scheme calculates Rk = ∑k̂
î=1̂ log2(1 + γî), which

is the sum rate when the k pairs 1̂ through k̂ transmit data simultaneously, and compares it with
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Rk−1. If the calculated sum rate is greater than or equal to the sum rate obtained in the previous
iteration, i.e., Rk−1 ≤ Rk, the pair k̂ is allowed to transmit data and added to T. Thus, T is updated by
T = T∪ {k̂}, and the algorithm moves on to the next iteration. Otherwise, the algorithm is terminated.
Finally, the pairs included in the transmission set T are allowed to transmit data simultaneously
as soon as the algorithm is terminated early before N iterations or stops after completing N iterations.

4.2. A Proposed Scheme Based on Convolutional Neural Networks

The architecture of our CNN for deep learning is shown in Figure 2 and consists of two hidden
convolution layers. The first convolution layer consists of 256 convolution filters with an N × N
input matrix. The input matrix consists of channel coefficients and is denoted by [hji]1≤j≤N,1≤i≤N .
Each convolution filter is initialized by the Xavier normal initializer [29]. The width and height of the
output of a convolution filter can both be calculated by:

O =
N − K + 2P

S
+ 1, (6)

where O is the width and height of the output of a convolution filter, N is the input size, K is the kernel
(filter) size, P is the number of paddings, and S is the stride. In the first convolutional layer, it was
assumed that the kernel size of each convolution filter was 5× 5 with a stride of one, and we did not
pad zeros; thus, K = 5, S = 1, and P = 0. Based on (6), the height and width of our first convolutional
layer is given by:

O1 = N − 4. (7)
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· · ·
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Figure 2. Proposed convolutional neural network for D2D communication networks.

Each convolution filter was activated by a rectified linear unit (ReLU) function, which returned
the element-wise max(x, 0) for a given input x. The output of each convolution filter was followed by
a 2× 2 max pooling layer. A 2× 2 max pooling layer performed down-sampling operations along the
spatial dimensions by applying a max filter to non-overlapping sub-regions. For each of the regions
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represented by the filter, the maximum value of that region would be output. Thus, each element of
the output matrix would be the maximum value of a region in the original input. If O1 is odd, the 2× 2
max pool will be only applied to the (O1 − 1)× (O1 − 1) matrix except for the last column and row.
Otherwise, it will be applied to the O1 ×O1 matrix. Thus, the width and height of the output of the

2× 2 max pool layer is given by
⌊O1

2

⌋
, which can be calculated as:

⌊O1

2

⌋
=
⌊N

2
− 2
⌋
=
⌊N

2

⌋
− 2, (8)

if O1 is replaced by (7). The final output size of the first layer was
(⌊N

2

⌋
− 2
)
×
(⌊N

2

⌋
− 2
)
× 256.

The second convolution layer consisted of 512 convolution filters. Each filter was also initialized by
the Xavier normal initializer and K = 2. We also assumed that S = 1 and P = 0. The input size of the
second convolutional layer was the output size of the first max pooling layer, which is given in (8). If

N is replaced by
⌊O1

2

⌋
in (6), then the width and height of the output of each convolution filter in the

second layer are given as:

O2 =
⌊O1

2

⌋
− 1 =

⌊N − 4
2

⌋
− 1 =

⌊N
2

⌋
− 3. (9)

As in the first convolution layer, each convolution filter was also activated by a ReLU function,
and the output of each filter was down-sampled by a 2× 2 max pooling layer. The width and height of

the output of the 2× 2 max pooling layer is given by
⌊O2

2

⌋
, which can be calculated as:

⌊O2

2

⌋
=

⌊⌊N
2

⌋
− 3

2

⌋
=

⌊ N
2
− 3

2

⌋
=

⌊
N − 6

4

⌋
, (10)

where the second equality is valid because:

⌊
x + m

n

⌋
=

⌊ bxc+ m
n

⌋
(11)

for any positive integer n [30]. The output size of the second max pooling layer was

(⌊
N − 6

4

⌋)
×

(⌊
N − 6

4

⌋)
× 512. The outputs of the max pooling layer were dropped out with a probability p = 0.2

to prevent the neural network from over-fitting. Thus, randomly selected neurons were ignored with
a probability of 0.2 during training. The outputs were flattened to a one-dimensional array with the

size of 512

(⌊
N − 6

4

⌋)2

× 1 and were reduced to 1000× 1 by a fully connected layer, which had

a ReLU as an activation function. The 1000× 1 array went through another drop-out layer with p = 0.5.
It was reduced to an N × 1 array by another connected layer. Finally, the output of the fully connected

layer was activated by the sigmoid function. The sigmoid function defined by S(x) =
1

1 + e−x for

a given input x can be interpreted as a probability in many applications because 0 ≤ S(x) ≤ 1.
The output activated by the sigmoid function is denoted by P, and the ith element of the P, P[i],
can be interpreted as the probability that the ith D2D pair is allowed to transmit data. Our scheduler
determined if each D2D pair i would be allowed to transmit data based on the corresponding P[i].
Thus, B[i] indicating whether to allow the ith D2D pair to transmit data can be determined as:
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B[i] =
{

1, if P[i[] ≥ 0.5
0, otherwise

, 1 ≤ i ≤ N. (12)

Our proposed neural network was repeatedly trained to enhance the performance of scheduling
by reducing the error between B and the result obtained by the sub-optimal scheme.

5. Numerical Results

In this section, we analyze the performance of the proposed scheme based on a CNN by using
Python and Tensorflow. We obtained 100,000 data samples from the sub-optimal scheme, of which
90,000 samples were used to train the neural network proposed in Section 4 to increase the accuracy of
scheduling, and the remaining 10,000 samples were used to verify whether the trained neural network
was well fitted by testing the accuracy of scheduling based on the neural network. The size of batch
was set to 100, and the number of epochs was 100. We thus needed 900 iterations for each epoch to
train our neural network. Over-fitting is always a challenging problem for neural networks. Although
large learning rates increase the learning speed of neural networks, they can easily cause over-fittings.
On the contrary, small learning rates that can prevent neural networks from over-fitting slow down
the learning speed of neural networks, and tremendous computing power is thus required to train
neural networks. In this paper, we used an early terminating learning scheme with an adaptively
decreasing learning rate. The learning rate for the ith epoch can be given by:

r(i) =
rinit

1 + i× d
, 1 ≤ i ≤ 100, (13)

where rinit and d denote an initial learning rate and a non-negative number to control the decaying
speed, respectively. If d = 0, learning rates are constant for all epochs. Figure 3 shows learning rates
given in (13) for rinit = 10−3 and d =∈ {0.1, 0.2, · · · , 1.0}. We began to train the neural network with
rinit, which was relatively large to speed up the trainings. However, we decreased the learning rate
gradually to prevent over-fitting of neural networks as i increased. Thus, r(i) in Figure 3 decreased as i
increased. r(i) decreased more sharply as d increased. In this paper, we used rinit = 10−3 and d = 1 for
our neural network. In addition, our training procedure could be automatically terminated if there
was no improvement for three epochs to reduce the training time.

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-3

Figure 3. A decaying learning rate as an epoch increases. rinit = 10−3, and d increases by 0.1 from 0.1
to one.
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Figure 4 shows the accuracy of the proposed neural network. SNR was set to 0 dB, 10 dB, or 20 dB,
and N was set to 10 or 20. The accuracy was measured by comparing B obtained from the neural network
with that of the sub-optimal scheme. It was clearly shown that the accuracies were enhanced as the number
of epochs for training increased regardless of SNR and N. The trainings were terminated at different epochs
due to the early terminating learning scheme. For SNR = 0 dB, when N = 10 and N = 20, the trainings
were terminated at the 37th and 35th epochs, respectively. For SNR = 10 dB, when N = 10 and N = 20,
the trainings were terminated at the 20th and 26th epochs, respectively. For SNR = 20 dB, when N = 10
and N = 20, the trainings were terminated at the 29th and 26th epochs, respectively. It was shown that the
accuracy of the proposed neural network based scheduling improved as N or SNR increased. There were
many more training data than test data. Thus, it took more time to stabilize the accuracy for the training
data. It was shown that as the epoch increased, the accuracy for the training data became higher than for
the test data. It was also confirmed that no over-fitting was observed.
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Figure 4. Accuracy of the deep learning based scheme when SNR∈ {0 dB, 10 dB, 20 dB} and N = 10 or 20.
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Figure 5 shows the average sum rates for both the training samples and test samples, obtained by
the proposed neural network and the sub-optimal scheme, respectively. SNR ∈ {0 dB, 4 dB, · · · , 20 dB},
and N was set to 10 or 20. As shown in Figure 2, the number of convolution layers, filters per layer,
and filter size that were used in this paper were all restricted due to the limitation in computing
power. Thus, all average sum rates of the neural network were lower than those of the sub-optimal
scheme for both the training samples and test samples, regardless of SNR and N. Fortunately, however,
the difference of average sum rates between the neural network and the sub-optimal scheme decreased
as SNR increased. For the neural network, no significant difference of the average sum rates between
the training samples and the test samples was observed, which showed that over-fitting was efficiently
prevented thanks to the learning scheme with adaptive learning rates.
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Figure 5. Average sum rates of the deep learning based scheme and sub-optimal scheme for various
SNR values when N = 10 or 20.

6. Conclusions

In this paper, we investigated D2D communication networks, which are attractive for offloading
mobile Internet traffic from core networks and can significantly enhance the quality of communications
and spectral efficiency by reducing end-to-end communication ranges between transmitters and
receivers, compared to mobile cellular communication networks. The performance of D2D
communication networks was closely related to how transmissions of D2D pairs are scheduled.
In this paper, we adopted a new approach to schedule transmissions in D2D communication networks
efficiently using supervised learning based on a CNN. The CNN consisted of two convolution layers
and a fully connected layer. We used a sub-optimal scheme instead of an optimal scheme to obtain
samples for supervised learning because an optimal scheme achieving the maximal performance
requires a tremendous computational complexity. Ninety percent of the obtained samples were used
to train the neural network to achieve the same scheduling results as the sub-optimal scheme, while
the remaining 10% of the obtained samples were used to test whether the trained neural network was
over-fitted. To overcome our limitation in computing power, we adopted an early terminating learning
scheme with an adaptive learning rate where the training procedure was automatically terminated
if no improvement was observed for three epochs, and a learning rate that began with quite a large
value exponentially decreased as the epoch increased. Our extensive numerical results showed that the
neural network could yield about 85%∼95% accuracies, which indicated that 85%∼95% of scheduling
decisions from the neural network were identical to the scheduling decisions from the sub-optimal
scheme, which was the target algorithm. Especially when SNR = 20 dB and N = 20, the accuracy of
the neural network approached about 97%, and the average sum rate of the trained neural network
was also about 97% of the sub-optimal scheme for both the training samples and the test samples.
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