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Abstract: To defend against insider attacks in wireless sensor networks (WSNs), trust mechanisms
(TMs) using the notion of trust in human society have been proposed and are still actively researched.
In the WSN with a trust mechanism (TM), each sensor node evaluates the trustworthiness of
its neighbor sensors based on their behaviors, for example packet forwarding, and collaborates
only with trustworthy neighbors while removing untrustworthy neighbor from its neighbor list.
The reputation system (RS) is an advanced type of trust mechanism that evaluates the trustworthiness
of a node by additionally considering neighbor nodes’ observations or evaluations about it.
However, intelligent inside attackers in WSNs can discover the security vulnerabilities of trust
mechanisms by examining the operations of TM (or RS), because the software modules of the TM
(or RS) are installed and operating in their local storage and memory, and thus, they can avoid
detection by the trust mechanisms. Bad-mouthing attacks and false-praise attacks are well-known
examples of such intelligent insider attacks. We observed that existing trust mechanisms do not have
effective countermeasures to defend against such attacks. In this paper, we propose an enhanced
trust mechanism with a consensus-based false information filtering algorithm (TM-CFIFA) that can
effectively defend against bad-mouthing attacks and false-praise attacks. According to our experiment
results, compared with an existing representative RS model, our TM-CFIFA shortened the detection
time of a packet drop attacker, which is supported by a false-praise attacker by at least 83%, and also
extended the lifetime of a victim sensor node that is under bad-mouthing attacks by at least 15.8%.

Keywords: trust mechanism; insider attacks; bad-mouthing attack; false-praise attack;
consensus observation; false information filtering; wireless sensor network

1. Introduction

With recent advancements in Internet-of-Things (IoT) technologies, it is expected that tens of
billions of IoT devices will be interconnected by 2022 [1], and thus the usage of WSNs will also grow
quickly in various industry areas [2–5] as well as in military fields [6]. Due to many WSN characteristics,
such as it is a wireless medium and the limited resources of sensors (low battery, storage, and computing
speed), security is one of the most important design factors of WSNs. WSNs are considered more
unsafe than other types of networks, and are especially vulnerable to insider threats [7–9]. In addition,
energy-efficiency is another critical design factor to maximize the lifetime of WSNs [10,11].

To defend against insider attacks in WSNs, trust mechanisms (TMs) have been proposed and
studied as a promising defense method [12–14]. In general, a basic TM works in three phases as follows:
(1) it observes its neighbor nodes’ behaviors (direct observations); (2) evaluates the neighbor sensor’s
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trustworthiness based on monitored behaviors; and (3) detects inside attackers (or untrustworthy
sensors). In addition, as an advanced type of TM, reputation systems (RSs) have been proposed which
improves TM’s second phase such that a sensor node with RS evaluates the trustworthiness of its
neighbor sensors by additionally considering information (indirect observations or indirect trust
evaluations) from its other neighbor nodes. However, intelligent inside attackers in WSNs may be able
to discover security vulnerabilities in trust mechanisms by investigating their operations, and thus,
they can avoid the detection of trust mechanisms. Bad-mouthing attacks and false-praise attacks are
well-known as intelligent insider attacks [9,15,16]. In these attacks, attackers provide an evaluating
sensor with false information to hamper accurate trust evaluation. This is possible because existing
TMs and RSs simply receive such false information from its neighbor nodes with high trust values
above a certain threshold and mistakenly calculate the final trust value based on such false information.
Moreover, according to our extensive survey, we observed that existing TMs and RSs do not have
effective countermeasures to defend against bad-mouthing attacks and false-praise attacks.

In this paper, we advance existing trust mechanisms by eliminating such false information from
bad-mouthing attackers and false-praise attackers by using our consensus-based false information
filtering algorithm (CFIFA). Our contributions can be summarized as the following:

• We propose an enhanced trust mechanism with a consensus-based false information
filtering algorithm (TM-CFIFA) that can effectively defend against bad-mouthing attacks and
false-praise attacks.

• We conduct experiments that show our TM-CFIFA can better defend against two attacks by
comparing it with a representative RS used in various trust-aware routing algorithms including
light-weight trust aware routing protocol (LTRP) [17–20]. The results show that our TM-CFIFA
not only better defends against bad-mouthing attacks and false-praise attacks but also extends the
network lifetime of WSNs by at least 15.8% in our experimental setups.

The rest of this paper is organized as follows. In Section 2, we give a brief overview of insider
attack problems in WSNs, trust mechanisms and reputation systems, two intelligent insider attacks, and
existing defense methods. In Section 3, we discuss the proposed design of our TM-CFIFA. In Section 4,
we describe the experiments that show the performance of TM-CFIFA compared to a representative RS
model. Finally, we make our conclusions in Section 5.

2. Background and Related Works

2.1. Insider Attacks in WSNs

In WSNs, each sensor node sends its data packets toward the destination node by means of
multi-hop collaboration. For example, as shown in Figure 1a, when source node A wants to send its
packet to the destination node D, node A cannot directly send it to node D due to its limited energy
or hardware capability [21]. Instead, node A first forwards it to node B, hoping that its data packet
can reach node D via a routing path A→ B→ C→ D. That is, A needs the help of two intermediate
nodes B and C. Consequently, establishing mutual trust among inside nodes in WSNs are essential to
guarantee that WSNs work correctly according to their design goals.

However, it is possible for these intermediate nodes to become inside attackers (or traitors) due
to various reasons (e.g., hacking by adversaries) [7,9]. Moreover, what makes this problem more
serious is that sensors may not have the same advanced heavy security mechanisms used in other
networks due to their unique limitations, as mentioned above. For this reason, various inside attack
problems in WSNs, such as attack models and defense mechanisms have been actively discussed
and studied [17,19,20,22], and also trust mechanisms have been researched as promising defense
mechanisms against inside attackers in WSNs [12,18,23].
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Figure 1. Working phase 1 and 2 of general trust mechanism; (a) Phase 1(monitoring/recording) and
(b) Phase 2 (trust measurement).

2.2. Trust Mechanism (TM) and Reputation System (RS)

When a TM is deployed in WSNs, every sensor node has TM in its local memory. Each sensor node
can evaluate the trustworthiness of its neighboring nodes according to their behaviors or operations
in WSNs such that if a neighbor node’s behavior is observed as successful or cooperative, the trust
value of the node will increase or otherwise the trust value of the node will decrease. To do this,
TMs generally work in three phases as follows [9].

• Phase 1 (Monitoring/Recording): Each sensor node monitors its neighbor nodes’ behaviors,
for example, packet forwarding/relaying, and then records whether their behaviors are performed
successfully and cooperatively (see Figure 1a). Watchdog is a representative, widely adopted
monitoring mechanism for this phase [24,25]. Basically, Watchdog uses two counters such as a
success counter and a failure counter and these counters increase and are recorded according to
the observed behaviors of neighbor nodes.

• Phase 2 (Trust Measurement): Based on the observation results in Phase 1, each node evaluates
the trustworthiness of its neighbor nodes. For trust evaluation, various mathematical trust models
have been proposed [18,26]. The Beta trust model [27] is representative of trust models for WSNs
because it is lightweight and mathematically sound. When node i evaluates node j’s trust value,
the Beta trust model calculates the trust value Ti,j by Equation (1).

Ti,j(as, af) =
as + 1

as + af + 2
(1)

where as is the accumulated number of successes and af is the accumulated number of failures.
Ti,j has a value between 0 and 1, and the higher Ti,j, the more trustworthy the evaluated node
is. As we can see in (1), the Beta trust model uses only two parameters (as and af ), and thus the
combined implementation of the Beta trust model and Watchdog are widely used for Phase 1 and
Phase 2 in WSNs [28].

• Phase 3 (Attack Detection): In this phase, a sensor node determines whether its neighbor nodes
are trustworthy for cooperation. That is, if a certain neighbor node’s measured trust value is lower
than a certain trust threshold (θT), then it is detected as an inside attacker and removed from
the WSN.

The reputation system (RS) is an advanced form of trust mechanism that also considers information
from neighbor sensor nodes for more accurate trust evaluation [23,29]. That is, when the above example
is considered, node i evaluates node j’s trust value by using not only its direct observations on node j,
but also its neighbor nodes’ observations on node j (indirect observations).
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For example, as shown in Figure 1b, after node A forwards its packet to node B, hoping that node
B will forward the packet toward C→ D, node A with Watchdog will monitor B’s behaviors and also
A’s neighbor nodes E and F may be able to observe B’s behaviors by using their Watchdog mechanism.
Next, to evaluate node B’s trust value, node A with RS can use both its direct trust value DTA, B and
indirect trust values ITE, B and ITF, B from node E and F, respectively. Then, the final trust value TR:A→B

can be obtained by Equation (2).

TR:A→B = w1DTA,B + w2f(ITE,B, ITF,B) (2)

where w1 is the weight value for direct trust, w2 is the weight value for indirect trust values and
w1+ w2 = 1 and f(ITE,B, ITF,B) is a function that combines indirect trust values; f can be implemented
in various ways.

Algorithm 1 describes the basic pseudocodes of the general reputation system that we have
explained above, and we used this for the experiments described in Section 5.

Algorithm 1 Reputation System (RS)

Input:
Num. of neighbor nodes which provided node i with their indirect observations: n
Weight factor : w1, w2 ∈ [0, 1]
Node i’s direct observation to node j: DOi,j ∈ {s, f} # s: success, f: failure
Node k’s indirect observation to node j: IOk,j ∈ {s, f}

Output:
Direct trust value: DTi,j
Indirect trust value: ITi,j
Overall trust value: Ti,j

1: Begin
2: # Direct trust calculation
3: if DOi,j == s:
4: as = as + 1 # increase accumulated success count (as) by 1
5: else:
6: af = af + 1 # increase accumulated failure count (af ) by 1
7:
8: DTi,j =

as+1
as+af+2

9:
10: # Indirect trust calculation
11: for each neighbor node k where 1 ≤ k ≤ n:
12: if IOk,j == s:
13: ask,j = ask,j + 1
14: else:
15: afk,j = afk,j + 1
16:
17: ITk,j =

ask,j+1
ask,j+afk,j+2

18:
19: ITi,j =

1
n
∑n

k=1 ITk,j
20:
21: # Overall trust calculation
22: Ti,j = w1DTi,j + w2ITi,j
23: End
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2.3. Intelligent Insider Attacks: Bad-Mouthing Attack and False-Praise Attack

Here, we introduce two intelligent attacks (bad mouthing attack and false-praise attack) that
exploit the design and operational characteristics of reputation systems used in WSNs, and thus,
they can hamper the correct operation of trust mechanisms.

• Bad-Mouthing Attack: As shown in Figure 2a, the bad-mouthing attacker (node F or I)
intentionally provides the evaluating node (node A) with false information about the evaluated
node (node B) such that B does not forward A’s packets correctly, although B forwards A’s packets
to node C correctly. If the bad-mouthing attacker continues to launch attacks, B’s trust value will
become lower than a trust threshold and eventually B will be removed from its neighbor list.
Once B is removed, A will find another neighbor node (node E) as its next hop and then A’s packets
will be routed along the path E→ H→ D, which is less optimal than the original optimal routing
path A→B→C→D in terms of energy efficiency or routing distance. Consequently, bad-mouthing
attacks can degrade the entire network performance by eliminating many normal nodes in WSNs.

• False-Praise Attack: As shown in Figure 2b, this attacker (node F or I) deliberately increases
the trust value of an evaluated node (node B); in this example, B is a packet drop attacker and
is collaborating with these false-praise attackers. As the attack name shows, the false-praise
attackers (node F and I) continue to provide node A with false information such that node B
behaves correctly although B drops all packets from node A. As a result, node B’s trust in A
may not significantly decrease due to false observations or indirect trust values from the two
false-praise attackers (see Equation (2)).
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Figure 2. Two intelligent attacks against reputation systems; (a) Bad-mouthing attack and
(b) False-praise attack.

2.4. Existing Defense Approaches against Bad-Mouthing Attacks and False-Praise Attacks

There are a number of review studies that overview the defense capabilities of existing reputation
systems against inside attacks including bad-mouthing attacks and false-praise attacks.

Khalid et al. [18] compared various trust and reputation systems in WSNs. They examined
them in terms of network initialization, trust computation, security attack prevention, and so on.
In particular, they reported that CORE, ATSR, DETM, CONFIDANT, and RRS can defend against
bad-mouthing attacks and false-praise attacks, and these models adopt a reputation system framework.
Similarly, Ahmed et al. [23] examined existing trust models and mechanisms in terms of trust evidence,
trust evaluation, attack model, routing protocol, and so on. They introduced several reputation systems
that can effectively defend against bad-mouthing attacks.

Reputation system-based secure routings have also been studied to counter misbehaving nodes
in WSNs.
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Duan et al. [19] used the trust-aware secure routing framework (TSRF) to defend against
misbehaving nodes. TSRF uses trust and QoS metrics together to find optimal routes from the
source node to the destination node before packet transmission. In this case, nodes send and receive
recommendation requests to find such optimal routes. Their experiments show that when TSRF is
used in WSNs, the effect of bad-mouthing attacks diminishes.

Tornos et al. [20] proposed trust authenticated dynamic source routing (TADSR) in MANETs to
detect rogue nodes and improve the routing performance. The basic concept of TADSR is to mix secure
routing and trust management. They used bad-mouthing attack models to verify TADSR’s defense
performance against inside attacks.

Ahmed et al. [17] used light-weight trust aware routing protocol (LTRP) to detect misbehaving
nodes and isolate them. LTRP considers various metrics such as trust, remaining energy, and hop
count to defend against malicious nodes.

The above three models (TSRF, TADSR, and LTRP) use their own features such as hop count,
QoS metrics and remaining energy to find routing paths. They have a common feature, the reputation
system framework, which uses direct and indirect trust to defend against misbehaving nodes. All three
models use the basic equation of reputation systems first, and then consider some other metrics to
improve routing performance.

According to our survey, the existing reputation system-based approaches have a critical limitation,
that is, they receive indirect information from neighboring nodes and then simply use them for trust
evaluation without examining whether they are true or false.

Consequently, in this paper, we propose an enhanced trust mechanism based on a consensus-based
false information filtering algorithm (TM-CFIFA) that can improve the trust evaluation process of
existing trust mechanisms by using a false information filtering algorithm.

3. Proposed Trust Mechanism with Consensus-Based False Information Filtering Algorithm

In this section, we first describe a critical weakness in the existing reputation systems that
bad-mouthing attackers and false-praise attackers can exploit, explain our idea to enhance existing trust
mechanisms to better defend against such attacks, and outline the design of our proposed mechanism,
the TM-CFIFA.

3.1. Weakness in Existing Reputation Systems

To defend against insider attacks in WSN, using neighbor nodes’ help is very useful and that
is why reputation systems have been proposed in this research area. In the WSN with reputation
systems, an evaluating node will receive indirect information only from trustworthy neighbors with
high trust value above a predetermined trust threshold. However, it may not be safe to assume that
nodes with high trust value are not inside attackers, because such nodes with high trust value may
turn into insider attackers for various reasons such as hacking by adversaries; these kind of insider
attackers with high trust value are called traitors.

However, the existing reputation systems do not recognize these inside attackers with high trust
value, and thus they simply receive the false information provided by them. As a result, bad-mouthing
and false-praise attackers can easily achieve their intended goals by disguising the evaluating nodes.
For example, Figure 3a shows the trust evaluation phase of a general reputation system. In the figure,
evaluating node I will calculate the final value (or reputation value) TR:I→J by using both direct trust
values (DT) and indirect trust values (IT1, IT2, . . . , ITn). In this case, if IT2 is an indirect trust value
provided from an inside attacker (e.g., bad-mouthing attacker), RS will use IT2 as one of the input
values for evaluating the aggregated indirect trust value and overall trust value, which negatively
affects the correct evaluation of the evaluated node J. That is, there is no countermeasure that removes
such false information (IT2) before the overall trust evaluation phase is conducted.
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3.2. Our Idea: Filter False Information Based on Consensus Observations about Evaluated Nodes’ Behaviors

To resolve the above-mentioned weakness in the existing reputation systems, our approach is
to filter out false information from inside attackers by consensus among nodes, and thus such false
information can be removed and cannot be used in trust evaluation, if there are more than half of the
good nodes participating in the consensus process.

Figure 3b shows how our proposed TM-CFIFA can remove false information from inside attackers
even in a situation where we do not know which of the neighbor nodes are inside attackers. In this
figure, like the RS, our TM-CFIFA first receives both direct observation (DO) and indirect observations
(IOs) from neighbor nodes and then the consensus filtering algorithm of TM-CFIFA produces consensus
observation (CO), which is either “success” or “failure”. One of the common ways to make a consensus
is to use a majority voting method. Consequently, if we assume that more than half of the nodes are
good in the WSN, the consensus observation will be a true observation according to the concept of
majority voting. In this manner, we believe our TM-CFIFA will correctly eliminate false information
from inside attackers in WSNs. Based on this rationale, in this paper, we propose an enhanced trust
mechanism that uses a consensus-based false information filtering algorithm (TM-CFIFA) to defend
against bad-mouth attackers and false-praise attackers in WSNs.

3.3. Design of TM-CFIFA

We designed our proposed trust mechanism with a consensus-based false information filtering
algorithm (TM-CFIFA) as follows. First, we explain how our TM-CFIFA evaluates the final trust value in
the presence of false information provided by an inside attacker, and then we compare TM-CFIFA with
a general reputation system in terms of algorithm time complexity. For simplicity, we used a wireless
sensor network model with nine nodes as shown in Figure 1. In this WSN, node A (source node) wants
to deliver its packets to node D (destination node) with the help of intermediate nodes B and C in the
routing path A→ B→ C→ D. Each packet that A forwarded to node B will be monitored by A’s two
neighbor nodes E and F as well as A itself. Whenever A sends a packet to B, A will evaluate B’s trust
value, TA,B by using both A’s observation about B’s packet forwarding behavior and neighbor nodes’
(E and F) observation (or trust evaluation) about B. Based on the above description, to evaluate the final
trust value TA,B, our TM-CFIFA in node A uses the following steps (see Algorithm 2); for comparison,
the working steps for the existing reputation system and our TM-CFIFA are shown in Figure 4.
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Step 1. Node A records its direct observations (DOA,B) and receives indirect observations (IOE,B and
IOF,B) from neighbor nodes (node E and F) after monitoring node B’s behavior; each observation
is recorded as either s (for success) or f (for failure) in A’s local memory.

Step 2. TM-CFIFA calculates the aggregated observation (AOA, B) by using DOA, B, IOE,B and IOF,B

by Equation (3); AOA,B will be used later to generate the consensus observation in Step 3.

AOA,B = w1DOA,B + w2IOA,B (3)

where w1 and w2 are weight factors for DO and IO, respectively, and w1 + w2 = 1. In addition,
we define IOA,B as the aggregated indirect observation by considering A’s neighbor’s
observations on node B and IOA,B is calculated by Equation (4).

IOA,B =
1
n

∑
k∈NSA

IOk,B (4)

where NSA is the neighbor set of node A, and NSA = {E, F} in this example, and n is the
number of A’s neighbor nodes, and n = 2 in this example. To ease the calculation of IOA,B,
we used 1 for s (success) and -1 for f (fail). For example, if w1 = w2 = 0.5, DOA,B = s, IOE,B = s,
and IOF,B = f, then IOA,B = 0 and AOA,B = 0.5 by (4) and (3), respectively. We will explain how
AOA,B can be used for generating consensus observations in Step 3. Meanwhile, although we
set the initial weight factors w1 and w2 to 0.5, these weights can be updated periodically
by using reinforcement learning techniques [30,31] by considering them after each trust
evaluation process ends.

Step 3. Based on AOA,B, TM-CFIFA generates consensus observation (CO) by using (5).

COA,B =

{
s (success) if AOA,B ≥ 0
f (failure) if AOA,B < 0

(5)
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Algorithm 2 TM-CFIFA

Input:
Num. of neighbor nodes which provided node i with their indirect observations: n
Weight factor : w1, w2 ∈ [0, 1]
Node i’s direct observation to node j: DOi,j ∈ {s, f}
Node k’s indirect observation to node j: IOk,j ∈ {s, f}

Output:
Aggregation observation: AO ∈ [−1, 1]
Consensus observation: CO
Overall trust value: Ti,j

1: Begin
2: # For ease calculation, set DO = 1 for success (s) and DO = -1 for failure (f)
3: if DOi,j == s:
4: DOi,j = 1
5: else:
6: DOi,j = −1
7: # For ease calculation, set IOk,j = 1 for success (s) and IOk,j = -1 for failure (f)
8: for each neighbor node k where 1 ≤ k ≤ n (n: the number of neighbor nodes)
9: if IOk,j == s:
10: IOk,j = 1
11: else:
12: IOk,j = −1
13: # Calculate AO by using DO and IO
14: AOi,j = w1DOi,j + w2

1
n
∑n

k=1 IOk,j
15: # Determine CO according to AO
16: if AOi,j ≥ 0 :
17: CO = s
18: as = as + 1
19: else:
20: CO = f
21: af = af + 1
22: # Final trust calculation
23: Ti,j =

as+1
as+af+2

24: End

Next, we conducted an algorithm time complexity analysis by comparing RS (Algorithm 1) with
our TM-CFIFA (Algorithm 2) and the analysis results are shown in Table 1. For complexity analysis,
we did not consider Phase 1, in which both RS and our TM-CFIFA use the Watchdog mechanism.

Table 1. Comparison of algorithmic time complexity.

Step Reputation System (RS) TM-CFIFA

Phase2 O(n) O(n)
Phase3 O(1) O(1)
Overall O(n) O(n)

First, our algorithm works in O(n), because Phase 2 of Algorithm 2 is the most time-consuming
part and Phase 2 has only one single for loop and one summation calculation. Thus, given the input
size is n (the number of neighbor nodes), its computational cost will grow linearly as the input size n
grows. Therefore, we do not expect our algorithm will introduce huge computational cost when it is
used in large-scale WSN with many sensor nodes.
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Next, as can be seen in Algorithm 1, the existing reputation system (RS) also works in O(n).
Consequently, we claim that our TM-CFIFA will be feasible in large-scale WSNs where the existing
reputation system (RS) are used, because our TM-CFIFA work similarly to RS in terms of time complexity
(see Table 1). In general, the existing reputation system is used in many parts, including WSNs, because of
its lightweight design [27,32].

Therefore, because our TM-CFIFA does not have huge additional computation cost compared
with RS, it can better defend against false-praise attacks and bad-mouthing attacks as we will discuss
later in Section 4.

4. Experiment and Analysis

4.1. Experimental Environment and Methods

The main purpose of this experiment was to show that our proposed TM-CFIFA, which is an
advanced implementation of a trust mechanism, can better defend against bad-mouthing attacks
and false-praise attacks compared with an existing reputation system. For this purpose, with Python
3 programming language, we implemented our TM-CFIFA according to Algorithm 2. In addition,
for comparative analysis with an existing reputation system, according to Algorithm 1, we implemented
a reputation system (RS) that is used in many trust models and trust-aware routing algorithms such as
LTRP [17], CORE [33], ATSR [34], TADSR [20], and so on.

We used the following experimental methods and assumptions.

• Wireless Network Model: We considered a simple WSN with nine sensor nodes as shown in
Figure 5. In this WSN, node A (source node) generates packets and wants to deliver them to the
destination node D. As depicted in Figure 5, we assume that the optimal routing path from A to D
is determined as A→ B→ C→ D by a routing algorithm in A. Considering natural packet losses
in WSNs, the packet forwarding success rate is set to 70%. Each node can monitor its neighbor
nodes’ packet forwarding behaviors by using the Watchdog mechanism. In this network topology,
node A’s neighbor nodes are B, E, and F which means that the observation of nodes E and F will
be provided to node A.

• Attack Models

(1) Bad-mouthing attack model: Node F (red-colored) launches bad-mouthing attacks to node B
(see Figure 5a). That is, F will send false information about B to A such that even though
node B successfully forwards A’s packets to C, the bad-mouthing attacker F will falsely say B
did not send A’s packet to C in order to let A mistakenly decrease B’s trust value.

(2) False-praise attack model: Unlike the bad-mouthing attack model, as shown in Figure 5b,
node B and F are inside attackers and collaborate with each other; B is a packet drop attacker
and F is a false-praise attacker. In this attack model, when node A sends its packet to
node B, the packet drop attacker B randomly drops the packet with a drop rate of 70%.
However, the false-praise attacker F sends false information to node A such that node B
correctly forwarded A’s packet to node C in order to let A mistakenly increase B’s trust value.

We conducted two types of experiments (Experiment 1 and Experiment 2) to compare the defense
performance of the existing reputation system and our proposed TM-CFIFA as follows. In Experiment
1, by using a bad-mouthing attack model, we could compare how long the victim node B stayed in
the WSN when RS and our TM-CFIFA were used. In Experiment 2, by using a false-praise attack
model, we could compare how quickly the packet drop attacker was captured while a false-praise
attacker is helping the packet drop attacker when RS and our TM-CFIFA were used. For both RS and
our TM-CFIFA, the weight factor w1 and w2 were set to 0.5. In addition, the initial trust value was
set to 0.99 in our experiment because we used very high trust thresholds such as 0.9, and thus if the
initial trust value was as low as 0.5, then most nodes would be eliminated soon after the simulation
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starts. For this reason, high initial trust values have been used in experiments in many studies in the
literature [35,36]. We explain each experiment in detail in Section 4.2.
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4.2. Experiment Results and Analysis

4.2.1. Experiment 1: Comparison of Defense Performance in the Presence of Bad-Mouthing Attacks

� Experimental Purpose, Metric and Methods

In Experiment 1, we compared how a trust mechanism in node A accurately evaluates the trust
value of a victim node B, and thus lets the victim node B stay in the WSN without being mistakenly
eliminated by node A, even in the presence of bad-mouthing attacks (by the attacker F). To this end,
we used a metric lifetime (LT), which is defined as the time when node B is falsely detected by a trust
mechanism (RS or our TM-CFIFA). For Experiment 1, we used the parameter values shown in Table 2.

Table 2. Experiment parameters.

Parameters
Values

Experiment 1 (Bad-Mouthing) Experiment 2 (False-Praise)

Max simulation time 20 min 20 min

Number of Attackers 1 bad-mouthing attacker 1 packet drop attacker
1 false-praise attacker

Initial trust value 0.99 0.99
Trust threshold (θT) 0.3~0.9 0.3~0.9

Packet forwarding rate 70% 70%

We conducted Experiment 1 as follows. First, as shown in Figure 5a, node A creates a packet
and then sends it to B. When B receives a packet from node A, B forwards it to the next hop node C
randomly with a packet forwarding rate = 70%. After that, A collects indirect observations (for our
TM-CFIFA) or indirect trust values (for RS) from its neighbor nodes E and F. Next, node A calculates
the final trust values by TM-CFIFA and RS. Finally, we check whether the victim node B is falsely
detected by TM-CFIFA and RS. We used various detection threshold values in 0.3, 0.9). We set the initial
trust value of each node to 0.99. We terminated each experiment either when both TM-CFIFA and RS
detected the victim node B or when the simulation time reached 20 min. We conducted 500 experiments
and then measured the average LT by TM-CFIFA and RS.

� Results and Analysis

Figure 6 and Table 3 show the results of Experiment 1. According to our experimental results,
we can see that in the presence of a bad-mouthing attacker, node B can stay much longer when our
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TM-CFIFA is used compared with when RS is used. For example, when θT = 0.85, TM-CFIFA falsely
detected node B as a packet drop attacker when t = 130 s while RS falsely detected node B when t = 40 s.
That is, when our TM-CFIFA is used, node B can continue to stay and participate in the WSN about
325% longer than when RS is used. Table 2 shows the LT of RS and TM-CFIFA according to various θT

values. We can see that as θT grows, the increment of lifetime by our TM-CFIFA also grows. In addition,
when 0.75 ≤ θT ≤ 0.8, node B was not detected when our TM-CFIFA was used while node B was
removed when RS was used. This means that node B can continue to stay and participate in the WSN
even in the presence of bad-mouthing attacker since our TM-CFIFA eliminates the false information by
the attacker, and thus evaluates node B’s trust value correctly. Meanwhile, when θT ≤ 0.7, both RS
and TM-CFIFA could not detect node B in our experiments. This is not surprising because in our
experimental WSN, about 30% of packets can be dropped naturally, and thus it is unlikely that node
B’s trust value will be less than 0.7.
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Table 3. Experimental results of Experiment 1.

θT
DT (Detection Time of Node B) Comparison Result

RS TM-CFIFA Lifetime (∆t) Improvement (%)

0.95 6 11 + 5 83
0.9 20 42 + 22 210

0.85 40 130 + 90 325
0.8 78 Active (not removed) - -

0.75 165 Active (not removed) - -
0.70 Active (not removed) Active (not removed) - -

4.2.2. Experiment 2: Comparison of Defense Performance in the Presence of False-Praise Attacks

� Experimental Purpose, Metric and Methods

In Experiment 2, we compared how RS and TM-CFIFA evaluate the trustworthiness of a packet
drop attacker even in the presence of a false-praise attacker. That is, the false-praise attacker (node F)
will keep telling the evaluating node (node A) that the packet drop attacker (node B) forwards its
packet correctly towards the destination. To this end, we use a metric detection time (DT) which is
defined as the time when the packet drop attack is detected by a trust mechanism. For Experiment 2,
we used the parameter values shown in Table 2.

We conducted Experiment 2 as follows. As shown in Figure 5b, node A sends packets to node B,
and B forwards it to node C towards the destination node D. In this scenario, B is a packet drop attacker
and node F is a false-praise attacker, and B and F are collaborating with each other. Like Experiment 1,
we used various trust threshold values in [0.3, 0.9] and set the initial trust value of each node to 0.99.
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We terminated each experiment when both RS and TM-CFIFA detected the false-praise attacker node
B or when the simulation time reached 20 min. We conducted 500 experiments and then measured
average DT of the false-praise attacker by RS and our TM-CFIFA.

� Results and Analysis

Figure 7 and Table 4 show the results of Experiment 2. According to our experimental results,
we can see that our proposed TM-CFIFA detected the packet drop attacker much faster than RS,
even in the presence of a false-praise attacker. Specifically, TM-CFIFA lowered the detection time
(DT) by 15.8~53% compared to RS, according to various θT values. For example, when θT = 0.6,
TM-CFIFA detected the packet drop attacker when t = 134 s, while RS detected the attacker when
t = 206 s. That is, TM-CFIFA detected the packet drop attacker (node B) and then removed it 35%
faster than RS. Table 4 shows the measured DTs when RS and TM-CFIFA are used given various θT.
We can see that as θT decreases, the improvement in the detection time of our TM-CFIFA also grows.
Moreover, when θT = 0.4, only our TM-CFIFA could detect the packet drop attacker while the packet
drop attacker continues to stay and attack the network when RS is used. However, when we used
very low values of θT such as 0.3, both RS and our TM-CFIFA were unable to detect the packet drop
attacker with a packet drop rate = 70%, within the maximum simulation time (20 min).
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Table 4. Experimental results of Experiment 2.

θT
DT (Detection Time of Node B) Comparison Result

RS TM-CFIFA Detection Time (∆t) Improvement (%)

0.9 19 16 −3 15.8%
0.8 50 40 −10 20%
0.7 102 77 −25 24.5%
0.6 206 134 −72 35%
0.5 533 251 −282 53%
0.4 Active (Not removed) 607 - -
0.3 Active (Not removed) Active (Not removed) - -

5. Conclusions and Future Works

In this paper, we proposed an enhanced trust mechanism based on a consensus-based false
information filtering algorithm (TM-CFIFA) to effectively defend against bad-mouthing attacks
and false-praise attacks in WSNs. Since existing trust mechanisms, including reputation systems,
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simply use all or parts of the false information provided by attackers, we proposed and designed
the consensus-based false information filtering algorithm (CFIFA) and combined it with the generic
architecture of trust mechanisms. According to the results of our experiment, our TM-CFIFA showed
a better defense performance against two attack models (bad-mouthing attacks and false-praise
attacks) compared with an existing reputation system (RS). Specifically, in our experimental setups,
our TM-CFIFA shortened the detection time of a packet drop attacker supported by a false-praise
attacker by at least 83% and also extended the lifetime of a victim sensor node that was under
bad-mouthing attacks by at least 15.8%.

Future research directions are as follows. First, we will study an insider attack prevention
mechanism based on trust mechanisms and blockchain technologies. Specifically, once a trust
mechanism detects inside attackers, the identified attackers’ identities can be stored in blockchains
and then safely spread over the entire sensor nodes, even in the presence of inside attackers in
WSNs. Second, we will further investigate the potential limitations and vulnerabilities of current
trust mechanisms and reputation systems in the presence of multiple collaborative attackers in WSNs,
and thus, we will devise advanced countermeasures that can improve the defense capabilities of
existing trust mechanisms and reputation systems to better defend against inside attackers in WSNs.
Last, our consensus approach may be vulnerable if Sybil attackers can generate fake identities for more
than half of the sensor nodes and can successfully participate in our proposed consensus process.
We would like to further investigate Sybil attacks to existing reputation systems in terms of valid attack
techniques and their defense methods.
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