
electronics

Article

Decoding EEG in Motor Imagery Tasks with Graph
Semi-Supervised Broad Learning

Qingshan She * , Yukai Zhou, Haitao Gan, Yuliang Ma and Zhizeng Luo

School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China;
ykzhou@hdu.edu.cn (Y.Z.); htgan@hdu.edu.cn (H.G.); mayuliang@hdu.edu.cn (Y.M.); luo@hdu.edu.cn (Z.L.)
* Correspondence: qsshe@hdu.edu.cn; Tel.: +86-571-8691-9130

Received: 24 September 2019; Accepted: 30 October 2019; Published: 1 November 2019
����������
�������

Abstract: In recent years, the accurate and real-time classification of electroencephalogram (EEG)
signals has drawn increasing attention in the application of brain-computer interface technology
(BCI). Supervised methods used to classify EEG signals have gotten satisfactory results. However,
unlabeled samples are more frequent than labeled samples, so how to simultaneously utilize limited
labeled samples and many unlabeled samples becomes a research hotspot. In this paper, we propose
a new graph-based semi-supervised broad learning system (GSS-BLS), which combines the graph
label propagation method to obtain pseudo-labels and then trains the GSS-BLS classifier together with
other labeled samples. Three BCI competition datasets are used to assess the GSS-BLS approach and
five comparison algorithms: BLS, ELM, HELM, LapSVM and SMIR. The experimental results show
that GSS-BLS achieves satisfying Cohen’s kappa values in three datasets. GSS-BLS achieves the better
results of each subject in the 2-class and 4-class datasets and has significant improvements compared
with original BLS except subject C6. Therefore, the proposed GSS-BLS is an effective semi-supervised
algorithm for classifying EEG signals.

Keywords: brain-computer interface; electroencephalogram; semi-supervised learning; broad
learning system; graph label propagation

1. Introduction

The Brain-Computer Interface (BCI) is a technology that only needs to use the signals generated
by the human brain when subjected to specific stimuli to control external devices or systems [1],
which is independent of normal peripheral neuromuscular channels. In recent years, the application
of BCI technology has become more and more extensive, which has achieved fruitful results in the
fields of games, rehabilitation, and aerospace [2]. BCI is mainly used to accurately detect the patient’s
intention of exercise in the field of active motor rehabilitation, so the patients can actively participate
in the process of exercise training and induce neural plasticity [3]. This is due to the low cost of
electroencephalogram (EEG) signals acquisition, ease of use, and minimal side effects in the subjects.
The measured EEG signals are translated into a command for an application by three general steps:
the first step is pre-processing EEG signals, second is extracting features from these signals, and the
last is classifying EEG features. However, EEG signals often have characteristics of low signal-to-noise
ratio, time-varying, and instability [4]. As a result, it remains a challenging task to achieve accurate
and real-time classification of EEG signals.

There are many kinds of machine learning algorithms to effectively identify different types
of EEG signals. The support vector machine (SVM) [5,6] maps data samples to high-dimensional
space through kernel functions and learns to obtain a hyperplane to classify the samples. K-Nearest
Neighbor (KNN) [7] discriminates samples by calculating distances, for instance, Euclidean distances.
The extreme learning machine (ELM) [8] is a single hidden layer neural network. The input layer and
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hidden layer connection weights are randomly generated and do not need to be adjusted. The hidden
layer and output layer connection weights can be obtained by the least-squares method, so it is efficient
and in real-time. In recent years, deep learning (DL) has also been applied to the classification of
EEG signals. Li et al. [9] combine with multi-fractal attributes to construct a deep learning model
based on denoising encoders to identify different motion imaging tasks. In [10], the spatiotemporal
characteristics of EEG signals are considered. They use stacked automatic encoders and convolutional
neural networks to classify EEG signals, and further propose a new input form by extracting time,
frequency, and position information. Their approach yields a 9% improvement over the winning
algorithm of the competition. An et al. [11] use deep belief net (DBN) to train a weak classifier and
borrow the idea of the Ada-boost algorithm to combine the trained weak classifiers as a more powerful
one. This is an improvement of 4%–6% compared with SVM.

However, deep learning requires complex structural adjustments and complicated calculations
during training. Aiming at such problems, Professor Chen proposes a broad learning system (BLS)
approach [12]. The essence of BLS is a random vector function links neural network (RVFLNN).
First, the raw data is mapped to mapping features (MF) by random weights. Next, the feature nodes
are mapped to enhanced nodes (EN) as a width extension in a similar way. It aims to enhance the
nonlinearity of the model to obtain better results. Finally, the feature nodes and the enhancement nodes
are simultaneously mapped to the output layer, and the connection weight can be obtained by ridge
regression calculation. BLS has the following advantages: (1) BLS uses fewer layers than deep learning,
and thus it has a simpler structure; (2) BLS uses ridge regression to calculate network weights, while
DL often uses gradient descent. If the initial value setting is unreasonable, the DL needs more iterations
and takes a longer time. (3) The input layer to MF, MF to EN, and MF and EN to the output layer
weight of BLS are randomly assumed. The generated training parameters only have weight adjustment
from the feature layer to the enhancement layer. Therefore, BLS requires fewer training parameters
and labeled samples than DL. Zou et al. [13] propose a novel EEG multi-classification method by
combining with BLS and a common spatial pattern. The result shows that its classification accuracy
is better than the ELM and DBN algorithms, and the classification time is much faster. Recently,
Shuang et al. propose a fuzzy broad learning algorithm [14]. The Takagi-Sugeno (TS) fuzzy system
is embedded into the BLS to replace the MF in the original BLS with a set of TS fuzzy subsystems.
The results indicate that fuzzy BLS outperforms other models including some state-of-the-art nonfuzzy
and neuro-fuzzy approaches. On the basis of BLS, Jin [15] proposes another version of BLS based on
graph regularization and uses it for face recognition, which has obvious performance improvements
over BLS. The graph regularization uses the local invariance between data, in other words, similar
images have similar performance in manifold learning. Han et al. [16] also propose a BLS algorithm
based on manifold structure. The distinction with Jin is that the algorithm is mainly combined with
the unified framework of non-uniform embedding. It is a dynamic system for predicting a large-scale
chaotic time series. Liu et al. [17] apply broad learning and incremental learning into commonly used
neural networks including radial basis function and multi-layer extreme learning machine and propose
BLS-RBF and BLS-HELM algorithms.

However, BLS belongs to a supervised algorithm, and all of the above-mentioned algorithms
are supervised methods. The quantity of unlabeled samples is far more than labeled samples in
real life. The calibration process of labeled samples requires much labor, material, and financial
resources. Therefore, semi-supervised learning is proposed to utilize unlabeled samples. In [18],
a new safety-aware graph-based semi-supervised learning is proposed. The graph-based method
is generally revealed by constructing a k nearest neighbors (k-NN) graph. Li et al. [19] propose a
semi-supervised SVM for EEG signals classification. The algorithm could be used to reduce training
effort and improve the adaptability of the P300-based BCI speller. Wulsin et al. [20] propose a
semi-supervised deep confidence network algorithm for fast classification and anomaly measurement
of EEG signals. The classification time of the method was found to be 1.7–103.7 times faster
than the other high-performing classifiers. Jia et al. [21] propose a new semi-supervised deep
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learning algorithm combined with the restricted Boltzmann machine and apply it for EEG signals
classification. She et al. [22,23] improve the ELM algorithm and propose semi-supervised ELM and safe
semi-supervised ELM for EEG signals classification respectively. The results show that classification
accuracy has significant improvement over ELM. However, there are few applications of BLS to
semi-supervised learning, thus BLS is extended to graph-based semi-supervised BLS (GSS-BLS) for
classifying EEG signals in this paper.

The main contributions in this paper can be summarized as follows:

(1) Since the BLS algorithm belongs to supervised learning and can only use labeled samples, it is
modified with semi-supervised learning to exploit both labeled and unlabeled data to find more
useful information, contributing to improving the classification accuracy of original BLS with
better generalization capability.

(2) The proposed GSS-BLS algorithm retains advantages of the original BLS algorithm, which can
improve the classification accuracy compared with the traditional supervised learning.

(3) In the existing papers, BLS is often used for image classification and has not been involved in the
field of biomedicine. We have improved it and broadened its application fields.

The remainder of this paper is organized as follows. Section 2 provides a description of the
proposed semi-supervised BLS algorithm, including a brief introduction to the pre-processing of EEG
and the principle of graph label propagation. Section 3 describes the performance of our method
through a series of experiments on several motor imagery (MI) EEG datasets and Section 4 discusses
GSS-BLS and the limitation of GSS-BLS. Finally, the conclusion and future works are presented in
Section 5.

2. Materials and Methods

The classification process of EEG signals based on semi-supervised BLS is shown in Figure 1.
It mainly includes three aspects:

(1) The original EEG signals are preprocessed, filtered by a Butterworth filter, and subjected to a
dimensionality reduction process using the common spatial pattern (CSP) algorithm.

(2) The pseudo labels of the unlabeled EEG samples are obtained by the graph label
propagation approach.

(3) The labeled samples and the unlabeled samples are sent to the BLS for training with corresponding
labels and corresponding pseudo labels respectively, and then the GSS-BLS classifier is obtained
and used to classify the testing set.
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2.1. Common Spatial Pattern

CSP [24,25] is a common method for processing EEG signals. It belongs to the spatial domain
filtering feature extraction algorithm and can extract spatial distribution components of each class from
multi-channel brain-computer interface data. The basic principle of the CSP algorithm is using the
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diagonalization of the matrix to find a set of optimal spatial filters for projection, and then the variance
of the difference between the two classes of signals is maximized so that the feature vector with higher
discrimination is obtained.

The CSP feature extraction of the 2-class EEG signals is briefly described below. Suppose X1 ∈ N×T
and X2 ∈ N× T are multi-channel induced corresponding spatiotemporal signal matrixes of two motor
imagery tasks. N is the number of EEG channels, T is the number of samples for each channel.

Find the covariance matrices after normalizing X1 and X2:

R1 =
X1XT

1

tr(X1, XT
1 )

, R2 =
X2XT

2

tr(X2, XT
2 )

(1)

where (.)T represents transpose, tr(.) represents the sum of matrix diagonal elements. Then find the
mixed space covariance matrix and perform eigenvalue decomposition:

R = R1 + R2 = UΣUT (2)

where Ri(i = 1, 2) represents average covariance matrix, U is the eigenvector matrix of matrix Σ. Σ is a
diagonal array of corresponding eigenvalues. The eigenvalues are arranged in descending order to
obtain a whitened value matrix, then R1 and R2 are transformed and analyzed by principal component
decomposition:

S1 = PR1PT = UΣ1UT, S2 = PR2PT = UΣ2UT (3)

where P =
√

Σ−1UT. The transformation of the whitened EEG to the eigenvector corresponding to the
largest eigenvalue in Σ1 and Σ2 is optimal for separating the variances in the two signal matrices. The
spatial filter Ws corresponding to the projection matrix is:

Ws = UTP (4)

With the matrix Ws, the original EEG can be transformed into uncorrelated components.

Z = WsX (5)

Z can be seen as EEG source components including common and specific components of different tasks.

2.2. Graph Label Propagation

The label information is smoothed over the graph via the graph label propagation algorithm [26,27].
The goal of the algorithm is to predict the labels of the unlabeled samples using both labeled data and
unlabeled data. The algorithm can be described briefly as follows.

Suppose F = [F1; F2; . . . ; Fl+u] ∈ R(l+u)×c is a soft label matrix, l and u are numbers of labeled
samples and unlabeled samples respectively together with the dimension of the row vector c, where
each element in Fi belongs to [0, 1] and Fi(i ∈ {1, 2, . . . , l + u}) is a row vector. Define matrix Y =

[Y1; Y2; . . . ; Yl+u] ∈ R(l+u)×c represents labels of samples and Yi = [yi1, yi2, . . . , yic]. For labeled data xi,
if it is labeled as j( j ∈ {1, . . . , c}), then yi j = 1, otherwise yi j = 0 [28].

Then the weighted graph Wg can be constructed. The relation of xi and x j is represented by wi j:

wi j =

 e−‖xi−x j‖
2/σw

2
i f

{
xi ∈ N(x j)

x j ∈ N(xi)

0 otherwise
(6)

where N(•) is k nearest neighbors of xi or x j. ‖•‖ is Euclidean norm of a vector. σw is a scaling parameter
of Gaussian function [29]. Then construct the normalized Laplacian matrix S = D−1/2WD−1/2, in
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which D is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of Wg. Now the
objective function is shown as below:

min
F

∑
i, j

‖Fi − F j‖
2
wi j + µ

∑
i, j

‖xi − x j‖
2
wi j (7)

where the first term constrains the similar samples have similar labels and the second term constrains
the graph optimization that similar features correspond to high similarities. µ is a trade-off parameter
to balance weights between feature space and label space. In the optimization process, the existing
method is fixing other variables and updating one at a time until it converges. So, while F is considered,
the Equation (7) can be rewritten by:

min
F

∑
i, j

‖Fi − F j‖
2wi j = tr(FSFT), s.t. Fl = Yl (8)

Since Fl is the predicted labels of labeled points, we suppose Fl is real labels, in other words,
Fl = Yl. The differentiate of Equation (8) is shown below:

[Fl Fu]

[
Sll Slu
Sul Suu

]
= 0 (9)

where F = [Fl, Fu], S is rewritten as partitioned matrix. Now Yl, Slu, Suu are known, and by calculating
Equation (8) we can acquire Fu = −YlSluSuu

−1.

2.3. Broad Learning System

The broad learning system mainly consists of three parts: mapping layer (feature nodes),
enhancement layer (enhancement nodes), and output layer. The main algorithm is as follows.

Suppose a training set
{
(X, Y)

∣∣∣X ∈ Rn×d, Y ∈ Rn×c
}
, and n is number of training samples, d

is characteristic dimension, c is number of categories. Each training sample is represented as
xi = (xi1, xi2, . . . , xid) and the corresponding label is denoted as yi = (yi1, yi2, . . . , yic).

First, the training samples are mapped to the feature space ZNw through the feature mapping
function φi, i = 1, 2, . . . , Nw. Nw is number of mapped feature vectors.

Zi = φi(XWei + βei), i = 1, 2, . . . , Nw (10)

where Wei is mapping weight matrix and βei is random deviation.
Second, define feature space ZNw , [Z1, Z2, . . . , ZNw ] where Zi is feature node, i = 1, 2, . . . , Nw.

Similar to feature nodes generated by training samples, feature nodes are also used for enhanced nodes.

H j , ξ j(ZNwWh j + βh j), j = 1, 2, . . . , m (11)

where ξj is a nonlinear activation function. The enhancement layer can then be represented as
Hm , [H1, H2, . . . , Hm]. In order to obtain a sparse representation of the training data and adjust the
weight matrix Wei of the input layer to the output layer, BLS uses a linear function as the activation
function of φi and ξ j. So, BLS can be represented as:

Ŷ = [Z1, Z2, . . . , Zn, H1, H2, . . . , Hm]WBLS = AWBLS (12)

where A = [ZNw , Hm], WBLS is a weight matrix of feature nodes and enhancement nodes to output
layer. WBLS can be optimized with the following objective function:

argmin
WBLS

(‖Y−AWBLS‖
2 + λ‖WBLS‖

2) (13)
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where the first term represents the training error and the second term is the regular term used to control
the complexity of the model. λ is a regular term coefficient used to balance the relationship between
two terms. WBLS can be obtained by simple derivation calculation.

WBLS = (ATA + λI)
−1

ATY (14)

2.4. Graph-Based Semi-Supervised BLS

The BLS method is subject to supervision and cannot use many unlabeled points. Therefore,
combining the advantages of both BLS and graph label propagation, we propose GSS-BLS algorithm to
achieve semi-supervised classification of EEG signals.

Assume a pre-processed training set
{
(X, Y)

∣∣∣X ∈ R(l+u)×d, Y ∈ R(l+u)×c
}

and corresponding labels

are Yl and Yu, where Y = [Yl, Yu]. The weight matrix from the input samples to the feature vector is
WMs = [W1, . . . , WM] and random deviation is βMs = [β1, . . . , βM]. Analogy Equation (10), the feature
vector can be shown as:

Zsi = φi(XWi + βi), i ∈M (15)

where M is number of feature vectors, φ(•) is a nonlinear function, and different activation functions
can be selected according to different situations. As with Equation (10), the linear function is still used
here as an activation function.

After obtaining the feature space ZS = [Z1, Z2, . . . , ZM], the enhancement layer can be expressed as:

Hsj = φ j(ZWsj + βsj), j ∈ N (16)

where WNs = [W1, . . . , WN] is a random weight matrix and βNs = [β1, . . . , βN] is the deviation. Now
the GSS-BLS can be represented as:

[Yl
∣∣∣Yu ] = [ZS

|Hs ]Wm (17)

where Wm is mapping layer and enhancement layer to output layer connection weight. The solution of
Wm can be obtained by:

argmin
Wm

‖[Zs
|H s]W

m
− [Yl

∣∣∣Yu ]‖
2
+ λ‖Wm

‖
2 (18)

where λ is a balance parameter and used to constraint Wm. Equation (18) can be solved by ridge
regression:

Wm = (λI + [Zs
|H s]

T[Zs
|Hs ])

−1
[Zs
|Hs ]

T[Yl
∣∣∣Yu ] (19)

where λ = 0, Equation (19) degenerates into the least square problem, but if λ→∞ , the solution
is heavily constrained and tends to 0. So, we refer to BLS and set λ = 2−30 [30]. By giving an
approximation to the Moore-Penrose generalized inverse of [Zs

|H s], Equation (19) can be written as:

Wm = [Zs
|H s]

+[Yl
∣∣∣Yu ] (20)

Now the pseudo-inverse of [Zs
|H s]

+ can be obtained:

[Zs
|H s]

+ = lim
λ→0

(λI + [Zs
|Hs ]

T[Zs
|H s])

−1
[Zs
|Hs ]

T (21)

Finally, the predictive labels can be written:

Y = [Zs
|H s]W

m (22)

Now the GSS-BLS algorithm for EEG classification can be summarized in Table 1.
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Table 1. The specific steps of the GSS-BLS-based EEG (electroencephalogram) signal
classification algorithm.

Algorithm 1: The GSS-BLS algorithm
Input: EEG signal preprocessed with CSP.

(a) Construct a Laplacian diagram according to Equation (6);
(b) Obtain pseudo-labels of the unlabeled samples according to Equation (9);
(c) Calculate feature nodes and enhancement nodes according to Equations (15) and (16);
(d) Calculate the connection weights Wm of the feature layer and the enhancement layer to the output layer

according to Equation (20);
(e) Find the prediction labels using Equation (22) and the previously calculated parameters;

Output: Labels of predicted unlabeled samples.

3. Experiment and Analysis

3.1. BCI Datasets

In order to verify the validity and practicability of the GSS-BLS, we used three motor imagery
EEG datasets of BCI competitions [31], including two 2-class datasets and one 4-class dataset, which
were described as follows:

(1) Dataset IVa, BCI competition III [32]: The dataset contained EEG signals from five subjects, and
each subject performed right hand and foot imaging tasks. EEG signals were recorded using 118
electrodes. The dataset of each subject included a training set and a testing set and the size of
these datasets varied from person to person. More precisely, every subject performed 280 trials of
experiments in which the subjects of A1, A2, A3, A4, and A5 were respectively composed of the
training samples of 168, 224, 84, 56, and 28, with the remainder forming the testing set.

(2) Dataset IIIa, BCI competition III [33]: The dataset was formed of EEG signals from three subjects
who performed left-hand, right-hand, foot, and tongue MI tasks. A 60-lead electrode was used to
record the EEG signals. In order to highlight the two-category recognition performance, only two
classes of EEG signals (left-hand and right-hand MI signals) were used as actual usage data. EEG
signals contained 45 training and testing samples per class for subject B1 while subjects B2 and B3
had 30 training and testing samples per class respectively.

(3) Dataset IIa, BCI competition IV [34]: The dataset contained four classes of MI EEG signals from 9
healthy subjects (C1 to C9), who performed left hand, right hand, foot, and tongue imaging tasks.
EEG signals were recorded using 22 electrodes in all experiments. The training set and the testing
set contained 288 sets respectively.

In view of the particularity and complexity of the original EEG signals, it was necessary to perform
EEG data preprocessing. For each subject, a time window of 0.5 s~2 s was selected for EEG data
extraction, and then a 5th-order Butterworth filter was used to perform band-pass filtering operation
of 8~30 Hz [30]. Next, the EEG signals were reduced in dimension using the CSP algorithm. Finally,
the processed EEG data was trained and tested by different algorithms.

3.2. Comparative Methods

To assess the performance of the proposed GSS-BLS on three EEG datasets, we investigated the
following five methods for comparison.

(1) Supervised classifiers included ELM [35] and BLS [12]. The linear feature mapping was used
in BLS and GSS-BLS and the linear kernel function was used in ELM in our experiments.
The hyperparameter of ELM was selected through ten-fold cross-validation and the regularization
coefficient of ELM was selected from

{
10−4, 10−3, . . . , 103, 104

}
.
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(2) Semi-supervised classification methods were Squared-loss Mutual Information Regularization
(SMIR) [36] and Laplacian SVM (LapSVM) [37]. SMIR applied the Gaussian kernel and the kernel
width was the median of all pairwise distances times the best value among {1/15,1/10,1/5,1/2,1}.
The linear kernel function was also used for LapSVM.

(3) The special classifier was HELM [38] for it was supervised with a multilayer structure.

3.3. Experimental Results

In order to evaluate the performance of GSS-BLS, two performance indexes were considered: the
kappa value [39] on each subject and average kappa value for the classification of testing samples.
The higher the kappa value was, the better the classification result we would get. For supervised
methods, only the labeled samples were used to train the classifier and the trained classifier was used
to predict the labels of unlabeled samples. For semi-supervised methods, all labeled and unlabeled
samples were used to train the classifier. Since we experimented with the different proportions of
training samples, the ratio of labeled to unlabeled samples was 1:4 which could achieve a satisfying
performance. The comparing methods were also trained to achieve the best results. The performance
was evaluated in terms of the mean kappa value and standard deviation (kappa± std) using 10× 10-fold
cross-validations. The performance of the Dataset IVa was shown in Table 2, IIIa in Table 3, and IIa in
Table 4.

Table 2. Kappa value on testing data of BCI (brain-computer interface) Competition III Dataset IVa.

Dataset
(All/Test)

BLS
kappa ± std

ELM
kappa ± std

HELM
kappa ± std

SMIR
kappa ± std

LapSVM
kappa ± std

GSS-BLS
kappa ± std

A1(280/112) 0.201 ± 0.035 0.343 ± 0.026 0.244 ± 0.018 0.201 ± 0.001 0.445 ± 0.073 0.323 ± 0.064
A2(280/56) 0.964 ± 0.001 1 0.944 ± 0.001 1 0.961 ± 0.011 0.968 ± 0.011

A3(280/196) 0.193 ± 0.014 0.163 ± 0.024 0.243 ± 0.023 0.200 ± 0.001 0.321 ± 0.152 0.227 ± 0.064
A4(280/224) 0.477 ± 0.007 0.558 ± 0.020 0.470 ± 0.018 0.413 ± 0.001 0.441 ± 0.171 0.689 ± 0.047
A5(280/252) 0.704 ± 0.001 0.660 ± 0.008 0.706 ± 0.008 0.530 ± 0.001 0.675 ± 0.245 0.738 ± 0.029

Average 0.508 ± 0.012 0.545 ± 0.016 0.521 ± 0.014 0.469 ± 0.001 0.569 ± 0.130 0.589 ± 0.043

Table 3. Kappa value on testing data of BCI Competition III Dataset IIIa.

Dataset
(All/Test)

BLS
kappa ± std

ELM
kappa ± std

HELM
kappa ± std

SMIR
kappa ± std

LapSVM
kappa ± std

GSS-BLS
kappa ± std

B1(90/45) 0.887 ± 0.007 0.907 ± 0.001 0.889 ± 0.001 0.844 ± 0.001 0.928 ± 0.030 1
B2(60/30) 0.143 ± 0.016 0.160 ± 0.016 0.143 ± 0.016 0.133 ± 0.001 0.163 ± 0.124 0.170 ± 0.123
B3(60/30) 0.943 ± 0.016 0.933 ± 0.011 0.977 ± 0.016 1 0.909 ± 0.079 1
Average 0.658 ± 0.117 0.667 ± 0.009 0.670 ± 0.011 0.659 ± 0.001 0.667 ± 0.078 0.723 ± 0.041

Table 4. Kappa value on testing data of BCI Competition IV Dataset IIa.

Dataset
(All/Test)

BLS
kappa ± std

ELM
kappa ± std

HELM
kappa ± std

SMIR
kappa ± std

LapSVM
kappa ± std

GSS-BLS
kappa ± std

C1(576/288) 0.566 ± 0.012 0.587 ± 0.022 0.589 ± 0.011 0.537 ± 0.001 0.610 ± 0.124 0.615 ± 0.013
C2(576/288) 0.253 ± 0.011 0.297 ± 0.028 0.276 ± 0.016 0.227 ± 0.001 0.334 ± 0.094 0.337 ± 0.033
C3(576/288) 0.671 ± 0.020 0.648 ± 0.017 0.706 ± 0.008 0.699 ± 0.001 0.777 ± 0.061 0.690 ± 0.010
C4(576/288) 0.337 ± 0.015 0.360 ± 0.018 0.355 ± 0.007 0.394 ± 0.001 0.363 ± 0.092 0.387 ± 0.037
C5(576/288) 0.146 ± 0.007 0.174 ± 0.020 0.178 ± 0.008 0.167 ± 0.001 0.280 ± 0.072 0.182 ± 0.011
C6(576/288) 0.282 ± 0.012 0.272 ± 0.015 0.267 ± 0.013 0.264 ± 0.001 0.286 ± 0.100 0.275 ± 0.036
C7(576/288) 0.706 ± 0.014 0.700 ± 0.018 0.726 ± 0.010 0.708 ± 0.001 0.695 ± 0.075 0.728 ± 0.008
C8(576/288) 0.652 ± 0.017 0.697 ± 0.017 0.700 ± 0.018 0.685 ± 0.001 0.748 ± 0.069 0.773 ± 0.006
C9(576/288) 0.560 ± 0.017 0.573 ± 0.025 0.605 ± 0.020 0.644 ± 0.001 0.719 ± 0.089 0.739 ± 0.014

Average 0.464 ± 0.014 0.479 ± 0.019 0.488 ± 0.013 0.481 ± 0.001 0.534 ± 0.086 0.525 ± 0.018
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Table 2 showed that GSS-BLS yielded the highest kappa value in two subjects (A4, A5) and
average mean kappa value (0.589). In A4 and A5 subjects, GSS-BLS improved significantly compared
with other algorithms. The LapSVM approach achieved the higher kappa values in subjects A1 (0.445)
and A3 (0.321) but both of which were very low among the five algorithms from Table 2. The main
reason for this, we predicted, was that the datasets of A1 and A3 were terrible. Comparing A3 with A5
showed that the size of testing was similar while the results of the two subjects differed widely. So,
we suspected there was something wrong with the datasets of A1 and A3 rather than five methods.
Compared with the other four subjects, the kappa value of subject A2 was high in five methods due to
more training samples and fewer testing samples, especially since the kappa values of ELM and SMIR
reached 1, which meant that the classification was completely correct. The average mean kappa values
showed that SMIR was the worst in the six methods. This might be due to the fact that SMIR was a
multi-class probability classification based on square loss mutual information regularization, which
was mainly to maximize the class probability output to classify unlabeled samples. Along with the
various interference information, the gap of EEG signal data was not so large that it would have a
certain impact on the probability calculation.

Table 3 showed that GSS-BLS achieved the highest kappa value in subjects B1, B2, and B3, as
well as the average mean kappa value (0.723). In subject B1, the GSS-BLS results were significantly
better than the other five algorithms, especially the three supervised algorithms. Although GSS-BLS
achieved the best performance, the kappa values of subject B2 were very low in all algorithms which
were similar to A3. The mean kappa values of SMIR and GSS-BLS achieved 1 in subject B3. It could be
seen that GSS-BLS yielded a slightly higher average mean kappa value compared to other methods
and the comparison methods did not differ much in average mean kappa value.

From Tables 2 and 3, we concluded that the proposed GSS-BLS algorithm had good classification
results in the 2-class EEG datasets. In order to further verify the performance of GSS-BLS, it was tested
in the 4-class EEG dataset and compared with other algorithms. The results were shown in Table 4.

Table 4. showed that the GSS-BLS algorithm achieved the best results in five subjects (C1, C2,
C7, C8, and C9) and the LapSVM approach performed the best in three subjects (C3, C5, C6) and
SMIR reached the best in subject C4. For subject C5, the kappa value of the LapSVM algorithm
was significantly better than other algorithms. The reason for this could be that perhaps the graph
constructed for LapSVM was better in subject C5 and used more unlabeled information. In subjects C1
and C2, the kappa values of GSS-BLS were small gaps compared to other algorithms while significantly
better than other algorithms in subjects C7, C8, and C9. From Table 4, the kappa values of three
semi-supervised algorithms were slightly higher than three supervised algorithms except that the
SMIR was lower than HELM in average mean kappa value. In terms of the average mean kappa value,
LapSVM performed the best result whereas the standard deviation was higher than other methods.
GSS-BLS was only 0.007 lower than LapSVM and stable for classifying EEG signals from standard
deviation. Moreover, among the nine subjects, GSS-BLS achieved better results than BLS except for
subject C6.

In summary, GSS-BLS achieved better classification results in the 4-class EEG dataset.
The experimental results above show that the proposed GSS-BLS gave always better results than
comparison methods. This could be explained that the GSS-BLS model used unlabeled data and
provided useful additional information. Consequently, thanks to this comparison, a positive behavior
of the graph label propagation was observed.

3.4. Algorithm Performance with Different Proportions of Training Samples

In addition to the comparisons of various algorithms on different datasets, we also considered that
the semi-supervised algorithm would be affected by the number of training samples. Therefore, we
conducted an evaluation of the proportion of training samples for each subject and the experimental
results showed that our proposed GSS-BLS and other semi-supervised algorithms outperformed the
supervised algorithms in the case of a small proportion of training samples. Since all subjects presented
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similar regularity in the experiments of different proportions of training samples, the results for four
representative subjects (B1, A2, C8, C9) were shown in Figure 2.
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As shown in Figure 2, under different conditions of training samples on the 2-class and 4-class
datasets, the kappa values of the testing sets showed that semi-supervised methods were better than
supervised algorithms. In subjects B1 and A2, GSS-BLS outperformed comparison approaches at 10%
to 90% of the training samples. In addition, when the number of training samples was less than 30%,
the kappa value of GSS-BLS was obviously higher than other algorithms in Figure 2a. When the
proportion of training samples was above 80%, the kappa values of various algorithms increased
significantly. From subject A2, we could find that algorithms were relatively stable except for the
obvious fluctuation of LapSVM. The kappa value of the GSS-BLS algorithm was maintained at around
0.965. Although it was not comparable to ELM and SMIR, the disparity was not particularly obvious.
Figure 2c showed GSS-BLS achieved the best under different ratios of training samples except that it
was lower than LapSVM and SMIR algorithms at the ratio of 10%. The GSS-BLS was superior to other
algorithms when the ratio was less than 50% while LapSVM was better when it was above 50% in
Figure 2d.

Generally, the results showed that the GSS-BLS outperformed the other algorithms in small
training samples since the GSS-BLS exploits the underlying manifold structure of the labeled and
unlabeled data space. However, the performance of GSS-BLS, as well as other methods, sometimes
degraded with the ratio of labeled samples. To our best understanding, the reasons might be that the
impact of labeled samples would increase as the labeled ones increased, and the labeled ones might
degrade the effectiveness of the GSS-BLS since the information of some inappropriately labeled ones
would mislead the process of training.
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3.5. Parameter Analysis

There were three main influenced parameters in this paper, the parameters in Equation (7) and
the number of feature nodes and enhancement nodes of GSS-BLS. In this paper, the parameters of
each subject were analyzed. Since the parameter analysis of 2-class was simpler than 4-class, we only
presented the results of four classifications. Corresponding to Section 3.4, we only gave the analysis of
the parameters of subjects C8 and C9.

As shown in Figure 3, the area of kappa value was stable when µ ≥ 60 in subject C8 and the
fluctuation was little. The range of best kappa value affected by µ was greater than 45 and less than 55.
Compared to subject C8, the value of µ had a great influence on the kappa value in subject C9, but
when µ ≥ 60, the kappa value fluctuated drastically but did not reach the highest. 50 ≤ µ ≤ 60 was the
considerable range to perform better kappa value. It could be found from the two subjects that the
size of the value had a certain impact on performance. Considering all results of subjects, we chose
50 ≤ µ ≤ 55 for the experiments.
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As shown in Figure 4, as the feature nodes and enhancement nodes increased so did the kappa
value in subject C8. When the feature nodes and the enhancement nodes were in the range of 90–100,
the kappa value achieved best and tended to be smooth. In subject C9, the result of kappa value
showed a decreasing trend with the increasing feature nodes, but the kappa value had little effect as
the enhancement nodes increased. The optimal results were achieved when feature nodes were in
10–20 and enhancement nodes in 90–100. In general, when the enhancement nodes increased, the
kappa value increased, and the classification effect was improved.Electronics 2019, 8, 1273 12 of 15 
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4. Discussion

In the experiments, the proposed method has achieved better results compared to the other five
methods in the classification of EEG signals. When compared with supervised algorithms, GSS-BLS
has better performance than supervised methods, such as ELM, BLS, and HELM, which confirms
that GSS-BLS uses unlabeled samples with additional information. However, compared with the
other two semi-supervised algorithms, GSS-BLS (0.525) is lower than LapSVM (0.534) but greater
than SMIR (0.481) of the average kappa value in the 4-class EEG dataset, but LapSVM algorithm
is significantly higher than GSS-BLS in standard deviation, which is less stable than the GSS-BLS.
GSS-BLS achieves the best results in five subjects whereas LapSVM yields optimal results in three
subjects. The main reasons why GSS-BLS loses to LapSVM in three subjects can be boiled down to the
following. The graph constructed for LapSVM was better in three subjects, and the original EEG data
is preprocessed simply, so we might reserve the main information of motor imagery including artifacts.
Therefore, the irrelevant factors are more influential in GSS-BLS than LapSVM. Overall, GSS-BLS is just
below LapSVM in average mean kappa value. Therefore, GSS-BLS also achieves good classification
results in the classification of the 4-class EEG dataset. From the experiment of different proportions
of training samples, we can find that GSS-BLS achieves satisfying performance with limited labeled
samples, so it solves the situation that the scale of EEG signals is small and the cost for labeling EEG
signals is massive.

There are some limitations in the classification of EEG signals. GSS-BLS is trained offline, so it may
result in false classification when used in online applications. GSS-BLS is applied for EEG signals, the
scale of which is small, so the feasibility of this usage for big data is doubted. In addition, it defaults
when adding training samples, and the classifier will be more stable with better classifying results, but
actually, the insecurity of an increased sample is not considered.

5. Conclusions

In this paper, we propose a novel graph-based semi-supervised algorithm for the classification of
EEG signals. The assessing of GSS-BLS is performed in 2-class as well as 4-class motor imagery with
five other comparison algorithms. In addition, we also analyze the relevant parameters of GSS-BLS,
and the kappa value affected by the different ratios of training samples. The results show that GSS-BLS
yields better performance in three datasets, especially in the 2-class set. The average mean kappa value
of GSS-BLS is better than other algorithms, except slightly lower than LapSVM in the 4-class dataset.
Compared with BLS and other supervised methods, GSS-BLS offers significant improvements since
it uses unlabeled samples and extracts additional information. In the case of reducing the number
of labeled samples, GSS-BLS can also obtain better classifying results, which can reduce the cost
of labeling samples. However, GSS-BLS has some disadvantages which we do not consider in the
experiments. When the classifier for GSS-BLS is trained, we assume the increase of unlabeled samples
will optimize the performance of the classifier, but actually the addition of unlabeled samples may lead
to a decrease in performance [18]. Furthermore, the similarity of data structure for the training model
is not considered, which is one of the factors that affects the performance of the classifier [40]. In future
works, we will consider the security of unlabeled samples and the potential internal structure among
data, and it will serve to improve the classification and evaluation of motor imagery EEG signals.
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