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Abstract: A ruggedness improved multi-band radio frequency (RF) power amplifier (PA) module
applicable to mobile handsets, which are required to survive against a serious load impedance change
under extreme power and bias conditions, is presented. In this method, the load impedance of
PA is adaptively adjusted with a digitally controlled impedance corrector to keep the PA safe by
performing a load mismatch detection. The impedance mismatch detector, impedance corrector,
and other RF switches were all integrated into a single integrated circuit (IC) using silicon on insulator
(SOI) complementary metal oxide semiconductor (CMOS). For the verification purpose, a 2-stage
hetero junction bipolar transistor (HBT) PA module adopting this method was fabricated. At a
frequency of 1915 MHz, a collector bias voltage of 4.2 V, and over a wider range of load impedance
variation between a VSWR of 1 and a VSWR of 5.5, it did not fail. When this technique was not
applied with a voltage standing wave ratio (VSWR) range of 1 to 4, it resulted in an acceptable
RF performance degradation of 1% power added efficiency (PAE) in envelope tracking (ET) mode.
Moreover, it survived at a bias voltage 1V larger than when the technique was not applied for the
same mismatch condition.

Keywords: RF power amplifier; hardware module; ruggedness; protection circuit; mobile industry
processor interface (MIPI) control; embedded-software control; impedance tuning

1. Introduction

Since the RF PAs in a mobile device are connected to an antenna, they must go through
impedance mismatches caused by environmental changes. The PA can be damaged when a load
mismatch occurs, therefore the PA’s ruggedness was a main concern for Tx chain in mobile handsets.
For this reason, many efforts were made to improve it and solutions for sufficient ruggedness were
provided [1–13], including: Clamping circuit [1–3], resistive emitter ballasting [4], closed loop protection
technique [1,5–10], high voltage process, and so on. A general ruggedness requirement for PA-duplexer
(PAD) modules is to have no damage or permanent performance degradation with a full RF input
power drive under high load VSWR conditions at a maximum supply voltage. Typical values for
the full RF input power, VSWR, and the maximum supply voltage have been 10 dBm, 10:1, and
4.2 V, respectively. However, recent specifications for mobile handsets have changed and the required
ruggedness for a mobile RF PA becomes even more challenging for the following reasons:

• Larger power requirement for High Power User Equipment (HPUE)—Average output power
should increase by 3 dB.
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• Signal with higher Peak to Average Power Ratio (PAPR)—Peak output power should increase
more than 3 dB.

• Higher supply voltage—The voltage can be increased more than 5 V with boosting technique.
• Thermal issues with smaller module size—Effective ruggedness should degrade.

Furthermore, the cause of PA failures can vary and the failure mechanism may differ for each
frequency band when one RF PA supports multi-band operation. Therefore, RF PAs need an enhanced
universal solution for ruggedness improvements instead of solutions for a certain particular failure issue.

This paper presents a ruggedness improvement method for mobile RF PAs using a dynamic load
impedance control technique. Since the technique has been developed based on the fact that RF PA’s
ruggedness basically depends on a mismatched load impedance, the approach is very intuitive and can
protect an RF PA regardless of its failure mechanism. To demonstrate the feasibility of the proposed
approach, a mobile RF PA module has been fabricated and tested employing a control logic.

2. The Failure Mechanism in an HBT RF PA under a Mismatch

If a severe impedance mismatch occurs at the antenna port in a mobile device, it leads to a very
high VSWR condition. When the mismatched impedance at the antenna port is transformed by PA’s
output matching network, the impedance seen by the collector of the HBT in the PA’s final stage can
be a high mismatched impedance or a low mismatched impedance depending on the phase of the
load. The solid black circle in Figure 1 represents an impedance mismatch with a very large VSWR
(10:1) at an antenna port. This condition can lead to PA failure and the failure mechanism varies with
the phase of the load, just as the failure mechanisms in region A and B in Figure 1 differ. While the
high impedance mismatch condition (region A in Figure 1) results in a very high voltage peak at the
collector of the HBT in the final stage, the low impedance mismatch condition (region B in Figure 1)
results in a very high current peak.
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Figure 1. Cases of a severe impedance mismatch at the antenna port, which can cause a PA failure.

In an HBT PA, a high collector voltage, which is much larger than the collector to emitter
breakdown voltage, with the base open (BVCEO), of a power transistor, had been considered as a
main cause of PA failure under a mismatch condition. However, it was revealed that a high collector
current, which results in large dissipated power causing a thermal problem, is also a main cause of PA
failure [10]. In addition, intermediate impedances located at high VSWR can cause PA failures. Based
on these facts, several solutions have been proposed, such as closed-loop protection techniques using
collector current sensing circuit [10], as well as clamping circuits [1] and closed-loop technique using a
collector voltage sensing circuit [1,3–9]. However, as the power, voltage, and thermal environments for
mobile RF PAs are much more demanding in terms of ruggedness than ever before, there is a need for
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a more reliable solution. In addition, due to the harsh environment, such as a very dense modular
structure, factors that were not previously a problem (e.g., a serious spurious signal) may be a serious
PA failure factor, and one PA can have various failure factors. In such cases, the current or voltage
measurement methods cannot protect the PA. For example, thermal issue due to large dissipated
power (Pdiss) can cause the PA to fail and it is known that Pdiss = Pdc − PRF. Using the detected
voltage/current, Pdc can be estimated, but PRF is hard to estimate. Therefore, this kind of method is not
able to protect the PA in those cases. On the other hand, since the load impedance is a parameter that
directly determines the ruggedness of the PA, sensing and adjusting the load impedance can more
clearly determine whether or not the situation will cause PA failure and protect the PA regardless of
the cause of the failure than sensing voltage or current.

In order to adjust the load impedance to a safe region for PA protection, it is important to identify
the current load impedance, which needs to detect not only load VSWR, but also the load phase.
However, since detecting a load phase requires complex analog circuits or digital processors, applying
it to a mobile device is not easy. By using load phase detection in a simplified way for detecting areas
instead of an accurate value, this work has simplified the detector circuit and made it possible to apply
the method to mobile devices.

3. Protection by Adaptive Impedance Correction

3.1. Operating Principle of Protection

As explained in the previous section, mobile RF PAs fail at certain mismatched load impedances,
which depends on PA’s characteristics. Therefore, the load impedance (ΓL) area can be divided into
three zones defined by the PA failure, as follows:

1. Failure zone: A PA fails when the load impedance is inside this area.
2. Safe zone: A PA does not fail when the load impedance is inside this area.
3. Impractical zone: It is hard for this impedance region to exist, due to a post-PA loss when the PA

output is defined as a reference plane.

Since the failure zone of an RF PA is predetermined by its load-pull characterization, the PA can
be readily protected if the load impedance is adjusted inside the safe zone when the load impedance
happens to be in the failure zone. For this adaptive impedance adjustment, both detection and correction
of load impedance are needed. In both of the authors’ previous works [14,15], a dynamic impedance
mismatch detector and corrector were proposed to recover the RF PA’s performance degradation in
adjacent channel leakage ratio (ACLR) and PAE, which occur under a mismatch condition.

In this work, the same impedance mismatch detector and corrector which had been reported
earlier by us has been utilized here to achieve the intended ruggedness improvement of the RF PAs.
With the characterization of an RF PA, its possible load impedance can be divided into two areas:
Failure zone and safe zone, as mentioned earlier. The failure zone typically locates at a large VSWR
(|ΓL|) and a limited phase (∠ΓL) range as shown in Figure 2. The rest of area can be defined as the safe
zone (gray colored area in Figure 2). |ΓL|TH means maximum unconditional safe |ΓL|. For the ΓL, whose
magnitude is smaller than the |ΓL|TH, the PA is safe unconditionally, while the PA’s safety depends on
the ∠ΓL for the ΓL, whose magnitude is larger than the |ΓL|TH. Although the range of the ∠ΓL and the
|ΓL|TH in Figure 2 are determined by the RF PA’s characteristic, the |ΓL|MAX is determined by the loss of
post-PA chain (filter, switch, etc.) and its value is generally less than 0.7 (~VSWR of 5.5) because the
practical post-PA loss is at least 1.5 dB for recent mobile handsets. Thus, the impedance area where
|ΓL|>|ΓL|MAX is impractical and not considered here.

With the knowledge of the predetermined failure zone and safe zone, it is possible to protect
the PA by controlling the load impedance using tunable output matching network (TOMN) with the
impedance mismatch detector, which determines whether the impedance is in or out of a particular
region. For instance, if ΓL is inside the failure zone in Figure 2 then the impedance mismatch detector
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senses it and informs TOMN to move ΓL into safe zone by a digital control. The proposed ruggedness
improved the RF PA configuration, which employs the advanced impedance mismatch detector with a
directional coupler and the advanced TOMN, is depicted in Figure 3.
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3.2. Impedance Mismatch Detector

The impedance mismatch detector extracts load conditions in terms of the |ΓL| and the ∠ΓL

regions to identify whether the PA needs to be protected or not. Figure 4a shows the configuration
of the impedance mismatch detector, which is composed of the |ΓL| detector unit, the ∠ΓL detector
unit including an advanced phase shifter (APS), and a decision and control logic (DCL) to facilitate
mismatch detection.

Figure 4b,d show schematics of a |ΓL| detector and a ∠ΓL detector, respectively. The output voltages
of these circuits, VM and Vph, have a ‘High’ or ‘Low’ value depending on the location of ΓL. That is, if
the |ΓL| and the ∠ΓL exist in a specific region, they have a ‘High’ value, otherwise they have a ‘Low’
value. Taking Figure 4c,e as an example, in the region where the |ΓL| is greater than 0.4, the VM has a
‘High’ value and in the range where −30◦ <∠ΓL <30◦, Vph has a ‘High’ value. DCL uses a combination
of the two results, VM and Vph, to determine if the load impedance is in a certain area.
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Figure 4. (a) The configuration of the proposed impedance mismatch detector; (b) a schematic of the
|ΓL| detector; (c) a simulation of the results of the Vth (threshold voltage), Vmag (magnitude voltage),
and VM (magnitude detection voltage) in Figure 4b; (d) a schematic of the ∠ΓL detector; and (e) the
simulation results of the Vdiff (difference voltage), Vref (reference voltage), and Vph (phase detection
voltage) in Figure 4d.
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The APS controls the phase range, where the Vph has ‘High’ value, by adjusting the phase of the
Viso applied to the phase detector. The APS consists of a shunt inductor (Lsh) and switched capacitors
(Csh,n) controlled by the DCL through a given Vsh. This given control bias (Vsh) is a parallel set ranging
from Vsh,0 to Vsh,m. To detect the ∠ΓL region, the DCL applies a given set of Vsh to the APS and stores
the accompanied Vph from the ∠ΓL detector unit. The DCL iterates this procedure n times (twice
in this work) using another given set of Vsh, after which the current ∠ΓL region is determined by
combining the stored n-Vphs. It should be noted that the sets of Vsh values can be adjusted through a
MIPI, which makes the detection appropriate for various PA characteristics and multiple operating
bands. Table 1 shows a simulation result of a Vsh value set, to define the impedance sections shown in
Figure 5b. The total capacitance of the APS used for the first iteration was 1.5pF and for the second
iteration, 2pF was used. The phase region where the Vph has a ‘High’ value shows approximately
30 degrees offset between each iteration result, as shown in Figure 5a. After defining the impedance
section by designing the |ΓL| and the ∠ΓL detectors, it is possible to determine in which area the ΓL

is located according to the result of the Vph value set. Figure 5 shows an example of defining target
detection area using the above stated technique. Table 2 describes an example of detecting impedance
sections from the Vph value set. In this manner, the impedance sections can be defined as desired by
the user through changing the Vsh value set at each time iteration and are changeable through the
MIPI control. Then it is used to determine the location of the gamma. The more detailed operating
principles of this technique have been previously provided [14,15].
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Table 2. An example of detecting an impedance section from the Vph value set. (Figure 5b).

Index Vph (1st) Vph (2nd) Detected Section 1

1 L H #1
2 L L #2
3 H H #3
4 H H #4

1 Assuming that the |ΓL| is determined from the VSWR detector.



Electronics 2019, 8, 1317 7 of 11

3.3. Dynamic Impedance Corrector

Figure 6 shows the schematic of the impedance corrector using a TOMN. Based on the mismatch
detection result, DCL digitally controls the impedance corrector through applying the control voltages
to the TOMN. By configuring the capacitance value by the combination of switched capacitors with
transmission lines of the TOMN, the impedance adjustment from the failure zone to the safe zone
can be achieved for any impedances at which the PA can fail. Considering three cases with different
locations for failure zones, for example, Figure 7 shows how each of these impedance corrections are
made. In each case, the yellow area (A0, B0, C0) is the failure zone at the antenna port (reference plane
Γ0 in Figure 7), the orange area (A1, B1, C1) indicates the failure zone which is transformed by the
PA’s output matching network and seen from the collector of the PA final stage (reference plane Γ1

in Figure 7). When the ΓL is located in the yellow region at the antenna port, then the impedance
mismatch detector recognizes it and the DCL unit controls the TOMN to protect the PA by moving
the impedance at the PA collector out of the orange region to the red area (A1

′, B1
′, C1

′), which is a
safe zone.
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4. Experimental Verification

In order to verify the effectiveness of the proposed protection method, an RF PA module employing
the impedance detection and correction technique was fabricated. The PA monolithic microwave
integrated circuit (MMIC) was designed as a two-stage amplifier and was fabricated using a 2 µm
InGaP/GaAs HBT process. The emitter areas of the first and final stage were 500 and 3600 µm2,
respectively. The impedance mismatch detector, the switches of the TOMN, a band-selection switch,
and the MIPI interface were all integrated into a single chip using a 0.18 µm SOI CMOS process. Both
ICs shown in Figure 8 were mounted on a 400-µm-thick FR4 PCB. The TOMN was implemented using
transmission lines on the PCB, off-chip capacitors (C1, C2, C3, and Cfix), and SPST switches (M1, M2,
and M3). The TOMN with the off-chip directional coupler (CP0402AE) showed loss of 0.26–0.35 dB,
as per the TOMN modes, and the SOI CMOS IC consumed DC power of 25 mW.

To confirm the improvement in ruggedness of a PA module, the measured collector currents
were compared with and without the improvement technique using the measurement setup where all
instruments were controlled by a dedicated program, as shown in Figure 9. Specific measurement
methods and results are described below.
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Figure 7. Examples of an impedance correction with several positions of failure zone (yellow/orange)
and corrected impedance (red). (a) Case A (Failure zone: 4.5 < VSWR < 5.5 and 45◦ < ∠ΓL < 75◦);
(b) Case B (Failure zone: 4.5 < VSWR < 5.5 and -85◦ < ∠ΓL < −60◦); and (c) Case C (Failure zone: 4.5 <

VSWR < 5.5 and 145◦ < ∠ΓL < 175◦).
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Figure 8. Photographs of the fabricated PA IC (HBT) and the SOI CMOS IC.

The measurements were performed at a load mismatched condition using a 5 MHz one resource
block (RB) long-term evolution (LTE) signal of 10 dBm over collector voltage (Vcc). When the ruggedness
improvement technique is deactivated, the PA module showed abnormal current characteristic—a
shorted circuit state—over a certain ∠ΓL range (45◦ < ∠ΓL < 75◦) with |ΓL| > 0.64 at a Vcc of 4.2V,
which means the module was damaged at the specific ΓL region. This failure zone corresponds to
Case A in Figure 7a. With the information of the failure zone, the impedance mismatch detector was
set to identify whether ΓL is in this area or not through MIPI; setting |ΓL|TH for the |ΓL| detector as
0.64 and Vshs for the ∠ΓL detector as Table 1. Then impedance corrector was dynamically operated
to avoid the failure zone according to the detection result. As a result, the module activating the
impedance detection and correction technique showed no abnormal current over the entire ΓL region
except the impractical zone, which means the module was not damaged. Figure 10 compares the
current measured in two cases: When activating and deactivating the proposed technique, respectively.
In Figure 10, the module with correction shows normal collector current values across the entire range,
whereas the module without correction does not measure current normally in the particular phase
region at the same condition. This result clearly confirms that the proposed technique improves
the ruggedness of the PA. The measured ruggedness results over the Vcc at two carrier frequencies
(1915/1748 MHz), given in Table 3, to show that this technique is also helpful for a multi-band operation.
However, it should be noted that employing this technique has a detrimental effect on the PAE under
nominal operating conditions due to the inherent losses of the added components. However, it must
be highlighted that envelope tracking mode indicated that this PAE degradation from the loss is of
only around 1%, which is acceptable but should be improved in the future.
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Figure 9. A measurement setup for the RF characterization under a mismatch. Once the test software
(S/W) obtains the information of amplitude modulation (AM) and phase modulation (PM) from
the spectrum analyzer, it can provide an envelope shaping function using pre-distorted in-phase
(I)/quadrature (Q) data from the digital pre-distorter (DPD) for the ET mode.



Electronics 2019, 8, 1317 10 of 11

Electronics 2019, 8, x FOR PEER REVIEW 10 of 12 

 

effect on the PAE under nominal operating conditions due to the inherent losses of the added 
components. However, it must be highlighted that envelope tracking mode indicated that this PAE 
degradation from the loss is of only around 1%, which is acceptable but should be improved in the 
future. 

 
Figure 9. A measurement setup for the RF characterization under a mismatch. Once the test software 
(S/W) obtains the information of amplitude modulation (AM) and phase modulation (PM) from the 
spectrum analyzer, it can provide an envelope shaping function using pre-distorted in-phase 
(I)/quadrature (Q) data from the digital pre-distorter (DPD) for the ET mode.  

 
Figure 10. The measured collector current comparison in two cases: ‘With correction using the 
proposed technique’ and ‘without correction’, to check if the PA is damaged. (frequency=1915 MHz, 
Vcc=4.2 V, |ΓL|= 0.7). 

Table 3. A measured ruggedness comparison (│ΓL│= 0.7). 

Frequency 
[MHz] 

Supply Voltage 
[V] w/o impedance correction  w/ impedance correction 

1915 3.4 Passed Passed 
1915 3.8 Passed Passed 
1915 4.2 Failed Passed 
1915 
1748 
1748 
1748 

5.6 
3.8 
4.2 
4.6 

- 
Passed 
Passed 
Failed 

Failed 
Passed 
Passed 
Passed 

1748 5.6 - Failed 

Figure 10. The measured collector current comparison in two cases: ‘With correction using the proposed
technique’ and ‘without correction’, to check if the PA is damaged. (frequency = 1915 MHz, Vcc = 4.2 V,
|ΓL| = 0.7).

Table 3. A measured ruggedness comparison (|ΓL| = 0.7).

Frequency [MHz] Supply Voltage [V] w/o Impedance Correction w/ Impedance Correction

1915 3.4 Passed Passed
1915 3.8 Passed Passed
1915 4.2 Failed Passed
1915 5.6 - Failed
1748 3.8 Passed Passed
1748 4.2 Passed Passed
1748 4.6 Failed Passed
1748 5.6 - Failed

5. Conclusions

A ruggedness improved multi-band RF PA module that addresses the antenna load impedance
mismatch has been presented based on a dynamic impedance detection and correction technique
which is digitally controlled through a MIPI. It can more clearly determine whether or not the situation
will cause PA failure by tracking the position of the load impedance and also it provides a relatively
solid solution for ruggedness improvement by directly tuning load impedance. A two-stage RF PA
module for mobile handsets employing this technique was designed and fabricated to demonstrate
the improvement in ruggedness. When the ruggedness test was performed at a fixed bias voltage
(Vcc) for both Band 1 and Band 3, the PA failure did not occur over the load impedance area up to a
VSWR of 5.5. In this case, an acceptable ET PAE degradation of about 1% was measured. For a fixed
VSWR condition of 5.5:1, the ruggedness test showed that the PA survived at about a 1 V higher Vcc

condition than when this technique was not applied. In this way, the measured results confirm that the
RF PAs for mobile handsets can be secured against a much more extreme environment by employing
the proposed technique.
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