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Abstract: We present a multi-column structured framework for recognizing artistic media from artwork
images. We design the column of our framework using a deep neural network. Our key idea is to
recognize the distinctive stroke texture of an artistic medium, which plays a key role in distinguishing
artistic media. Since stroke texture is in a local scale, the whole image is not proper for recognizing the
texture. Therefore, we devise two ideas for our framework: Sampling patches from an input image
and employing a Gram matrix to extract the texture. The patches sampled from an input artwork
image are processed in the columns of our framework to make local decisions on the patch, and the
local decisions from the patches are merged to make a final decision for the input artwork image.
Furthermore, we employ a Gram matrix, which is known to effectively capture texture information, to
improve the accuracy of recognition. Our framework is trained and tested using two real artwork
image datasets: WikiSet of traditional artwork images and YMSet of contemporary artwork images.
Finally, we build SynthSet, which is a collection of synthesized artwork images from many computer
graphics literature, and propose a guideline for evaluating the synthesized artwork images.

Keywords: media recognition; multi-column framework; CNN; deep learning

1. Introduction

Understanding artworks has been a long problem in computer vision, image processing and
machine learning field. The recent progress on deep neural network structures presents many interesting
schemes that recognize and classify artwork images and photographs according to their styles. We
present a deep network-based approach for recognizing artistic media from artwork images and
classifying the artwork images according to their creating artistic media. For the background of our
approach, we survey WikiArt, the famous artwork image database, and list the most frequently used
artistic media (see Figure 1). Among them, we select four most highly ranked media, including oil paint,
watercolor, pencil and pastel. Since our approach relies on the sample data for training and test, we
exclude artistic media whose artworks images are less than 1000. We omit tempera, which is rarely
used nowadays. The four artistic media are very frequently used nowadays, and lots of artwork images
created by the media are collected from various websites.

The unique stroke patterns of an artistic medium on an artwork image present a key to recognize
which medium is employed to create the artwork image. For example, thin and parallel hatching stroke
patterns are key to recognize that the artwork is drawn by a pencil and spread marks of colors are a key
to a watercolor brush. In Figure 2, we illustrate the examples for pencil and watercolor artwork images.
The red boxes on the input artwork images are the patches containing the stroke textures properly.
Resizing the input image would harm the stroke textures so that the artistic media that created the
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image might not be recognized (see Figure 2c). Therefore, we recognize that an artwork image is created
using pencil, if we observe thin and parallel hatching stroke patterns on the image.
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Figure 1. The frequency of artistic media from WikiArt.
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Figure 2. Patches containing stroke textures for pencil and watercolor artwork (a) Input artwork image;
(b) patches containing stroke textures; (c) input image resized to patch scale.

In recent machine learning, many researchers have developed schemes for recognizing and
classifying styles of photographs and artworks using deep convolutional neural network (CNN)



Electronics 2019, 8, 1277 3 0f 20

structures. These structures recognize styles by extracting the features, such as contents, texture, color,
tone, composition of the object, and camera, etc. Since the features employed for style recognition are
not explicitly defined and the relation between the features and the style is not clearly specified, an
implicit approach, such as deep CNN structures is very appropriate for style recognition. Therefore,
our approach for media recognition is devised based on a deep CNN structure. We devise the following
strategies to enrich our framework that classifies and recognizes artistic media from artwork images.

Our first strategy is to devise a multi-column structured model, which is composed of several
recognition modules. Artistic media are recognized through the stroke patterns that convey distinctive
characteristics of the artistic media. Our survey on the artwork image database reveals that stroke
patterns are on a local scale, not on a global scale. Stroke patterns are observed from the patches of an
artwork image, not from the whole artwork image. Therefore, we devise an artistic media recognition
strategy in two stages: The stroke patterns in the patches sampled from an artwork image are processed
in independent recognition modules, and the decisions from the modules are integrated for a media
recognition on an artwork image. In order to properly implement this strategy, we devise a multi-column
structured model composed of independent recognition modules.

Our second strategy is to process texture information properly. Many CNN structures process both
texture information and the content information simultaneously. Recently, Gatys et al. [1] presented
a scheme that separates texture information from a source artwork image and applies it to another
image to synthesize the artistic style of the source image to the target image. They proposed a Gram
matrix, which is defined as a correlation of the feature vectors that express the texture embedded in the
source image. Therefore, the Gram matrix estimated from an artwork image is expected to possess the
texture information of the artistic style of the image. We estimate the Gram matrix from an artwork
image and process them to recognize the artistic medium used to create the artwork image.

Our approach for recognizing artistic media from artwork images can be employed for evaluating
synthesized artwork images. Many researchers in computer graphics have presented diverse techniques
that synthesizes artwork images by simulating artistic media, such as pencil, oil paint, watercolor,
pastel and ink, etc. Unfortunately, the evaluation for most of these techniques depends on either visual
assessment or comparison to the results of previous works and the real artworks created by their aimed
media. Our approach can present a quantitative and objective evaluation scheme for the synthesized
artwork images, which has not been presented yet. A technique for simulating an artistic medium
successfully mimics its target medium, if the stroke patterns of the target media are recognized from
the synthesized artistic effects. Therefore, if our recognizer can recognize the target medium from a
synthesized artwork image, then the technique that produces the image is evaluated to be successful in
mimicking the medium.

Traditional real artwork dataset: Contemporary real artwork dataset:
WikiArt (3,755) YMSet (4,136)

Synthesized artwork dataset:
SynthSet (421)

Figure 3. Three datasets for our approach.
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We build three artwork image datasets: Wikiset of 4 K size, collected from the artwork images on
WikiArt, the largest historical artwork image database and YMset of 4 K size, collected from various
websites. Furthermore, we also build SynthSet of the synthesized artwork images collected from the
literature on computer graphics society. The datasets are illustrated in Figure 3.

This paper is organized as follows. In Section 2, we briefly review our related works. In Section 3,
we explain how our recognizer is organized. We suggest the implementation details and the training
process of our recognizer in Section 4. Furthermore, we execute some experiments using our recognizer
and dataset to show that our approach is valid in Section 5. Finally, we draw conclusions and suggest
future work in Section 6. The process of approach is illustrated in Figure 4.

- - —or) : : N 2
Sec. 3 Design recognizer Sec. 4 Train recognizer Sec. 5 Experiment and analysis

Training Validation Test
WikiArt 70% WikiArt 15% WikiArt 15% Recognizing media from
real artwork images
YMSet 70% YMSet 15% YMSet 15%
Evaluating synthesized
SynthSet artwork images
=/

Figure 4. The process of our approach.
2. Related Work

Many machine learning researchers classify artworks and photographs according to their styles.
Some of them try to classify artworks according to the material, such as paper, wood, silver, oil, ink and
watercolor, etc. In the early days, handcrafted features were widely used. Recently, the convolutional
neural network (CNN)-based approaches are spotlighted.

2.1. Schemes Using Bandcrafted Features

Keren et al. [2] classified artworks according to their creators by the style of the artwork. Their
scheme employed DCT coefficients as their classifying features. As a result, they classify five painters
from 30 artworks. Li et al. [3] classified artists of Chinese ink paintings by analyzing wavelets from
the brush strokes drawn on the artworks and Lyu et al. [4] applied Li et al.’s scheme to classify 13
drawings. Johnson et al. [5] presented a scheme that classifies van Gogh’s paintings. However, these
schemes show poor performance. They do not classify sufficient number of artworks and artists.

Shamir et al. [6] presented a style of an artwork as its creator, and the school of the creator. They
defined 11 features using histogram analysis and edge statistics and classified three schools and nine
creators from 60 artworks. Liu et al. [7] classified DART dataset that has 1.5 K paintings by employing
handcrafted features, such as color, composition, line and their combinations. They compared the
performances of several decision schemes, including SVM. They classify artworks into six schools of
arts, including baroque, cubism, and impressionism. They also classify their creators.

The handcrafted feature-based schemes have difficulties in defining implicitly expressed styles
with a set of explicit features. Most of them classify limited artwork classes and test their schemes on
only easily distinguishable artworks.

Mensink et al. [8] presented an automatic classification technique on the photographs taken on
the collections in Rijksmuseum in the Netherlands. They recognize a creator, a type, material and the
creation year from the artworks. They recognize 20 material categories, such as paper, wood, silver,
oil, ink and watercolor, etc. Their features are SIFT, which is effective in classifying different patterns.
However, SIFT is not effective in classifying similar patterns. Therefore, their scheme shows poor
performance for the stroke patterns produced by pencil, pastel and charcoal.
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2.2. Schemes Using CNN-Based Features

The recent progress of deep convolutional neural networks motivates some researchers to apply
this technique for style classification. These techniques can be classified into three categories: Feature
fusion-schemes, CNN-based schemes and Gram matrix-based schemes.

Karayev et al. [9] classify 20 historical styles from 80 K artworks using the feature fusion approach.
They employed AlexNet to extract features from artworks. They compared this feature set with other
features, such as L*a*b* color histogram, GIST, graph-based visual saliency and meta-class binary
features and proved that the features from AlexNet are very effective for artwork classification.

Recently, Tan et al. [10] visualize the feature response from the artwork classification. They extract
features using AlexNet and visualize the reasons for prediction. They compare various options for
their network: Whether pretrained for 1000 ImageNet dataset or not and decision options (SVM or
softmax of neural network). As a result, a combination of pretrained and softmax decision method
shows the best performance.

Strezoski et al. [11] introduced a classifying scheme for artistic media from OmniArt dataset,
which has 432 K artwork images. They extracted features using recent deep CNNSs, such as VGGNet,
Inception-v3 and ResNet and compared their performances. They evaluated the performances of
the models according to creator-accuracy, type-Mean average precision (MAP), material- MAP and
period-mean. They show a limitation by omitting comparison with human baseline performance.
Furthermore, they do not concentrate on stroke-based media, such as pencil, pastel, oil paint, and
watercolor brush, which are the most widely used artistic media. They also do not discuss how to
apply their schemes to classify synthesized artwork images, which are the results of non-photorealistic
rendering (NPR) society.

More recently, several researchers employed a Gram matrix to classify styles. Matsuo and
Yanai [12] employed VGGNet to extract Gram matrix of the feature maps. They compute PCA from
the Gram matrix to classify artwork images from WikiArt that has more than 100 categories. Chu and
Wu [13] extracted correlation features by producing the gram matrices from each layer of VGGNet
to classify image styles. Sun et al. [14] designed a two-pass CNN structure that extracts object and
texture features separately. The texture path employs the Gram matrix of the features to improve
the classification performance. Their CNN structures are AlexNet and VGG-19. They do not require
explicit definition of features, which is one of the major obstacles. The CNN-based features present
better performance than human baseline, such as Mechanical Turk. These schemes also are proved to
be effective in classifying more styles from larger dataset than the schemes using handcrafted features.

2.3. Patch-Based Schemes

Recently, patch-based works, which estimate styles from patches that are sampled from an image
and collect the styles to classify the style of a target image, were presented. Lu et al. [15] employed
AlexNet structure to classify the style of images from AVA dataset. They sample patches from an
image randomly and accumulate the feature output in a stochastic way. Anwer et al. [16] introduced
double-column CNN [17], which is designed based on VGG-16, to collect features of artworks from
local scales, as well as global scales. The features from different scales are fed into different columns of
CNN. The proposed technique show better accuracy than the normal networks fed by only global
image. They employed AlexNet [15] and VGGNet-16 [16] for the columns of their structures. We have
tested various recent CNN structures, including AlexNet, VGGNet, GoogLeNet, ResNet, and DenseNet,
for our recognizer and decide DenseNet, since it shows higher performance than other CNN’s.

Anwer et al. [16] sampled patches from an image according to the objects embedded in the image.
Since the stroke textures of an artistic medium are frequently observed in the vacant area of an image,
the object-based sampling would not be effective in our approach.

The existing patch-based schemes do not employ a Gram matrix for extracting features from the
texture. By combining Gram matrix-based texture and patch sampling strategy, our scheme shows
higher performance than the existing patch-based scheme.
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3. Building Our Recognizer for Artistic Media

3.1. A Strategy for Our Recognizer

Our strategy in this study is to recognize artistic media through the stroke patterns observed
on artwork images. Since the stroke patterns are in local scale, we sample several patches from an
artwork image instead of resizing the image. Many existing studies resize input images into a fixed
scale for the input of the deep neural network, but it may smear and distort the stroke patterns on the
image. We design our recognizer using a multi-column structure, which is composed of individual
recognizing modules that independently process the patches. Each module recognizes media from the
stroke patterns located on the patches. A patch with very prominent stroke patterns gives a strong clue
to an artistic medium than other patches with indistinct stroke patterns. Therefore, a decision from a
module that recognizes the most prominent stroke patterns should dominate the decisions from other
modules. We implement this idea in our multi-column structured recognizer.

Lu et al. [15] presented a multi-column structured model to estimate the aesthetic quality of an
image. They process patches sampled from an input image in the modules of the multi-column structure
and merge the results from the modules through sorting and statistic layers. Our model is different
from Lu et al.’s model [15] in the following points. The first difference is the process of generating a final
decision. Our model aims to detect stroke patterns that are used for creating artistic media. The most
reliable result from a module dominates the results from other modules. Therefore, we choose a voting
strategy to generate the final decision instead of sorting and statistics, which are the strategy in Lu
et al.’s model. The second difference is the patch sampling strategy. Lu et al.’s model [15] does not
consider the overlapping of the patches, since the aesthetic quality may become different with a slight
translation of sampling position. However, our scheme avoids overlapping of the patches, since we
aim to sample patches that cover the whole image. The third difference is the consideration of texture.
Lu et al.’s model [15] does not consider the process of extracting features from texture embedded in the
patches. We observe that the stroke patterns are expressed in texture information. Therefore, we employ
a Gram matrix [1] that effectively extract features in texture information to extract texture information
from stroke patterns in a patch and apply them for the final decision-making voting process.

Anwer et al. [16] presented a style classification scheme using a multi-column structured model
whose input is multi-scaled patches. They vary the scales of the patches sampled from an input image
and process them through a CNN model to extract features expressed in Fisher vectors. They apply a
linear SVM model on the Fisher vectors to produce a final classification. Our model is different from
Anwer et al.’s model [16] in the following points. The first difference is the rescaling of sampled patches.
Since the stroke patterns observed in the patch is a key in our model, we do not rescale the patches.
The second difference is the strategy for the final decision. Anwer et al.’s model [16] considers all the
results from the modules for their final decision. Our scheme presents a voting strategy that considers
the most reliable result from the modules. Since a decision from a patch with faint stroke patterns may
distort the classification of a media, we ignore them through our voting strategy. The third difference
is the consideration of texture. Anwer et al.’s model [16] does not consider features extracted texture,
either. We employ a Gram matrix [1] to extract feature from textures and employ them in the final
voting process.

Our recognizer for artistic media from artwork images is designed based on the existing CNN
structure. Many existing style recognition frameworks employ various well-known CNN structures,
such as AlexNet [9,10] and VGGNet [12-14]. Strezoski et al. employed several CNN structures,
including VGGNet, GoogLeNet, and ResNet, and compared their performances [11]. We follow this
strategy for our recognizer. Recently, we have tested five widely-used structures, including AlexNet,
VGGNet, GoogLeNet, ResNet, and DenseNet, for recognizing artistic media from real artwork images
and concluded that DenseNet, the latest CNN structure, shows best performance among them [18].
Therefore, we employ DenseNet-161 [19] for our recognizer.
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Recognizing artistic media from artwork images depends on how the media stroke patterns on
the images are properly processed. Therefore, texture-based features play a more important role in
recognizing artistic media than the content-based features. To capture texture-based features properly,
we employ a Gram matrix [1], which is known to show excellent performance in capturing and
processing texture-based features. Sun et al. employed a Gram matrix for the features extracted by
VGGNet for recognizing styles from images [14]. We apply Gram matrix for the features extracted by
DenseNet-161 for our classifier.

3.2. Structure of Our Recognizer

The structure of our recognizer is illustrated in Figure 5. An artistic medium is predicted based on
both Gram matrices extracted from the layers of DenseNet-161 and final result of the DenseNet-161.
The input of our recognizer is a series of patches sampled from the input image. We make a different
configuration for our classifier according to the stage: A training stage and a test stage. Note that
a patch is processed in a single CNN structure for a single recognizing module (See Figure 5a). We
train a single recognizing module and employ it for an element of the overall multi-column structure
(See Figure 5b). For the test stage, we build k different modules to process the patches separately and
combine the predictions for the final prediction of an artistic medium (See Figure 5b).

N

~

gngle recognizing module\ Recognizing

module #1 [ |

class
= 4 class
DenseNet-121 Recognizing
[%‘ —> module #2
Gram matrices
Input tch .. |

— image patches L Recognizing
— Ly module #k

(a) A single recognizing module of our model (b) The multi-column structure of our model

Figure 5. Our structure: (a) A single recognizing module and (b) an overall multi-column structure.
3.3. Estimating Gram Matrix for Our Recognizer

The stroke patterns produced by an artistic medium are observed from the stroke texture embedded
in an artwork image. To build a set of feature vectors that properly extract the texture information,
we employ the layered structure of a deep convolutional neural network (CNN), which processes the
input image in a series of layers whose resolutions are abstracted as the layer goes deeper. The recent
study on style transfer based on deep CNN structure [1] presents a Gram matrix that extracts feature
maps that convey the texture information by the correlation of the feature vectors, which responds to a
linear filter bank. Gram matrix of I-th layer, which is noted as Gg/j is defined as:

! | rl
Gl = Z FLFL )
k

where Fﬁ and F;. , is feature maps correspond to the i-th and j-th filter at position k, respectively [1].

k
Since Gram matrix is estimated at each layer of the CNN structure, we compute G’s for the layers and
concatenate them as G(x) = {Gl, G?,..., G’”} for the x-th patch. DenseNet-161 structure has five layer
blocks (m = 5), and we have five Gram matrices: G!, ..., G°. We illustrate the Gram matrices and their
information in Figure 6. Note that we convert G"s into 1-dimensional vector before the concatenation,
since G! is a 2-dimensional vector of various sizes.
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Figure 6. The Gram matrices extracted from DenseNet-161.

In order to effectively detect stroke patterns from the patches, we devise a novel idea for the
concatenation. It is widely known that the feature maps extracted in the lower layer of a CNN structure
correspond to primitive features and the feature maps extracted in the higher layer of a CNN structure
correspond to abstract features. Since stroke patterns we aim to extract are more complex than the
primitive features and more simple than the abstract features, we assign lower weights for the G''s of
low and high I values, and higher weights for medium  values. Therefore, the weight, w;, for G' is
determined according to Gaussian function:

. -1
wy = Gauss1an(2(m) - 1). 2)
We concatenate them in the following formula:
G =uw G owrG?o...0w,G", (3)

where o is a concatenation operator. From G(x), we compute G(x), which is a four-dimensional one
hot vector through a fully connected layer. After averaging G(x) with L(x), the final four-dimensional
one hot vector from DenseNet-161, we conclude the final recognition for the x-th patch. This process is
illustrated in Figure 7.

M L)
x-th patch DenseNet-161 avg(L(x), G(x))
I B
Gram matrices Gl(x) G2(x) T M(x
G(x) : 110,082,304 X 1
fully-connected
G(x) 4 x1

Figure 7. The process of decision making in a recognizing module.
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4. Implementation and Result

4.1. Implementation

We have implemented our classifier in a personal computer with Intel®Xeon®CPU E5-2620 with
2.10 GHz, nVidia®Tesla®P40 GPU and 32GByte main memory. Our classifier is developed in Python
with PyTorch library implemented on Linux®of Ubuntu version.

The loss function of our classifier, which is designed by employing the concept of cross entropy, is
defined as follows:

D K
Loss(y,y) = — Z Z y-logy, 4)
d=1k=1
where D is the batch size, K is the number of classes, y is the true label, and ¥ is the predicted label. We
use D as 24 and K as 4. For the optimization, we employ the Adam strategy [20]. We set mini-batch

size as 100, and learning rate as 0.0001. We trained our model for 100 epochs.

4.2. Data Collection

We collect real artwork image dataset in two ways: Historical artwork images and contemporary
artwork images. WikiSet is a dataset of historical artwork images collected from WikiArt, the largest
artwork image collection on the internet. YMSet is a dataset of the contemporary artwork images
collected from various websites. Both datasets contain 4 K images, respectively.

We build SynthSet by collecting synthesized artwork images from the following literature: Oil
paint brush [1,21-32], pastel [32-34], pencil [35-48] and watercolor brush [23,32,49-51]. We collect 421
images in total—178 oil paint images, 25 pastel images, 183 pencil images and 35 watercolor images.
These images are presented in Figures A1-A3 in Appendix A.

4.3. Training and Results

According to the suggestion of an important machine learning textbook [52], we assign 5.2 K
(70%) images for training, 0.6 K (15%) images for verification and 0.6 K (15%) for the test. We apply the
synthesized artwork images only for test. We execute three tests: (i) WikiSet images, (ii) YMSet images
and (iii) SynthSet images. The confusion matrices of these tests are illustrated in Figure 8 and suggest
the performances in Table 1, respectively.

Predicted label Predicted label Predicted label
d | 0.85 [ 005 | 0.01 | 0.09 0.9 0.06 0.0 0.04 0.77 | 017 | 0.01 | 0.04
g P 016 | 079 | 002 | 0.03 008 | 0.84 [ 003 | 0.05 004 | 068 | 016 | 0.12
=
pencil | 007 | 005 | 077 | 0.11 0.0 0.04 | 0.95 | 0.01 0.02 | 0.02 | 0.95 | 0.01
t I
TR 019 | 003 | 004 | 074 0.04 | 001 | 002 | 0.93 003 | 006 | 009 | 0.83
N N N D
) @‘}? &QL, ,(\‘9\6 & &L}z\ &‘\u\ é&\d‘ & &L;&\ &‘\L\ é&\o‘
& & &
WikiSet YMSet SynthSet

Figure 8. The confusion matrices from WikiSet, YMSet and SynthSet.
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Table 1. The performance of our three tests: (i) Test with WikiSet, (ii) test with YMSet, and (iii) test with

SynthSet.

Dataset Media No. Acc. Prec. Rec. F1
QOil 1000 0.85 0.68 0.85 0.75
Pastel 1000 0.82 0.86 0.79 0.82
WikiSet Pencil 755 0.84 0.9 0.77 0.83
Watercolor 1000 0.88 0.78 0.74 0.76
Total 3755 0.85 0.80 0.79 0.79
QOil 914 0.94 0.86 0.86 0.86
Pastel 1014 0.9 0.83 0.84 0.84
YMSet Pencil 1248 0.93 0.95 0.91 0.93
Watercolor 960 0.96 0.9 0.94 0.92
Total 4136 0.93 0.89 0.89 0.89

QOil 178 0.86 0.93 0.7 0.8
Pastel 25 0.77 0.34 0.42 0.38
SynthSet Pencil 183 0.83 0.84 0.91 0.88
Watercolor 35 0.92 0.51 0.77 0.61
Total 421 0.85 0.66 0.70 0.67

5. Experiment and Analysis
5.1. Comparison

5.1.1. Comparison with the Existing Models

For comparison, we survey the related works and categorize the existing recognizer models in
two aspects: The input and the features they employ. The input of the models is either the whole
image or patches sampled from the input image. The feature on the models is from either the result of
the last layer of the model or the Gram matrices computed from the overall layers. We select Huang et
al.’s work [19] as the work that employs the output of the last layer for the whole image.

Lu et al.’s work [15] as the work that employs the output of the last layer for the sampled patches.
Finally, we select Sun et al.’s work [14] as the work the employs a Gram matrix for the whole image.
Our work employs a Gram matrix for the sampled patches, which has not been tried by the existing
works. Note that Sun et al.’s work [14] and ours employ both the features from the last layer and the
feature from the Gram matrix. We compared f1 score of the models for the WikiSet and SynthSet in
Table 2. In comparison, our recognizer outperforms other models for every artistic media and dataset
except only for the watercolor images from SynthSet.

Table 2. Comparison of four types of classifiers.

Features Input
Dataset
Last Layer Gram Matrix Whole Image Sampled Patches
Huang et al. 2017 [19] (@] (@]
Lu et al. 2015 [15] (@] O
Sun et al. 2017 [14] o O @)
Ours 0] (@) (@)

5.1.2. Comparison with the Datasets

Table 1 shows the metrics, including accuracy, precision, recall, and F1, score for three datasets. We
also illustrate F1 scores of the three datasets in Figure 9. In comparison, we observe that the F1 scores
from oil paint and pencil for three models lie in the range of (0.75-0.86) and (0.83-0.93), respectively.
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However, the F1 score of pastel and watercolor from SynthSet shows extraordinarily low values. We
discuss the reason for this case in Section 5.2.

1 1
0.9
0.95 08
0.9 LT
0.6
0.85 0.5
0.4
0.8 03
0.75 Uiz

0.1 I
0.7 0

Pastel Pencil Watercolor  Total Pastel Pencil  Watercolor  Total
EmHuangl7[19] ™ Lul5[15] ®Sunl7[14] Ours mHuangl7[19] m®Lul5[15] ®Sunl7[14] Ours
(a) Comparison of F1 score for YMSet (b) Comparison of F1 score for SynthSet

Figure 9. Comparison of F1 scores from the four recognizer models on YMSet (a) and SynthSet (b).

5.2. Analysis

5.2.1. Why YMSet Shows Best Performance?

According to our assumption that stroke texture plays an important role in recognizing the artistic
media, the recognition on YMSet, the collection of contemporary artwork images, is expected to have
higher performance than the recognition on WikiSet, the collection of traditional artwork images, since
the stroke texture on the artwork images of YMSet is less damaged than the texture on the images of
WikiSet. This assumption is proved to be valid by our experiment. According to Table 1 and Figure 10,
YMSet shows greater performance than WikiSet.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

WikiSet YMSet SynthSet
HOil mPastel M Pencil Watercolor M Total

Figure 10. Comparison of F1 scores from three datasets on our recognizer.

5.2.2. The Similarity of the Recognition Pattern for YMSet and SynthSet

We compare three points for YMSet and SynthSet in the confusion matrix in Figure 8: (i) The order
of recall values, (ii) the most confusing pair, (iii) the least confusing pair.

i The recall value of each medium is the diagonal entry of the confusion matrix. The decreasing
orders of recall values for YMSet and SynthSet are illustrated in Figure 11, which notifies that
both of the orders match.
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Figure 11. The decreasing order of recall values of the confusion matrices in Figure 8 for YMSets and
SynthSet.

ii. The most confusing pair of a medium is the medium whose entry is the largest entry except for
the diagonal entry in the row of the confusion matrix. For example, the most confusion pair
of oil in YMSet is pastel, since the entry for pastel, which is 0.06, is the largest in the row for
oil except the diagonal entry. The comparison of the most confusing pairs for each medium is
illustrated in the left column of Figure 12. In Figure 12, the most confusing pairs for oil and
pencil coincides for YMSet and SynthSet. The reason why most confusing pairs for pastel and
watercolor does not coincide is discussed in Section 5.3.

Predicted label Predicted label Predicted label Predicted label
ail 0.04 0.77 0.01 0.04 ol 0.9 0.06 0.0 0.04 0.77 0.17 0.01 0.04
3 pastel 0.05 0.04 0.68 0.12 pastel [ 008 0.84 0.03 0.05 0.04 0.68 0.16 012
g
L pencil 0.01 0.02 0.95 0.01 pencil 0.0 0.04 0.95 0.01 0.02 0.02 0.95 0.01
S 0.93 003 | 006 | 0.09 [ 083 [ ™| po4 | po1 | 002 | 093 003 | 006 | 009 | 083
& & & - & & & N 5 & > > .
& & Q‘PL £ & Q’& ‘s’\@p & *& .5‘?@
: ; 5 F
YMSet SynthSet ¥YMSet SynthSet
(a) Most confusing pairs between YMSet and SynthSet (b) Least confusing pairs between YMSer and SynthSer

Figure 12. The most confusing pairs and least confusing pairs between YMSet (a) and SynthSet (b).

iii. The least confusing pair of a medium is the medium whose entry is the smallest entry except for
the diagonal entry in the row of the confusion matrix. For example, the least confusion pair of
oil in YMSet is pencil, since the entry for pencil, which is 0.0, is the smallest in the row for oil
except for the diagonal entry. The comparison of the most confusing pairs for each medium is
illustrated in the right column of Figure 12. In Figure 12, the least confusing pair for oil coincides,
and the least confusion pair for pencil is less than 0.01 for YMSet and SynthSet. The reason why
the least confusing pairs for pastel and watercolor does not coincide is discussed in Section 5.3.

5.2.3. The Evaluation Guideline for Synthesized Artwork Images

In Figure 10, we observe that our recognizer shows very competitive F1 scores for oil and pencil
in SynthSet, which contains 178 and 183 sample images, respectively. We assume the low F1 scores
for pastel and watercolor comes from the lack of sample images. Furthermore, in the Section 5.2.2,
we shows that YMSet, the contemporary real artwork images, and SynthSet, the synthesized artwork
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images, have very similar recognition patterns in the order of recall values, the most confusion pairs
and the least confusing pairs. From these observations, we can argue that our recognizer can be an
evaluation guideline for new techniques that aim to synthesize artwork images by mimicking artistic
media. A technique that aims to mimic artistic media is regarded to achieve its purpose, if the resulting
image is recognized as if it has been drawn by the aimed media. Until now, the recognition is only
evaluated by human assessment. However, our recognizer that shows similar recognition patterns
between real artwork images and synthesized artwork images can be an evaluation guideline for the
synthesized artwork images. A process of the evaluation guideline is illustrated in Figure 13.

Is a technique successfully mimic the target artistic media?

A technique for Media The
synthesized Synthesized our - stroke is technique
artwork images artwork ot . recognized | ~| successfully
by mimicking images from the mimics target
artistic media image artistic media

N

¥
‘ Media stroke is not recognized from the image ‘

A J
‘ The technique cannot mimic target artistic media ‘

Figure 13. The process of evaluation guideline for synthesized artwork images. A technique that
generates synthesized artwork images by mimicking artistic media is evaluated to be successful, if our
recognizer can recognize the target media from their result images.

5.3. Limitation
After our experiment, we list the following limitations of our approach.
1. We concentrate on four media.

We have designed a recognizer for four media, which are very frequently used to create both real
artwork and synthesized artwork. For traditional artwork, we can list more artistic media, such as
tempera, fresco, ink, etching, lithography, etc. Even though they are not as popular nowadays, the
study on recognizing traditional artworks may need to recognize artworks created by those media
listed above.

2. Lack of samples for synthesized pastel and watercolor.

We have surveyed literature on mimicking artistic media in computer graphics society, and we
cannot find a sufficient amount of literature for pastel and watercolor. In pastel, we find two works,
one of which aims to mimic crayon, which is very similar to pastel [33]. Due to the lack of sample
images for pastel and watercolor in SynthSet, the results on both media is less confident than those
from oil paint and pencil.
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3. Strategy for sampling patches.

We sample patches from an artwork image in random to capture stroke texture lying in an artwork
image. Since most of the stroke textures lie in local scale, sampling several patches may not catch
proper stroke texture. To avoid this problem, we need an intelligent strategy for sampling patches
that would not miss stroke texture. Such a strategy may require low-level information from image
processing techniques, such as gradient, curvature, and saliency.

6. Conclusions and Future Work

We have presented a multi-column structured framework for recognizing artistic media from
artwork images. We sample several patches from an input artwork image and process them in each
column of the framework to recognize stroke textures of an artistic medium that is used to create the
artwork image. The local decisions on the patches are merged to make a final decision for the artwork
image. We employ a Gram matrix, which is known to be capture texture information from an image
very effectively. We trained and tested our framework using real artwork datasets and compared
the performance with the existing CNN-based recognizers to show that our recognizer shows the
best performance. Furthermore, we also build synthesized artwork images and test them using our
recognizer. Our recognizer shows the possibility of presenting a guideline for evaluating synthesized
artwork images.

We are going to improve the accuracy of our recognizer by sampling patches from an input
artwork image more intelligently. We also extend our datasets to cover other media or artistic style,
such as abstraction and pop art.
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Appendix A
We present the images in SynthSet in Figures A1-A3.

Literature Synthesized oilpaint artwork images
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1997 [21]
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1998(22]

Hays & Essa
2004 [23]

Kagayaet al.
2011[24]

Zeng et al.
2009 [25]

Linetal.
2010
[26]

Zhao & Zhu
2010([27]

Zhao & Zhu
2011 [28]

O’Donovan &
Hertzmann
2012[29]

Wu et al.
2013 [30]

Gatyset al.
2016[1]

Selimet al. :
2016[31]

Fiser et al. C - \,‘)

2017[32] ¥ .4 .

Figure A1l. Oil paint images in SynthSet.
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Figure A2. Pastel, watercolor and pencil images in SynthSet.
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