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Abstract: This study presents a field-programmable gate array (FPGA)-based mechatronic design and
real-time fuzzy control method with computational intelligence optimization for omni-Mecanum-wheeled
autonomous vehicles. With the advantages of cuckoo search (CS), an evolutionary CS-based fuzzy
system is proposed, called CS-fuzzy. The CS’s computational intelligence was employed to optimize
the structure of fuzzy systems. The proposed CS-fuzzy computing scheme was then applied to
design an optimal real-time control method for omni-Mecanum-wheeled autonomous vehicles with
four wheels. Both vehicle model and CS-fuzzy optimization are considered to achieve intelligent
tracking control of Mecanum mobile vehicles. The control parameters of the Mecanum fuzzy
controller are online-adjusted to provide real-time capability. This methodology outperforms the
traditional offline-tuned controllers without computational intelligences in terms of real-time control,
performance, intelligent control and evolutionary optimization. The mechatronic design of the
experimental CS-fuzzy based autonomous mobile vehicle was developed using FPGA realization.
Some experimental results and comparative analysis are discussed to examine the effectiveness,
performance, and merit of the proposed methods against other existing approaches.

Keywords: computational intelligence; evolutionary; real-time; Mecanum vehicle

1. Introduction

Real-time fuzzy control is a modern control strategy for a variety of challenging control applications
because it provides a convenient method for constructing nonlinear controllers [1-3]. Compared with
conventional controllers, this approach has significantly improved the performance by considering the
control parameter tuning issue. The control parameters are self-tuned in this kind of real-time controller
to achieve optimal performance using fuzzy theory. This approach provides a formal methodology
for representing, manipulating, and implementing human heuristic knowledge to develop intelligent
controllers [4-6].

Although the real-time fuzzy control method has been widely used in many real-world disciplines,
there remain a number of drawbacks in the design stages. One major difficulty is the construction of
the fuzzy model in terms of the center and width of the membership functions and fuzzy rules [5,6].
Although the identification procedure of a fuzzy model can be manually tuned, the tuning procedure
is time-consuming for complex systems. In recent years, some auto-tuned fuzzy modeling methods
have been presented, however, these works are computationally intensive and they do not provide
a general optimization method [6].
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In order to meet these challenges, artificial evolution can provide robustness and scalability.
It is a well-established approach to the design and optimization of intelligent systems [7,8]. Biologically
inspired computational intelligence has been identified as an efficient tool for the optimal construction
of fuzzy systems. To date, some popular evolutionary algorithms have been employed to develop
metaheuristic fuzzy systems for engineering optimization. For example, GA (genetic algorithm)-fuzzy,
PSO (particle swarm optimization)-fuzzy, and ACO (ant colony optimization)-fuzzy are powerful hybrid
swarm intelligences for fuzzy structure optimization [7-11]. This hybrid computational intelligence is
a modern technology for solving real-world engineering problems and complex multidimensional
optimization problems [7].

Metaheuristic algorithms are a subset of computational intelligence. This kind of computing
paradigm has attracted attention over recent decades because of the algorithms’ simplicity, flexibility,
and local optimum avoidance [12-16]. In particular, some of them play an important role not only in
academic society but also in many other practical engineering fields. It is an emerging field of artificial
intelligence based on the behavior models of social insects in nature. This discipline deals with the
natural and artificial systems composed of many individuals that coordinate using decentralized
control and self-organization [17,18].

In the rapid development of metaheuristic algorithms, CS introduced by Yang and Deb is
a population-based algorithm inspired by the brood parasitic behavior observed in the cuckoo bird
species [19]. Compared with conventional optimization methods, these metaheuristics are potentially
more generic and robust for many non-deterministic polynomial-time hard optimization problems.
CS has been employed in diverse domains with great efficiency by exploiting its strong optimization
ability, including controller design, chaotic systems, path planning, and sensor networks [19-21].
This study not only presents a CS-fuzzy optimization method, but also applies this intelligent system
to the locomotion control of omni-Mecanum-wheeled autonomous vehicles.

Omni-Mecanum-wheeled vehicles are mobile vehicles equipped with four Mecanum
omnidirectional wheels [22]. They are based on the characteristic of a central wheel with a number of
rollers placed at an angle of 45° around the periphery of the wheel. They provide the omnidirectional
ability to move instantaneously in any direction from any configuration without changing the direction
of the wheel. This kind of mobile robot with four degrees of freedom (DOFs) has been used in vast
applications instead of conventional vehicles due to its flexible mobility in performing difficult tasks
in congested environments with complex obstacles [23,24]. To date, the omni-Mecanum-wheeled
vehicles have been widely used in nursing-care robots, intelligent wheelchairs, industrial robots,
and nursing-care robots [23,24].

Four-DOF Mecanum vehicles are categorized as redundant vehicles. They have quite different
features compared with three-DOF holonomic and two-DOF non-holonomic mobile vehicles. Several
studies [24,25] have been presented to address the mathematical vehicle modeling and nonlinear
control problem of Mecanum vehicles. However, these control schemes neither addressed the
optimal control problem, nor presented real-time fuzzy controllers. This work not only presents
an evolutionary CS-fuzzy optimization, but also designs an FPGA-based real-time CS-fuzzy controller
for omni-Mecanum-wheeled vehicles. With the advantages of FPGA realization [26-29], this study
presents the FPGA-based mechatronic design for the omni-Mecanum-wheeled vehicle with CS-fuzzy
computational intelligence optimization.

The objective of this study was to develop a hybrid CS-fuzzy optimization technique for application
to evolutionary real-time fuzzy control omni-Mecanum-wheeled autonomous vehicles. With the
advantages of FPGA, metaheuristic algorithm, and fuzzy theory, the proposed CS-fuzzy control method
outperforms the traditional fuzzy controllers. Moreover, the proposed approach has significantly
improved the performance by considering the control parameter tuning issue. The remainder of
this paper is organized as follows. In Section 2, the hybrid CS-fuzzy optimization approach is
introduced. Section 3 details the method for employing the proposed CS-fuzzy computational
intelligence to design an intelligent real-time CS-fuzzy locomotion controller for Mecanum autonomous
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vehicles. Section 4 presents the mechatronic design and FPGA implementation of the CS-fuzzy-based
omni-Mecanum-wheeled autonomous vehicle. Section 5 discusses several experimental results and
comparative works to demonstrate the performance and merit of the proposed methods. Concluding
remarks are provided in Section 6.

2. CS-Fuzzy Computational Intelligence Optimization

2.1. Classical Fuzzy Control System

Fuzzy control systems are considered a kind of intelligent control scheme. They can utilize
some human knowledge to construct logical inference rules. With the advantages of fuzzy theory,
it has shown potential in designing controllers for complex nonlinear systems and ill-formulated
systems. This practical control technology has been successfully used in solving many real-world
optimization problems.

Fuzzy logic IF-THEN rules are utilized to describe fuzzy control systems. These rules have to
be established based on human expert knowledge, and they must be implemented by performing
rigorous logical operations. This study adopts a fuzzy model with 7 rules. The fuzzy inference system
is expressed by

R;: Ifx;is Ay AND...AND x; is A;;, THEN y; is a; €))]

where x = (x1,...,%y) is the input, y; denotes the output of ith rule. Ay, ..., A;, are fuzzy set in the
antecedent part and 4; is a real number in the consequent part of R;. The output y is calculated by the
weighted average defuzzification method as

K
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where K denotes the number of rules, ®;(x) is the firing strength of the rule R;:
n
@i(x) = [ [ ua, (x)), i=1,2,...,K ®)

i=1
where 4, (x;) is the membership function of the fuzzy set A;; in the antecedent of R;.

2.2. CS Algorithm

Cuckoo Search is a nature-inspired optimization algorithm based on the cuckoo bird’s parasitic
breeding behavior of laying its eggs in the nests of different bird species. The cuckoo bird deposits
her eggs in the nest of a host bird whose eggs closely resemble her own eggs and uses the services
of host birds to hatch her own eggs. This parasitic behavior increases the chance of survival of the
cuckoo’s genes since the cuckoo need not expend any energy rearing its offspring. The cuckoo search
algorithm simulates the cuckoo bird’s intelligent search strategy of finding the best host nest to deposit
her egg. It utilizes the brood parasitism behavior in order to explore the search space and search for
optimal solutions.

In CS computational intelligence applied to solving optimization problems, a set of nests with
one egg inside is randomly placed in the search space and each egg represents a candidate solution
for optimization problems. The cuckoos traverse the search space and CS records the highest fitness
values for the different candidate solutions. A special search pattern called Lévy flight is employed in
real cuckoo birds and insects. This characteristic is more efficient for global search rather than random
walks or some conventional motions. Each cuckoo i in CS lays an egg (the potential candidate solution)
at a random location by performing the Lévy flight, which is characterized by
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xi(t+1) = x;(t) + a® Levy(B) 4)

where t is the iteration number, x;(t) is the location of ith nest at tth iteration. & > 0 is the step size
and @ is an entry-wise multiplication. Levy(p) is a specialized random walk behavior, formulated
by the form:
1
) B
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r(p+1)x sin(
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where T is the gamma function I'(x) = fooo e~'t*~'dt. B denotes a constant (1 < § < 3).

2.3. Hybrid CS-Fuzzy Optimization to Real-Time Control

CS has some attractive features for dealing with optimization problems, including great flexibility
and robust ability. This section aims to develop a hybrid control scheme using the CS-fuzzy
optimization technique. The CS algorithm is employed to determine the fuzzy structures. To allow
easy implementation, in this study, the triangular membership functions in R; are defined by the center
c;, the left vertex a; and the right vertex b;. The design parameters of the fuzzy structure for real-time
control include the number of rules K, c;, a; and b;. Figure 1 depicts the architecture of the proposed
CS-fuzzy control system. Having the CS-optimized fuzzy system, the intelligent CS-fuzzy control
strategy is applied to real plants to obtain an optimal feedback control system.

CsS
Algorithm

4

+ CS _agent” ={c’,a’,b' K"}

Rule Base

Output

Reference

— X

4

Inference
Engine
Input

Sensors

Figure 1. Architecture of the proposed cuckoo search (CS)-fuzzy control system.

In the CS-based approach for optimizing fuzzy modeling, each CS agent is defined as a specific
fuzzy model, and the goal is to design an optimal fuzzy structure. In this work, this parameter
optimization is addressed by using the evolutionary CS algorithm, thereby optimizing the fuzzy
structure parameters. Compared with conventional fuzzy systems, the proposed biological CS-fuzzy
optimization takes the advantages of metaheuristic algorithm and fuzzy theory. In the proposed
CS-optimized fuzzy system, a CS agent is defined by the fuzzy parameters CS_agent = {c;, a;, b;, K}.
This intelligent control system features feedback control and artificial intelligence. Based on the
reference signals, the CS-fuzzy control system with evolved CS_agent* = {c*;,a*;, b*;, K*} controls the
plant to achieve the control goal. Some sensors are employed in the closed-loop control system to
measure and convert the real-world signals.
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With the measured signals, the system errors are updated at every sampling period. The proposed
CS-fuzzy control scheme generates output commands to drive the plant by considering the plant model.
Worthy of mention is that the parameters in the derived control laws are online-tuned via the CS-fuzzy
optimization technique. This real-time control strategy is superior to the traditional fixed-parameter
control methods and off-line approach because the control parameters are self-adjusting at every
sampling period. To evaluate the performance of the CS-based fuzzy modeling, a fitness function
(performance index) is defined to evaluate the agents. This fitness function can be predefined according
to the optimization problems. Typically, the least square error is employed to evaluate the CS-fuzzy
system, described by equations of the form

N 2
, 1
Fitness = ﬁs;(yf - yd) (6)
where y¢ and y, respectively denote the fuzzy model outputs and desired output. N denotes the
number of sampling data.

3. Real-Time CS-Fuzzy Control for Mecanum Vehicles

3.1. Robot Kinematics Analysis

Robot kinematics deals with the configuration of robots in their workspace or environment.
It describes the relations between a robot’s geometric parameters and the workspace. The kinematic
equations depend on the geometrical structure of the robot. Kinematics analysis is an important topic
for the study of the stability and control of robots. In robotic research, direct and inverse kinematics
are two key issues in vehicle modeling. Direct kinematics determines the vehicle motion when the
angular velocities of the wheels are given. The inverse kinematic problem uses the velocities of the
vehicle to determine the angular velocities of the wheels. Figure 2 presents the symmetrical layout
structure of the omni-Mecanum-wheeled autonomous vehicle equipped with four wheels. The inverse
kinematic equation is presented as follows:

Vw =TVc @)
T
where Vyy = [ V1w 2w V3w V4w ] represents the wheel’s velocity vector corresponding to
T
the angular velocity, Vo = [ Uy Uy W ] is the velocity vector in Cartesian coordinates.
T is a transformation matrix, expressed by
1 -1 —(L+1h)
T— 1 1 (h+1h)
1 1 —-(h+1Dh)
1 -1 (l] + 12)

The direct kinematic equation vehicle velocity can be obtained from the wheel velocity using
a pseudo inverse matrix approach as follows:

RO,

Uy 1 1 1 1 X
1 RO,
v == -1 1 1 -1 i 8
[ Y ‘ @ 4 1 -1 1 RO; ®)
Wz (ht+h) (h+h) (hthk) (h+h) ;
RO,

where v;,, = Réi,i =1,2,3,4, R denotes the radius of the Mecanum omnidirectional wheel. /; and I,
are the distances between the center of gravity in length and width direction, respectively.
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Figure 2. Structure of the omni-Mecanum-wheeled autonomous vehicle (a) bottom view (b) front view.

The velocities and the angular velocity of the vehicle in Equations (7)—(8) are derived in the
moving frame. By considering the position and orientation of the omni-Mecanum-wheeled vehicle

T
with the vector [ Xo Yo O ] in world frame, one obtains the following transformation matrix:

X cos@ —sinf 0 Uy
Yp |=| sin@ cos6 0 || vy ©)
0 0 0 1| w:

Combining Equations (9) and (8), the direct kinematics model of the Mecanum vehicle in a world
frame is formulated by

(cosO+sinB) (cosO—sinB) (cosO—sinf) (cosO + sin0) Ol
= 1| —(cos 9 —sin0) (cos@+sinB) (cosO+sin@) —(cosO—sind) || 2

1 -1 1 O3w
11 +lz (h+h) (h+l2) (h+h) Vazw
V2sind  V2cosd® V2cosd  V2sind Olw Olw (10)
=1 =V2cos® V2sin® V2sin® —V2cos? Y20 | pr(g)| 2
-1 1 -1 1 O3w V3w

(h+h) (h+h) (h+h) (h+h) Vi Vi
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where 8 = 0 + %. The inverse kinematics model of the Mecanum-wheeled vehicle in a world frame is

governed by
V1w V2sin(9) —V2cos(9) —(I+1L) :
Vow | V2 cos(9) V2sin(9) (I+1L) e _ Y
v | | V2cos(9) V2sin(9) -(I+1L) yéw = P() yé” (1)
U4 V2sin(9) —V2cos(9) (I+L)

where P (0) is the left pseudo inverse matrix of P(6).
3.2. CS-Fuzzy Motion Control

3.2.1. Control Law Design via Vehicle Kinematics

Motion control is a core issue in robotics research, aiming at generating the smooth movement of
the robot by considering the vehicle’s kinematics model. This subsection aims at presenting a motion
control scheme with trajectory tracking capability for omni-Mecanum-wheeled robots. The smooth
and differentiable trajectories of the Mecanum vehicle can be planned via the control law to accomplish

T
motion control. Defining the desired trajectory My (t) = [ xg(t)  ya(t) 64(t) ] , the trajectory tracking
error of the vehicle is expressed by

X () Xo(t) x4 (t)
Me(t) = | ve(t) | = yalt) [=| va(t) (12)
6c(t) (t) B4(t)

T
where [ xw(t) yu(t) 6(t) ] is the position and orientation of Mecanum mobile vehicle at time
stamp t. Thus, one obtains the time derivative of M,(t) as follows

[0 [ ) fao) ool R0
) =| %) | =] yu(t) |=| ba(t) |=P(O(1)) Rws(t) |~ Ya(t) (13)
o) | | ot | | outt Rty | L 040

T
The design goal of control law is to determine the angular velocities U = [ w1(t)  wa(t) ws(t) ]
of wheel motors such that the robotic system is globally and asymptotically stable. In this paper,
the following trajectory tracking law is proposed

Zlgg 1 Xe(t) fot xXe(T)dt x4(t)
Ui = wi(t) - EP(Q(t)) —Kp| ve(t) |- Ki J(;t Ye(T)dT |+ :yd(t) (14)
w4 (F) Oc(t) INCRGIE 0.4(t)

where Kp and K; are control matrices; they are set as symmetric and positive definite. Substituting
Equation (14) into Equation (13) leads to the closed-loop error system, governed by

| 0 xe(t) foxe(dr | T xa(t) 4
Me(t) = | 9e(t) | = PROOPOWD| K| velt) |=Ki| [y we(o)de |+ | 9a®) ||| ba
Be(t) t O, (t) Jy Be(r)dr Ba(t) B4 15)
xe(t) fo Xe(T)dT
= —Kp| ve(t) |-Ki| [ ye(v)dt
Oe(t) fot O, (7)dt
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To prove the globally asymptotical stability of the proposed control scheme for the
omni-Mecanum-wheeled system by means of Lyapunov stability theory, one selects the quadratic
Lyapunov function as follows:

xe(t)  xe(t)de
V() =3[ %) ve®) ) ]| we®) |+3] [re(dr [re(vdr [[o(r)dr [K| [ ye(r)de | (16)
Oe(t) fot 0. (1)dt
Taking the time derivative of V(f), one obtains
() | t t (1)
V) =] %) ve() 0 O] %) |+] [re(dr [fye(vdr [ o(t)dr |Ki| ve(t)
L Qe(t) | ef(t)
[ x(t) | f():xe(T)dT , , . xe(t)
:[xe(t) Ve(t) Qe(t)] -Ky| ve(t) |-K; foye(’[)d’[ +[foxe(’[)d’[ foyg(’c)d’[ foee(’[)d’[ ]KI ve(t)
Oc(t) | INCAG Oc(t)
= %) w) 0 O] v [<0
Oe

This result implies that the globally asymptotic stability of the proposed feedback robotic system
is ensured, meaning that the position and orientation errors asymptotically approach zero as time
tends to infinity.

3.2.2. Real-Time Motion Control Scheme Using CS-Fuzzy Computing

Although the nonlinear motion control law of the omni-Mecanum-wheeled vehicle is synthesized
in Equation (14), there exists a control gain parameter tuning problem in this redundant robotic
system. In other words, the control gain matrices Kp = diaglkxy kyp kep| and K; = diag[ky; kyi kei]
affect the performance of the closed-loop control system. To improve the diversity of motion and
increase the performance requirements, this subsection aims to develop a CS-fuzzy real-time motion
control methodology. This intelligent control strategy is superior to traditional control approaches
because the gain matrices are online-optimized via the proposed evolutionary CS-fuzzy computational
intelligence optimization.

The parameter tuning of control gains can be regarded as a metaheuristic optimization problem.
This study employed the proposed CS-fuzzy optimization to design a self-tuning CS-fuzzy online
controller, in which the control gain parameters are self-organising at every sampling period to achieve
motion control of omni-Mecanum-wheeled vehicles. This evolutionary real-time control strategy is
superior to traditional controllers using off-line tuning and hand-tuning methods because it provides
the advantages of the CS, fuzzy theory, and real-time optimal control approach. The fitness function of
the proposed CS-fuzzy optimal motion controller can be defined by the integral square error (ISE),
expressed by

t
ISE = f we(xe2(7) + ¥ (7) + 0.2 (7)) +w,K (17)
0

where w, and w, are two weighting factors. x, and y. are the position errors in the Cartesian coordinates
and 0, is the error of the vehicle’s orientation. K is the number of rule bases. Notice that the proposed
ISE-based intelligent CS-fuzzy control system is applicable to IAE (integral absolute error) and ITAE
(integral time-weighted absolute error) based fuzzy systems by easily redefining the CS fitness function
in Equation (17).

Having the predefined fitness function in the proposed omni-Mecanum-wheeled robotic
system, the proposed CS computing paradigm aims to determine the optimal fuzzy structure
CS_agent® = {c*j,a";,b";, K"} in triangular membership functions. Both the structure of fuzzy
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membership functions and the number of rule bases are included in the presented CS-fuzzy control
system. Notice that this work presents a general CS-fuzzy optimization. Furthermore, this approach is
applicable to solving other engineering optimization problems by easily redefining the fitness function
in Equation (17). The control gain matrices Kp = diag[kyy kyp kep| and K; = diaglky; kyi ke;] of the
mobile vehicle are online self-tuned via the CS-fuzzy evolutionary process, thus obtaining optimal
control performance.

4. Mechatronic Design and FPGA Implementation

Figure 3 presents the FPGA-based mechatronic design of the proposed omni-Mecanum-wheeled
autonomous vehicle. As shown in Figure 3a, the four Mecanum omnidirectional wheels were connected
to the DC motors. A photo encoder was directly mounted on the DC motor to detect the QEP (quadrature
encoder pulse) feedback signal. Four H-bridge power driver units were used to drive the DC motor via
PWM (pulse-width modulation) methodology. A connector board was designed to serve as an interface
between the driver units and the FPGA development kit. With the advantages of FPGA realization,
observable in Figure 3b, all the hardware circuits and software components were integrated in one
chip. This is an efficient approach to present a cost-effective Mecanum robotic system to examine the
proposed real-time CS-fuzzy control scheme. The FPGA development board was employed to perform
the proposed intelligent CS-fuzzy motion control strategy. The QEP and PWM hardware circuits were
developed using Verilog hardware description language (HDL) to connect the physical world and
robotic cyber world. An FPGA embedded processor was utilized to execute the cyber computing,
including CS-fuzzy computing and kinematics model-based control.

* DC Motor

Connector Module ; :
X 0¥

E\ncoder

Mecanum Wheel

Battery

i

FPGA Board

Figure 3. Field-programmable gate array (FPGA)-based mechatronic design of the proposed omni-
Mecanum-wheeled autonomous vehicle (a) Bottom view (b) front view.
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Figure 4 depicts the system structure of the omni-Mecanum-wheeled autonomous vehicle.
When the FPGA embedded CPU received the feedback QEP signals from the motor’s encoders,
the dead reckoning technology [30-33] was applied to calculate the position and orientation of the
Mecanum-wheeled vehicle. This FPGA-implemented approach is very useful in robotics research
for determining pose information from sensors. The raw data captured from the physical world are
converted to useful information in the cyber-world by means of this embedded processor. Possessing
the current pose information and desired trajectory, the error vector is then obtained, thereby generating
the control output based on the proposed intelligent CS-fuzzy control scheme. The control matrices
are online-updated along with the sampled data at every sampling. Finally, the control commands
are sent to PWM modules and H-bridge drivers to steer the motors in the physical world to achieve
trajectory tracking task.

~
Tracking A N Wireless
Command N 1  Module
PN
7
(Embedded ARM CPU )
mbedde
H-Bridge CS-fuzzy (1‘
Drives C: < Control - e
A Desired =R
w S Trajectory § =
S = 178 =]
& = <N
e B
= 3| QEP Dead 7=
Encoders =~ Reconing
Motors L y

Figure 4. System structure of the omni-Mecanum-wheeled autonomous vehicle. (Quadrature encoder
pulse = QEP).

In the FPGA realization of the omni-Mecanum-vehicle, a dual-core ARM Cortex-A9 CPU was
employed to perform the cyber CS-fuzzy computing using C/C++ code for ultimate design flexibility.
The model of the development kit is Altera DE1-SoC which presents a modern hardware design
platform built around the Altera System-on-Chip (SoC) FPGA. The FPGA chip is a Cyclone V
SoC device that integrates a hard processor system (HPS) consisting of processor, peripherals and
memory interfaces tied seamlessly with the FPGA fabric. The DE1-SoC development board includes
hardware such as high-speed DDR3 memory, video and audio capabilities and Ethernet networking.
This hardware/software FPGA codesign methodology is regarded as a modern realization method to
construct cost-effective mobile robots, because both the embedded processor and custom logics are
integrated in one chip.

5. Experimental Results and Discussion

This section is devoted to discussing the experimental results and comparative analysis
to highlight the contributions and merit of the proposed FPGA-based mechatronic design and
intelligent CS-fuzzy real-time control for omni-Mecanum-wheeled mobile vehicles. The first
experiment was conducted to examine the tracking performance of the CS-fuzzy online control
for the omni-Mecanum-wheeled autonomous vehicle. The desired trajectory is mathematically
expressed by [ xg(t) ya(t) 64 (t)]T = [ rgcoswyt (cm) rgsinwyt (cm) 0 (rad) ]T, wherer; =
64 + 40 cos4w,t (cm) and @, = 0.05 (rad/sec). The initial pose in this experiment is set at the
origin. Figure 5 presents the trajectory tracking result for this special curve and Figure 6 depicts the
tracking errors of the orientation and position of the omni-Mecanum-wheeled vehicle. Through these



Electronics 2019, 8, 1328 11 of 14

experimental results displayed in Figures 5 and 6, the proposed intelligent CS-fuzzy motion controller
successfully steered the vehicle to track this curve. The position error and orientation are converged to

zero in 10 s.

150 T T
= == Experimental path
Desired path
100 O initial position i
50 i
>
-50 - i
-100 i
-150 . . ! L I
-150 -100 -50 0 50 100 150

X(cm)

Figure 5. Experimental result of CS-fuzzy real-time trajectory tracking.

20 T T T
0 W‘MWWM%#«WM%
|
-20 ] 1
< |
S -0 1
g’ I == == Tracking error of x (cm)
% 60 1 Tracking error of y (cm) |
© I Tracking error of orientation (rad)
l_
|
-80 i
1
1
-100 .
-120 1 1 1 1
0 50 100 150 200 250

Time(0.1 sec)

Figure 6. Experimental tracking errors of the position and orientation of the omni-Mecanum-vehicle.

In the proposed intelligent CS-fuzzy motion controller of the omni-Mecanum-vehicle,
the predefined fitness value was used to evaluate the performance of the CS-fuzzy system. Both the
pose error and the number of fuzzy rules are included in the fitness function. Figure 7 depicts the
convergent behavior of the fitness value. As shown in Figure 7, the fitness value converges to constant
successfully, meaning that the proposed CS-fuzzy intelligent controller online evolves the optimal
control parameters. Figure 8 presents the output command of the CS-fuzzy controller to steer the
Mecanum vehicle. The proposed CS-fuzzy generates smooth output commands for tracking the desired
trajectory. To compare the proposed control scheme against other existing methods, this research
performs the ACO-fuzzy and PSO-fuzzy tracking control tasks using the same experimental setting as
in Figure 5. The fitness value in the ACO-fuzzy tracking controller is 6.70 X 10* and the convergent
fitness value using the PSO-fuzzy tracking approach is 6.72 x 10*. These comparative works clearly
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indicate that the proposed FPGA-based intelligent CS-fuzzy control scheme outperforms the traditional
evolutionary fuzzy control systems.

«10*

6.78

6.77

6.76

6.75

6.74 1

6.73 1

6.72 1

CS Fitness value

6.71 1

6.7 _

6.69 i

6.68 I I I T T T T
0 25 50 75 100 125 150 175 200

Generation

Figure 7. Behavior of the CS fitness value.
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Figure 8. Output commands of the CS-fuzzy controller.
6. Conclusions

This study has presented a FPGA-based mechatronic design and real-time fuzzy control method
with CS-fuzzy computational intelligence optimization for omni-Mecanum-wheeled autonomous
vehicles. The proposed CS-fuzzy computing scheme was applied to synthesize an optimal real-time
control for omni-Mecanum-wheeled autonomous vehicles with four wheels. The control gain matrices
of the Mecanum fuzzy controller were online-adjusted to provide real-time capability. The mechatronic
design of the experimental CS-fuzzy based autonomous mobile vehicle was developed using FPGA
realization. Experimental results and comparative works were discussed to examine the effectiveness,
performance and merit of the proposed methods against other existing approaches. The proposed
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CS-fuzzy real-time control method can be applied to designing dynamics controllers of mobile vehicles
by considering the forces and torques in future works.
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