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Abstract: The physical layer signaling of the 5G new radio still utilizes cyclic prefix orthogonal
frequency division multiplexing (CP-OFDM) and discrete Fourier transform-spread-OFDM
(DFT-s-OFDM) to support 5G services for the sake of system-backward compatibility.
However, the transmission requirements among these services differ, and this poses a challenge
to the adaptability of the waveforms with regard to the peak-to-average power ratio (PAPR) issue.
In particular, DFT-s-OFDM serving as a low-PAPR option for uplink signaling still has room for PAPR
improvement in cases such as machine-type and device-to-device communications. We propose
polynomial cancellation coded (PCC)-DFT-s-OFDM to flexibly reduce the PAPR of conventional
DFT-s-OFDM. The principle of the proposed method, including its transform, is analyzed in the time
domain. The results show that it can also be regarded as a novel spectral shaping scheme for PAPR
reduction. Through a parameter designed for adjusting the cost of spectral efficiency, the proposed
method can regulate the extent of improvement compared with the conventional DFT-s-OFDM,
not only in the PAPR, but also for the spectral radiation and bit error rate when considering the
nonlinearity of the power amplifier. The increase in computational complexity is neglectable owing
to the simplicity of generalized PCC, making it apt to be deployed in existing systems.

Keywords: discrete fourier transform spread orthogonal frequency division multiplexing
(DFT-s-OFDM); peak-to-average power ratio (PAPR); polynomial cancellation coding (PCC); 5G
waveform; spectrum shaping; moving filter

1. Introduction

Orthogonal frequency division multiplexing (OFDM) underlies modern wireless communication
systems such as IEEE 802.11 a/g/n/ac wireless local area networks (WLANs), digital audio broadcasting
(DAB), digital video broadcasting (DVB), fourth-generation (4G) cellular networks (e.g., long-term
evolution/LTE and worldwide interoperability for microwave access/WiMAX), and the 5G new radio
(NR) [1–3]. However, the high peak-to-average power ratio (PAPR) problem [4] of OFDM remains a
long-standing implementation issue [5–8]. Many studies have considered how to operate the transmit
power amplifier (PA) in its linear region with less input backoff (IBO). That is, to be more power-efficient.

Although reducing the PAPR of the signal is an issue both at the uplink and downlink, it is more
critical for the uplink, owing to the limited cost and power-budget of user equipment. As PAs are
one of the most energy-hungry components of a user equipment transceiver, the energy efficiency
can be improved by efficient PA conversion, which can extend the battery life of the user equipment.
Alternatively, it can significantly boost the transmission power to increase the number of cell-edge users
and the signal-to-noise ratio (SNR) at the same IBO [9]. Therefore, PAPR has been regarded as one of
the requirements of waveform design for 5G and beyond [10–12]. Nevertheless, the Third Generation
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Partnership Project (3GPP) still uses the cyclic prefix (CP)-OFDM and discrete Fourier transform-spread
OFDM (DFT-s-OFDM) as the waveforms of 5G NR [3]. This postpones many waveform candidates such
as filter-bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM), universal
filtered multicarrier (UFMC), windowed-OFDM (W-OFDM), and filtered-OFDM (F-OFDM) [12,13],
mainly owing to their high-PAPR essence and low LTE compatibility.

The importance of backward compatibility can be also reflected in PAPR reduction schemes for
3GPP standards. Various PAPR reduction methods are described in the literature [5–8]. However, only
two have been agreed upon as standard solutions for 4G LTE and 5G NR uplink signaling [2,3]. The first
standard solution, DFT-s-OFDM, which is also known as single-carrier frequency-division multiple
access (SC-FDMA), appeared in 2006 [14]. It was used to conduct relatively low-PAPR signaling by only
reusing the chip-built-in DFT module in user equipment. The second solution is rotated modulation,
including π/2-binary phase shift keying (π/2-BPSK) and π/4-quadrature PSK (π/4-QPSK), which
were originally adopted for narrow-band internet of things (NB-IoT) mono-tone transmissions since
Rel-13 [15]. Apart from the QPSK and quadrature amplitude modulations (QAMs), π/2-BPSK has
been a part of the available modulations of the DFT-s-OFDM uplink since Rel-15 [3]. The π/2-BPSK
and π/4-QPSK perform identically in terms of errors to BPSK and QPSK, but reduce the PAPR without
any increase in computational complexity, making it highly compatible with the current waveforms.

However, the PAPR performance of the current standard solution is fixed and cannot be further
improved if the communication scenario values the PAPR than other performances. Therefore, it is
important to establish a mechanism to adjust a signal’s PAPR in a flexible manner that ensures a sufficient
trade-off between spectral efficiency and energy efficiency (in PAPR aspect) in 5G [16]. The device
capabilities for each 5G use case, including enhanced mobile broadband (eMBB), ultra-reliable and
low latency communications (URLLC), and massive machine type communications (mMTC) are quite
different [17]. For example, reducing the PAPR of a signal can directly increase the reliability for
URLLC owing to the increased SNR, but can lower the signal nonlinearity and power consumption for
mMTC devices, which are usually only equipped with basic PA. Nonlinear uplink signals bring severe
interferences between users, particularly those with narrowband transmissions. Furthermore, since
the sidelink used for proximity services (ProSe) in device-to-device (D2D) communication has been
defined as a subset of the uplink resources [18], the issue of D2D power control critically challenges
system performance [16,19]. This is because the D2D network dynamically connects various types of
user equipment (i.e., various qualities of PA) to support different scenarios of ProSe. DFT-s-OFDM
signaling is expected to be a more robust waveform for uplink through adjustable PAPR reduction
schemes. Hence, several data-independent schemes such as spectral shaping (SS) [20], which use
extra subcarriers to further reduce PAPR, have been investigated to overcome the need for a flexible
countermeasure to the PAPR problem [16,21]. Although the results in [16] successfully achieved 2–3 dB
PAPR reduction compared with conventional DFT-s-OFDM with 10%–20% spectral efficiency loss,
further spectral efficiency loss does not improve the PAPR performance more, and instead degrades it.

In addition, a long-established OFDM-based waveform, polynomial cancellation coding
(PCC)-OFDM [22], is developed for reducing the out-of-band (OOB) interference between users.
The PCC applied in PCC-OFDM is treated as a frequency coding technique for OFDM that maps the
data onto weighted groups of subcarriers. With this simple preprocessing, the differential operation in
the time domain benefits PCC-OFDM on the performance of frequency localization, and the immunity
of frequency offset and Doppler spread, making it one of the waveform candidates for 5G and
beyond [23]. As taking PCC in the data domain can shape the components in the transformed domain,
this inspires us to exploit PCC as a novel SS scheme to reduce the PAPR of DFT-s-OFDM signals.

The goal of this paper is to further the idea of applying PCC on DFT-s-OFDM, i.e.,
PCC-DFT-s-OFDM, for improving the PAPR performance in a more flexible manner by making
the following contributions:
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• Time-domain transform and the SS function of PCC-DFT-s-OFDM are proposed for the PAPR
reduction. By using the designed parameter to perform different orders of PCC, a wide range of
trade-offs between spectral efficiency and energy efficiency performance can be achieved.

• The computational complexity of PCC-mapped DFT precoding matrix is analyzed.
Comparing most of significant PAPR reduction techniques, e.g., selected mapping (SLM) [24]
and partial transmit sequence (PTS) [25], the PCC increases complexity negligibly (add a simple
subtractor circuit only) based on DFT-s-OFDM, which has been widely used in the uplink for
existing LTE/NR systems.

• A comprehensive numerical simulation of the PCC-DFT-s-OFDM transceiver for a single user
and multiple users in terms of PAPR, power spectral density (PSD) and bit error rate (BER)
performances are provided. It shows that the PAPR of DFT-s-OFDM signals can be significantly
reduced using the proposed method, thereby enhancing the PSD and BER, particularly when PA
nonlinearity and inter-user interference are considered.

The rest of this paper is organized as follows. In Section 2, the system and signal model of
the DFT-s-OFDM is described. In Section 3, we present the proposed PCC-DFT-s-OFDM with its
principle of PAPR reduction from the viewpoints of both the time and frequency domains. An in-depth
discussion of the properties of the proposed method and the results of simulations are provided in
Section 4, which is followed by the concluding remarks.

2. System Model

Figure 1 shows a block diagram of a discrete baseband PCC-DFT-s-OFDM transceiver. In this
study, we focus on localized FDMA [14] owing to the LTE/NR compatibility. Let {sr}

P−1
r=0 , P ,M/2d be

the input PSK/QAM symbols, where M is the number of allocated subcarriers and d ∈ {0, 1, 2, . . .} is
the order of PCC. The PCC-mapped symbols can be expressed as:

vm = sm/2d ·(−1)m mod 2d
, 0 ≤ m ≤M− 1, (1)

where mod is the modulo operator. It is noteworthy that the PCC variable used is a general form, such
that d = 0 to disable the PCC mapping, d = 1 for conventional PCC [22], and d ≥ 2 for higher-order
PCC. Then, the PCC-mapped symbols are linearly precoded by an M-point DFT to result in the
frequency-domain data Xk:

Xk =
1
√

M

M−1∑
m=0

vmWkm
M , 0 ≤ k ≤M− 1, (2)

where WM = e− j( 2π
M ) is the twiddle factor. After being zero-padded and after the N-point inverse DFT

(IDFT) of Xk is taken, the transmitted signal samples xn can be written as [26]:

xn = 1
√

N

M−1∑
k=0

XkW−kn
N

= 1
√

MN

M−1∑
k=0

M−1∑
m=0

vmWkm
M W−kn

N

= 1
√

M

M−1∑
m=0

vmg
[
n− N

M m
]
, 0 ≤ n ≤ N − 1,

(3)

where

g[n] =
sin

(
Mπn

N

)
√

Nsin
(
πn
N

) e j (M−1)πn
N . (4)



Electronics 2019, 8, 1349 4 of 17

Electronics 2019, 10, x FOR PEER REVIEW  3 of 17 

 

• Time-domain transform and the SS function of PCC-DFT-s-OFDM are proposed for the PAPR 
reduction. By using the designed parameter to perform different orders of PCC, a wide range of 
trade-offs between spectral efficiency and energy efficiency performance can be achieved. 

• The computational complexity of PCC-mapped DFT precoding matrix is analyzed. Comparing 
most of significant PAPR reduction techniques, e.g., selected mapping (SLM) [24] and partial 
transmit sequence (PTS) [25], the PCC increases complexity negligibly (add a simple subtractor 
circuit only) based on DFT-s-OFDM, which has been widely used in the uplink for existing 
LTE/NR systems. 

• A comprehensive numerical simulation of the PCC-DFT-s-OFDM transceiver for a single user 
and multiple users in terms of PAPR, power spectral density (PSD) and bit error rate (BER) 
performances are provided. It shows that the PAPR of DFT-s-OFDM signals can be significantly 
reduced using the proposed method, thereby enhancing the PSD and BER, particularly when 
PA nonlinearity and inter-user interference are considered. 
The rest of this paper is organized as follows. In Section 2, the system and signal model of the 

DFT-s-OFDM is described. In Section 3, we present the proposed PCC-DFT-s-OFDM with its 
principle of PAPR reduction from the viewpoints of both the time and frequency domains. An in-
depth discussion of the properties of the proposed method and the results of simulations are 
provided in Section 4, which is followed by the concluding remarks. 

2. System Model 

 
Figure 1. Block diagram of the discrete Fourier transform-spread orthogonal frequency division 
multiplexing (DFT-s-OFDM) transceiver with polynomial cancellation coding (PCC) mapping. 

Figure 1 shows a block diagram of a discrete baseband PCC-DFT-s-OFDM transceiver. In this 
study, we focus on localized FDMA [14] owing to the LTE/NR compatibility. Let ሼ𝑠௥ሽ௥ୀ଴௉ିଵ, 𝑃 ≜ 𝑀 2ௗ⁄  
be the input PSK/QAM symbols, where 𝑀  is the number of allocated subcarriers and 𝑑 ∈ሼ0, 1, 2, …ሽ is the order of PCC. The PCC-mapped symbols can be expressed as: 𝑣௠ = 𝑠උ௠ ଶ೏⁄ ඏ ∙ (−1)௠ ୫୭ୢ ଶ೏, 0 ≤ 𝑚 ≤ 𝑀 − 1, (1)

where mod is the modulo operator. It is noteworthy that the PCC variable used is a general form, 
such that 𝑑 = 0  to disable the PCC mapping, 𝑑 = 1  for conventional PCC [22], and 𝑑 ≥ 2  for 
higher-order PCC. Then, the PCC-mapped symbols are linearly precoded by an 𝑀-point DFT to 
result in the frequency-domain data 𝑋௞: 

…

…

zeros

…

𝑀-point
DFT

S/PInput 
symbols

Output 
symbols 𝑁-point

DFT

CP
+

S/P

𝑀-point
IDFT

P/S

Channel

CP
+

P/S

𝑁-point
IDFT

…

PA

…

…

…

Transmitter

Receiver

𝑑-order PCC
mapping

𝑑-order PCC
demapping

…
… AWGN

𝑣଴𝑠௉ିଵ
𝑠଴

𝑣ெିଵ
𝑋଴

𝑋ெିଵ
𝑥଴

𝑥ேିଵ

𝑦଴

𝑦ேିଵ

𝑌଴
𝑌ெିଵ

𝑣ො଴
𝑣ොெିଵ

𝑠̂଴𝑠̂௉ିଵ

ℎℓ𝑧௡

Figure 1. Block diagram of the discrete Fourier transform-spread orthogonal frequency division
multiplexing (DFT-s-OFDM) transceiver with polynomial cancellation coding (PCC) mapping.

The performance of the PAPR ξ of the transmitted signal in terms of complementary cumulative
density function (CCDF) can be presented as:

CCDF(ξ0) = Pr(ξ > ξ0), ξ ,
max

0≤n≤N−1
|xn|

2

E
{
|xn|

2
} , (5)

where E{•} is the expectation operator.
Assuming the length of cyclic prefix (CP) is longer than the multipath channel impulse response,

the received signal samples over the fading channel and after removing the CP can be expressed as:

yn = h` ~N xn + zn, 0 ≤ n ≤ N − 1, (6)

where {h`}
L−1
`=0 is the L-tap channel impulse response, ~N is the circular convolution operator with length

N, and zn is the time-domain additive white Gaussian noise (AWGN) represented in the expression
PSD N0/2. Hence, the received data at the k-th subcarrier is given as:

Yk = Hk·Xk + Zk, 0 ≤ k ≤ N − 1, (7)

where Yk and Zk are the DFT of yn and zn, respectively, and Hk =
L−1∑
`=0

h`W`k
N , 0 ≤ k ≤ N − 1 is the

channel frequency response. By discarding the non-user data in Yk. and applying M-point IDFT for
the remaining components, the received symbols {v̂m}

M−1
m=0 are obtained as:

v̂m =
M−1∑
k=0

YkW−km
M , 0 ≤ m ≤M− 1. (8)

Finally, the output PSK/QAM symbols by PCC-demapping are given as:

ŝr =
2d
−1∑

u=0

v̂2dr+u·(−1)u, 0 ≤ r ≤ P− 1. (9)

Here, the value of d controls the growth of the symbol number in multiples of 2d, which is positively
related to the ability of PAPR reduction. Therefore, the proposed PCC-DFT-s-OFDM provides the
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flexibility of a trade-off between spectral efficiency and energy efficiency by adjusting the value of d,
making the system more adaptive to the requirements of different communication scenarios.

3. Analysis of PCC-DFT-s-OFDM

3.1. Time-Domain Aspect

Applying the moving average to the output of OFDM at transmitters is a simple and effective
method for reducing the envelope fluctuation of OFDM signals (e.g., [27]). However, similar to other
time-domain-oriented schemes, this causes severe inter-carrier-interference (ICI) and out-of-band
radiation that degrades the performance of the BER and causes an adjacent channel leakage ratio
because of the loss of orthogonality. In other words, a typical moving average is an exceptionally good
smoothing filter, but an exceptionally poor low-pass filter. Despite this, PCC-DFT-s-OFDM can be
introduced as a moving average-like technique while maintaining well frequency localization owing
to its differential property [23]. To demonstrate this innovation in the time domain, we substituted (1)
into (3) and obtained the following equation:

xn = 1
√

M

M−1∑
m=0

(
sm/2d ·(−1)m mod 2d

)
g
[
n− N

M m
]

= 1
√

M

P−1∑
r=0

sr·
2d
−1∑

u=0
(−1)ug

[
n− N

M

(
2dr + u

)]
= 1
√

M

P−1∑
r=0

sr·gd
n,r, 0 ≤ n ≤ N − 1, 0 ≤ r ≤ P− 1,

(10)

where gd
n,r ,

2d
−1∑

u=0
(−1)ug

[
n− N

M

(
2dr + u

)]
is the transform of the filter, and g[n] still follows (4). Thus, it is

clear that PCC-DFT-s-OFDM is a symbol set filtered by a 2d-tap smoothing filter.
Typical moving average filters are optimized to reduce random noise while retaining the sharpness

of a step response. Hence, applying moving average filters to the PSK symbols would reduce PAPR more
effectively when compared with using QAM symbols because of their constant envelope. The longer
filter length and more rapid spatial roll-off of the former would result in a smoother (i.e., lower-PAPR)
output signal.

Figure 2 plots the example transforms of gd
n,r with N = 512, M = 48, and d = 0, 1, 2, 3. As seen in

Figure 2a,b, the transform of the conventional DFT-s-OFDM (g0
n,r) is a sinc-like function with a narrow

main lobe and small roll-off. Figure 2c–h illustrate the transform of PCC-DFT-s-OFDM with different
values of d. It can be seen that an increasing d widens the main lobe and concurrently suppresses the
side lobe, exhibiting a desirable moving average filter.
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n,r with N = 512 and M = 48 for (a,b) d = 0 (c,d) d = 1 (e,f) d = 2,

and (g,h) d = 3. Since gd
n,r is complex-valued, its real/imaginary parts and amplitude (in linear/log

scale) are shown separately.

3.2. Frequency-Domain Aspect

On the other hand, PCC-DFT-s-ODFM can be also regarded as a novel SS scheme for single-carrier
waveform to reduce PAPR. Its shaping function can be derived by defining m = r + u, 0 ≤ r ≤ P− 1,
0 ≤ u ≤ 2d

− 1 and substituting (1) into (2):

Xk = 1
√

M

2d
−1∑

u=0

P−1∑
r=0

(−1)usrW
k(r+u)
M

=
2d
−1∑

u=0

(
−Wk

M

)u
·

1
√

M

P−1∑
r=0

srWkr
P , 0 ≤ k ≤M− 1.

(11)

Using (11), the PCC-based frequency-domain data vector can be expressed by multiplying the P-point
DFT of {sr}

P−1
r=0 by a weighting sequence; that is, the PCC-based SS function. As d = 0 (i.e., P = M) is

an all-one sequence used to perform conventional DFT-s-OFDM, we consider d ∈ {1, 2, . . .} for the
derived SS sequence Gd

k (the details are provided in Appendix A):

Gd
k =

2d
−1∑

u=0

(
−Wk

M

)u

= 2d sin
(
πk
M

)
G[k]·e j π2

d∏
p=1

W2d−p−1k
M , 0 ≤ k ≤M− 1,

(12)
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where

G[k] =


1, d = 1

d−1∏
p=1

cos
(

2d−pπk
M

)
, d > 1 . (13)

Equations (12) and (13) show how PCC-DFT-s-OFDM can be regarded as a novel complex-valued
SS scheme instead of a real-value filter for DFT-s-OFDM. The PCC-based and spectral-shaped frequency
components XPCC

k can be obtained as a substitute for Xk as follows:

XPCC
k = XP

k mod P·G
d
k , 0 ≤ k ≤M− 1, (14)

where XP
k mod P are the periodically extended coefficients of P-point DFT of {vr}

P−1
r=0 . Since (14) is basically

an SS process, the frequency-domain data received after inverse-shaping YP
r at the receiver can be

obtained using the equation [21]:

YP
r =

2d
−1∑

u=0

YPCC
2dr+u

·Gd
2dr+u

, 0 ≤ r ≤ P− 1, (15)

where YPCC
2dr+u

is the received user data at the
(
2dr + u

)
-th subcarrier. Although the number of transmitted

symbols decreases from M to P, which shrinks spectral efficiency, the computational complexity of
DFT is also decreased if we implement PCC-DFT-s-OFDM as an SS technique.

The example impulse responses of Gd
k with N = 512, M = 48, and d = 1, 2, 3 are depicted

in Figure 3. As seen in Figure 3a,b.
∣∣∣G1

k

∣∣∣ is equivalent to the raised cosine (RC) spectrum-shaping
vector [28] if d = 1 is used for the proposed method and the roll-off factor is β = 1 (β = 0–1). This is
because the half-sine curve in (12) is exactly consistent with the absolute value of the RC curve. For a
higher-order SS, as shown in Figure 3c–f, shorter-period cosine curves described in (13) would be
multiplied by the half-sine curve, making the signal spectrum more band-limited.
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Figure 3. Example impulse responses Gd
k with N = 512 and M = 48 for (a,b) d = 1 (c,d) d = 2, and (e,f)

d = 3. Since Gd
k is complex-valued, its real/imaginary parts and amplitude (in linear/log scale) are

shown separately.

3.3. Computational Complexity

In this subsection, we analyze the computational complexity increase of PCC-based DFT precoding
compared with conventional DFT precoding. According to (1) and (2), the PCC-based DFT precoded
data vector X = [X0, . . . , XM−1]

T can be rewritten as:

X = FMPs, (16)

where FM is the M-by-M DFT matrix, s = [s0, . . . , sM−1]
T is the input PSK/QAM symbol

vector, and P is an M-by-P PCC mapping matrix whose entries are zeros except P
(
2dm, m

)
=

(−1)u, . . . , P
(
2dm + u, m

)
= (−1)u for 0 ≤ m ≤M− 1 and 0 ≤ u ≤ 2d

− 1. The PCC demapping matrix

is given by P†, where [·]† is the Moore-Penrose inverse. By mathematically evaluating the matrices P
and P†, the PCC mapping and demapping increase M complex multiplications for the transmitter
and P

(
2d
− 1

)
= M

(
1− 2−d

)
complex additions for the receiver. However, since each PSK/QAM

symbol only needs one complex multiplication to generate the results of d-order PCC-mapped
symbols, the increased number of complex multiplications for the transmitter can be further reduced
to P = M/2d. Therefore, the comparison of computational complexity between conventional DFT
precoder/deprecoder and PCC-based one can be summarized as Table 1. As seen, PCC-based DFT
precoding requiresO

(
M2

)
operations whose complexity is consistent with conventional DFT precoding,

where O(·) is the Big-O notation. That is, the computational complexity increase of DFT precoding is
almost negligible when PCC is applied. This makes PCC-DFT-s-OFDM more compatible with existing
LTE/NR systems.

Table 1. Comparison of computational complexity between the conventional discrete Fourier transform
(DFT) precoding and polynomial cancellation coding (PCC)-based DFT precoding.

Computational Complexity
Conventional DFT Precoding (d=0) PCC-Based DFT Precoding (d>0)

Function Big-O 1 Function Big-O 1

Number of complex
multiplications

Tx M2
O

(
M2

)
M2−d + M2 O

(
M2

)
Rx M2

O

(
M2

)
M2

O

(
M2

)
Number of complex

additions
Tx M(M− 1) O

(
M2

)
M(M− 1) O

(
M2

)
Rx M(M− 1) O

(
M2

) M
(
1− 2−d

)
+

M(M− 1)
O

(
M2

)
1 Both operations can be reduced to O

(
M log2 M

)
if split-radix fast Fourier transform (FFT) is applied.
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4. Simulation and Discussion

In this section, the performance of PCC-DFT-s-OFDM discrete baseband signals is evaluated in
terms of PAPR, BER, and PSD, where the latter two also consider the scenarios of a single user (medium
bandwidth only) and two users (medium bandwidth and narrow bandwidth). The system parameterization
conforming to the 3GPP baseband standards [2,3] are listed in Table 2. In the simulations, the Rapp model
for a solid state PA (SSPA) [29] with smoothness factor p = 2 and 3 dB IBO are considered at the transmitter
and perfect synchronization and channel estimation are assumed at the receiver. Furthermore, when d = 0
in the proposed method, conventional DFT-s-OFDM is carried out.

Table 2. System parameterization.

Parameter Value

Carrier Bandwidth 10 MHz
Subcarrier Spacing 15 kHz

Fast Fourier Transform (FFT) Size (N) 1024
Number of allocated subcarriers for User 1 (medium bandwidth) 144 (12 PRBs)
Number of allocated subcarriers for User 2 (narrow bandwidth) 48 (4 PRBs)

Cyclic prefix (CP) length 1 72
Modulation π/2-BPSK, QPSK, 16-QAM

1 Length of channel impulse response (L) is assumed to equal the CP length in the simulation.

4.1. Peak-to-Average Power Ratio

Figure 4 shows the PAPR CCDFs of PCC-DFT-s-OFDM at d = 0, 1, 2, 3 for PSK and QAM signals.
The PAPR performance of both signals improves significantly by changing d = 0 to d = 1. In Figure 4a,
the PAPR performances of all regular PSK signals appear similar for each given d and can be improved
further as d increases. The PAPR performance curve of π/2-BPSK at d = 1 almost overlaps that of the
regular PSKs at d = 2. This indicates that the PAPR performance for π/2-BPSK is greatly superior to that
of regular PSK.

However, Figure 4b shows that the improvements in the PAPR of QAM signals when d = 3 are
lower than when d = 2. This indicates that the PAPR performance is not always improved as d increases.
This result supports the inferences made in Section 3.1 that PCC-DFT-s-OFDM filters provide a minor
reduction in PAPR performance for dynamic-envelope symbols because they are moving average-like.
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Figure 4. Complementary cumulative density function (CCDF) comparison of the peak-to-average
power ratio (PAPR) at d = 0, 1, 2, 3 for (a) phase shift keying (PSK) and (b) quadrature amplitude
modulations (QAMs).

4.2. Power Spectral Density

Figure 5 shows the sub-band PSD performances of the PCC-DFT-s-OFDM at d = 0, 1, 2, 3 for the
π/2-BPSK, QPSK, and 16-QAM signals. The maximum power for each simulation was normalized to 0 dB
to ensure a fair comparison. As d increased, the proposed method concentrated the in-band spectrum and
diminished the out-of-band energy. Furthermore, the latter effect would be obvious if PA was considered.
Although the PAPR performances of these three kinds of modulations were quite different, their extent of
spectrum spreading due to nonlinear distortion was similar. This means that even for low-order/PAPR
modulations in DFT-s-OFDM (i.e., π/2-BPSK and QPSK), there is still only limited improvement for PSD
when PA nonlinearity is concerned. The advantage of lessening the out-of-band radiation can be underlined
from the inter-user interference perspective. As seen in Figure 6a, the side-lobes of two spectrum-adjacent
users severely influence the main-lobe of each other when d = 0. Figure 6b–d displays the mitigation of
ICI for d = 1, 2, 3; as d increases, the main-beams of the two users increasingly separate and their PSDs
overlap less; that is, lower interference plus noise ratio (SINR) is achieved. Such SINR improvement is
especially significant when more users are considered.
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Figure 5. Single-user power spectral density (PSD) performances of polynomial cancellation coded
(PCC) discrete Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM)
for different modulations at (a) d = 0, (b) d = 1, (c) d = 2, and (d) d = 3.
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Figure 6. Two-user power spectral density (PSD) performances of polynomial cancellation coded
(PCC) discrete Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM)
for 16-quadrature amplitude modulation (16-QAM) signals at (a) d = 0, (b) d = 1, (c) d = 2, and (d)
d = 3. The frequency is normalized to User 1’s bandwidth.

4.3. Bit Error Rate

Figure 7 shows uncoded BER performance comparisons of PCC-DFT-s-OFDM over the AWGN
channel at d = 0, 1, 2, 3 for single-user π/2-BPSK, QPSK, and 16-QAM signals. When π/2-BPSK at
d = 0, the BER curve is almost identical to the lower bound, implying thatπ/2-BPSK has a high tolerance
for PA nonlinearity. For QPSK, there is a slight degradation in BER at d = 0. However, its performance
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can be improved to match the lower bound at d = 1. For 16-QAM, the BER improvement is remarkable
at d = 1, 2 but moderate at d = 3 owing to the inferior PAPR performance.
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Figure 7. Single-user bit error rate (BER) performances of polynomial cancellation coded (PCC) discrete
Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM) over the additive
white Gaussian noise (AWGN) channel for different values of d.

Figure 8, Tables 3 and 4 show the BER results over AWGN and Rayleigh fading channel.
The performance of 16-QAM signals improves significantly at d = 1 while appearing close to the
undistorted signals at d = 2, 3. The results for π⁄2-BPSK and QPSK are almost the same as those for the
undistorted signals at each value of d. Despite this, it is interesting that the proposed method essentially
enhances the immunity of DFT-s-OFDM to frequency-selective fading thanks to a property akin to the
SS technique. As shown in Figure 3, the band of the PCC-DFT-s-OFDM signals becomes narrower
through the higher order of PCC symbols, mitigating the interference from the frequency-selective
fading channel.
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Table 3. Single-user bit error rate (BER) performances of the proposed method for the quadrature
phase shift keying (QPSK) signal over additive white Gaussian noise (AWGN) and Rayleigh fading
channel for different values of d.

Eb/N0 (dB)
Without PA Nonlinearity With PA Nonlinearity

d=0 d=1 d=2 d=3 d=0 d=1 d=2 d=3

12 2.896× 10−2 2.599× 10−2 2.156× 10−2 1.516× 10−2 2.965× 10−2 2.614× 10−2 2.162× 10−2 1.523× 10−2

21 2.143× 10−3 1.958× 10−3 1.782× 10−3 1.290× 10−3 2.157× 10−3 1.971× 10−3 1.896× 10−3 1.331× 10−3

30 2.325× 10−4 2.145× 10−4 1.938× 10−4 1.450× 10−4 2.354× 10−4 2.206× 10−4 2.972× 10−4 1.461× 10−4

39 2.841× 10−5 2.681× 10−5 2.268× 10−5 1.785× 10−5 2.867× 10−5 2.715× 10−5 2.289× 10−5 1.886× 10−5

Table 4. Single-user bit error rate (BER) performances of the proposed method for the 16-quadrature
amplitude modulation (16-QAM) signal over additive white Gaussian noise (AWGN) and Rayleigh
fading channel for different values of d.

Eb/N0 (dB)
Without PA Nonlinearity With PA Nonlinearity

d=0 d=1 d=2 d=3 d=0 d=1 d=2 d=3

12 6.483× 10−2 5.822× 10−2 4.841× 10−2 3.492× 10−2 7.388× 10−2 6.854× 10−2 5.537× 10−2 4.069× 10−2

21 5.007× 10−3 4.488× 10−3 3.859× 10−3 2.712× 10−3 8.412× 10−3 7.393× 10−3 5.330× 10−3 3.629× 10−3

30 4.802× 10−4 4.593× 10−4 3.865× 10−4 2.930× 10−4 1.175× 10−3 6.408× 10−4 4.925× 10−4 3.543× 10−4

39 5.693× 10−5 5.147× 10−5 4.537× 10−5 3.781× 10−5 4.64× 10−4 7.340× 10−5 5.706× 10−5 4.217× 10−5

Figure 9 presents the BER performances of two spectrum-adjacent users whose PSD refer to
Figure 6. Clearly, serious BER degradation was found when inter-user interference is further considered.
By applying PCC to DFT-s-OFDM, the BER of both users is greatly improved because their side-lobes
have been suppressed to avoid interfering with the main-beam of each other. However, since more
allocated bandwidth causes a greater side-lobe component than that of other users, the BER of User
1 mainly improves at d = 1 (see Figure 9a,c) while that of User 2 mainly improves at d = 2 (see
Figure 9b,d).
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Figure 9. Two-user bit error rate (BER) performances of polynomial cancellation coded (PCC) discrete
Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM) over the Rayleigh
channel for different values of d for (a) User 1 (with medium bandwidth) for π/2- binary phase shift
keying (BPSK) and quadrature PSK (QPSK), (b) User 2 (with narrow bandwidth) for π/2-BPSK and
QPSK, (c) User 1 for 16-quadrature amplitude modulation (QAM), and (d) User 2 for 16-QAM.

4.4. Discussion

The simulation results show that the BER enhancement is evident even for low-order modulations
(i.e., π/2-BPSK and QPSK) if both PA nonlinearity and inter-user interference are considered.
Furthermore, the proposed method can effectively improve PSD performance and the immunity
of the frequency-selective fading channel for all modulations in DFT-s-OFDM systems that benefit
from the transformed-domain data localization of PCC symbols. The extent of the improvement
for PAPR, PSD and BER performances depends on the value of d, which would decrease data rate
2d times. Indeed, this might be the main drawback of the proposed method. However, aiming to
improve the flexibility on the trade-off between spectral efficiency and the other performances for
DFT-s-OFDM, the proposed architecture creates the opportunity for further improvement in terms of
PAPR, PSD and BER performances when the channel condition allows bandwidth-greedy transmission.
Otherwise, one can reduce to the conventional DFT-s-OFDM for the transmission by using d = 0.

5. Conclusions

As 5G services bring more diverse communication scenarios, low-PAPR LTE-legacy uplink
signaling, DFT-s-OFDM, requires greater flexibility in its PAPR performance for adapting miscellaneous
5G devices. We have proposed a generalized PCC technique to solve the inflexibility of regulating the
PAPR of DFT-s-OFDM uplink signals by reducing the PAPR in a controllable manner. By deriving
the SS function for PCC-DFT-s-OFDM, we have proved that the proposed method can be considered
as a novel SS technique for DFT-s-OFDM. Based on the cost of spectral efficiency, which might be a
relatively tolerable requirement for URLLC, mMTC, and D2D ProSe in LTE/NR, the simulation results
show that our PCC-DFT-s-OFDM outperforms the conventional DFT-s-OFDM in terms of PAPR, PSD,
and BER, the last especially with the inter-user interference. Hence, our method is the most suitable to
support the various D2D transmissions and URLLC/mMTC services.

Owing to the low complexity of PCC, future work could evaluate the combination of PCC and
current uplink/downlink signaling options (i.e., DFT-s-OFDM/CP-OFDM) as potential waveform
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candidates for 5G and beyond. Such combinations can include other advantages of PCC-OFDM, such
as the reduction of ICI [30], enhancement for MIMO systems [31,32], and increasing the robustness of
asynchronous communications [33,34], forming a highly flexible PCC-/DFT-s-/OFDM system against
the complicated 5G environment.
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Appendix A. Spectral Shaping Function of PCC-DFT-s-OFDM

For the d-order PCC-DFT-s-OFDM, its SS function, Gd
k =
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)u
, 0 ≤ k ≤ M − 1, can be

extracted by (11) and rewritten as follows:
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(A1)

Since the term of
d−1∏
p=1

cos
(

2d−pπk
M

)
in the amplitude response is invalid if d = 1, we define a function G[k]

described in (13) for the validity. Consequently, (12) is derived.
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