
electronics

Article

Adaptive-Hybrid Redundancy with Error Injection

Nicolas Hamilton 1 , Scott Graham 1,* , Timothy Carbino 1 , James Petrosky 2

and Addison Betances 1

1 Department of Electrical and Computer Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH 45322, USA; nicolas.hamilton@afit.edu (N.H.); timothy.carbino@us.af.mil (T.C.);
joan.betancesjorge@afit.edu (A.B.)

2 Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45322,
USA; james.petrosky@us.af.mil

* Correspondence: nicolas.hamilton@afit.edu; Tel.: +1-937-255-6565 (ext. 4220)

Received: 30 September 2019; Accepted: 29 October 2019; Published: 1 November 2019
����������
�������

Abstract: Adaptive-Hybrid Redundancy (AHR) shows promise as a method to allow flexibility
when selecting between processing speed and energy efficiency while maintaining a level of error
mitigation in space radiation environments. Whereas previous work demonstrated AHR’s feasibility
in an error free environment, this work analyzes AHR performance in the presence of errors. Errors
are deliberately injected into AHR at specific times in the processing chain to demonstrate best
and worst case performance impacts. This analysis demonstrates that AHR provides flexibility in
processing speed and energy efficiency in the presence of errors.

Keywords: adaptive-hybrid redundancy; radiation effects; single event upset; triple modular
redundancy; temporal software redundancy; radiation mitigation; field programmable gate array

1. Introduction

Adaptive-Hybrid Redundancy (AHR) was developed to enable flexibility in radiation hardening
redundancy methods for space vehicles. AHR incorporates Triple Modular Redundancy (TMR) and
Temporal Software Redundancy (TSR) such that AHR can switch between TMR and TSR modes as
needed [1]. This previous work demonstrated that AHR functions as designed, switches from TMR
to TSR, and uses less energy to complete programs than TMR while completing those programs in
less time than TSR in an error free environment [1]. The objective of this paper is to further illustrate
the advantages and flexibility of AHR when compared to TMR or TSR alone both in error free and
error prone simulated environments. This paper does not seek to prescribe how much time AHR
should spend in TMR or TSR operating modes, but rather to provide a new redundancy framework
to space vehicle designers, mission planners, and operators so they can decide how much time AHR
should spend in each mode based upon radiation environment, processing speed requirements, energy
consumption requirements, and mission requirements.

The remainder of this section discusses previous redundancy mitigation research and the
architecture of AHR. Section 2 discusses the methods used to evaluate the performance of AHR.
Section 3 discusses the results of the AHR performance evaluation. Section 4 discusses the impact of
the results and concludes the paper.

1.1. Background

Previous Single-Event Upset (SEU) mitigation research has focused on hardware, software, hybrid,
or adaptive redundancy techniques. This section will briefly review some of the research leading up
to AHR.

Electronics 2019, 8, 1266; doi:10.3390/electronics8111266 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3456-4368
https://orcid.org/0000-0003-0193-1192
https://orcid.org/0000-0002-6088-4835
https://orcid.org/0000-0003-0846-9404
https://orcid.org/0000-0001-9281-1385
http://www.mdpi.com/2079-9292/8/11/1266?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8111266
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 1266 2 of 48

1.1.1. Hardware Redundancy

Dual-Modular Redundancy (DMR) describes an SEU mitigation method that operates two
processors in parallel by providing those processors simultaneous identical inputs and operating
those processors on a common clock. A hardware comparator module compares the outputs of the
two processors to ensure that they are identical. If the comparator detects a difference, an error has
occurred, and both processors’ internal state is restored to a previous known state that was stored to
radiation hardened/immune memory. In DMR, the processors are periodically interrupted to save
their internal state to memory; this is called a Save/Restore Point [2–6]. To create the Save/Restore
Point, the comparator issues commands to both processors to write each register to memory. Upon
receiving register values from the two processors, they are compared to ensure they are equal before
writing the result to memory. If an error is detected at this stage, the comparator enters error recovery
mode and returns to the last Save/Restore Point. After all registers are written to memory, the Program
Counter value is written to memory as well. During error recovery, the comparator resets both
processors, then issues a series of load commands to both processors to load each register value in
the Save/Restore Point into registers. The comparator finishes the error recovery process by issuing a
branch command to return the processors to the Program Counter value stored in the Save/Restore
Point. The comparator performs Save/Restore Point creation and error recovery by traversing a series
of states in its internal finite state machine which is implemented in hardware.

The timing of Save/Restore Point creation is application specific and depends on factors such
as radiation environment and operational needs. The Save/Restore Point time period is specified as
a set number of instructions to complete between Save/Restore Points. Save/Restore Point creation
takes time away from processors performing intended tasks and slows execution time so there is some
pressure to maximize the amount of time between Save/Restore Point creation events. However, in the
event an error occurs, the amount of time between Save/Restore Points dictates the amount of time
that must be spent to recover from an error to the point at which the error initially occurred. This
represents a pressure to reduce the amount of time between Save/Restore Point creation.

Triple-Modular Redundancy (TMR) describes an SEU mitigation method that operates three
processors in a similar manner to DMR with some notable differences. First, the hardware comparator
module is replaced with a hardware majority voter. Secondly, when the majority voter detects that
two of three processors agree while one disagrees, the disagreeing processor is reset and the internal
state of the two agreeing processors is copied to the disagreeing processor so that all three processors
are in agreement. This greatly reduces the recovery time when compared to DMR. In the unlikely
event that two or more processors encounter an error such that all three processors disagree, TMR
restores all three processors to a previous Save/Restore Point in the same way as DMR: the voter
contains a hardware implemented finite state machine to create the Save/Restore Point and recover
from errors [7–13]. The voter is typically assumed to be immune to errors or is hardened in some way.
This research assumes that the voter is immune to errors as well. While the voter is this research is not
implemented in such a way to be error immune or radiation hardened, radiation hardening could be
achieved through radiation shielding, hardware redundancy, or hardening by design.

N-Modular Redundancy (NMR) is a majority voting redundancy method that is similar to TMR,
but uses N processors instead of three processors. It is considered more robust than TMR because a
permanent single processor failure will result in N-1-Modular Redundancy. So long as N-1 is greater
than or equal to three, the majority voting redundancy method still functions. However, there is an
energy penalty to be paid because NMR uses at least N times as much energy to complete a program
as a single processor with no redundancy [14–16].

1.1.2. Software Redundancy

The first software redundancy method this paper discusses, Error Detection by Duplicated
Instructions (EDDI), is very similar to DMR, but is implemented in software instead of hardware.
This software redundancy method runs on a single processor. Dual redundancy is implemented by

Electronics 2019, 8, 1266 3 of 48

duplicating all instructions that do not store data to memory. Each duplicated instruction stores its
results to a different, physically separated register from the original instruction to achieve spatial
separation of the original and duplicate results. This greatly reduces the likelihood that a single,
or multiple, radiation event(s) will cause the exact same error in both the original and duplicated
results. The DMR comparison function is implemented in software by adding a comparison instruction
immediately prior to any store instruction. If the original and duplicate register are identical, the
original is stored to memory. If the original and duplicate are not identical, an error has occurred and
program execution jumps to code that performs error recovery. This error recovery code restores the
state of the processor to a previously saved state called a Save/Restore Point in a similar manner to
DMR, but use software instead of a hardware finite state machine. Similarly to DMR, EDDI periodically
interrupts normal program execution to create Save/Restore points by executing code designed to
create the Save/Restore points [17–19]. EDDI was proposed by Oh et al. [17,18] while Tokponnon et al.
discuss a very similar software redundancy method [19]. Table 1 shows an example of what EDDI
code looks like in the “redundant set” when compared to a non-redundant instruction set called the
“original set”. In this example, LUI is the MIPS load upper immediate instruction, ADD is the MIPS
addition instruction, SW is the MIPS store word instruction, and BNE is the MIPS branch if not equal
instruction. ERR is the value of the distance which the BNE should jump in code execution if R3 and
R17 are not equal. OFFSET is the value that should be added to the memory location specified by R0
where R3 should be stored. Any value indicated by R# is a register number.

Table 1. Simple software redundancy example.

Instruction Original Redundant
Number Set Set

1 LUI R1 1 LUI R1 1
2 LUI R2 2 LUI R15 1
3 ADD R3 R1 R2 LUI R2 2
4 SW R3 R0 OFFSET LUI R16 2
5 ADD R3 R1 R2
6 ADD R17 R15 R16
7 BNE R3 R17 ERR
8 SW R3 R0 OFFSET

Oh et al. [20] and Reis et al. [21,22] improved EDDI by adding signature detection in order to
determine when Program Counter errors have occurred as a result of a missed branch or illegal branch.
Signature detection methods break a program into segments and computes segment signatures at
compile time and inserts a segment signature computation and a segment comparison instruction into
each segment. The signatures are unique and are dependent upon the preceding segment and the
current segment. At runtime, the signature is recomputed and compared to the compile time signature.
Any discrepancy between the two is interpreted as a Program Counter error as a result of a missed
branch or illegal branch between segments [20–22].

1.1.3. Hybrid Redundancy

Hybrid redundancy can take many forms and can consist of any number of combinations of
hardware, software and error correcting codes.

The first hybrid redundancy method this paper discusses is only applicable to Field Programmable
Gate Arrays (FPGAs) which have a configuration memory that is vulnerable to Single Event Upsets
(SEUs). Many FPGAs configuration memories are comprised of Static Random Access Memory (SRAM)
cells which are highly susceptible to SEUs. These configuration memories specify constants, logic
functions, and signal routing on the FPGA. Any of these can have a catastrophic effect on the intended
function of the hardware designed into the FPGA. Those who wish to implement a processor on an
FPGA typically combine a TMR-like method with a method of correcting configuration memory called

Electronics 2019, 8, 1266 4 of 48

internal scrubbing. The primary concern with FPGAs is the configuration memory rather than the
registers used in the processor. Internal scrubbing detects and corrects errors in the configuration
memory, but can only do so at the memory refresh rate. TMR is used as a stop-gap measure to ensure
outputs are correct in spite of configuration errors until internal scrubbing can correct those errors.
The TMR method only does majority voting and does not correct faulty processors [23–28].

Another method of hybrid redundancy duplicates instructions in software, similar to EDDI,
but uses a hardware comparator similar to the DMR comparator [29]. A method that juxtaposes the
software and hardware portions has also been implemented that uses hardware for redundancy and
software for comparisons [30].

A few methods of hybrid redundancy combine hardware or software redundancy with error
correcting codes to protect processor registers and/or memory [31–33].

1.1.4. Adaptive Redundancy

Only two adaptive redundancy approaches were found in the literature survey. The first is a
very simple approach that uses a radiation sensor to detect the ambient radiation environment and
determines when to implement TMR and when to operate using a single processor without any
mitigation [34]. This is also the only example discovered in literature that applies adaptive redundancy
to a processor.

The second uses three different software redundancy methods to protect memory. Each method
differs in the degree of error protection, memory access speed, and energy consumption. When there
are very few SEUs occurring, the method that provides the least error protection, operates the fastest,
and uses the least amount of energy is utilized. As the SEU rate increases, the method that provides an
intermediate level of error protection, intermediate memory access speed, and intermediate energy
consumption is used. As the SEU rate becomes too great for the intermediate level of protection to
handle, the method that provides the greatest level of error protection is used at the expense of the
slowest memory access and greatest energy consumption [35].

1.2. Adaptive-Hybrid Redundancy

AHR, as implemented in this work and the previous work [1], consists of TMR and TSR. The TMR
implementation is just as described in Section 1.1.1 and the TSR implementation is the EDDI method
described in Section 1.1.2. For this research, the time between creation of Save/Restore Points was
arbitrarily selected to be 10,000 instructions for TMR and AHR operating in TMR mode and 250 main
program loops for TSR and AHR Operating in TSR mode (many real-world programs typically have a
main loop which is repeated numerous times until program completion). These values were chosen to
ensure that every program would create at least one Save/Restore Point during its execution. These are
tunable parameters that a space vehicle designer, mission planner, or operator could change as needed
based upon the program running on the processor, performance requirements, radiation environment,
and mission needs.

A simple illustration of the TMR architecture is shown in Figure 1. The previous work
demonstrated that a program running in an error free environment in TMR takes 65% longer to
run than a program running on a single processor with no redundancy because the voter adds delay to
all processor inputs and outputs. The TMR architecture also uses three times the instantaneous power
of a single processor because there are three processors instead of one. A program running TMR takes
approximately 430% more energy to complete due to the number of processors and the added time
taken to run the program [1].

A simple illustration of the TSR architecture is shown in Figure 2. The EDDI TSR method uses
a special compiler to take a normal program and make it into a TSR program. The previous work
demonstrated that EDDI TSR programs take 113% longer to complete than non-redundant programs
and the TSR architecture uses the same amount of instantaneous power as a single processor because

Electronics 2019, 8, 1266 5 of 48

the TSR architecture only uses a single processor. However, TSR uses 113% more energy to complete a
program than a non-redundant program because it takes 113% longer to run that program [1].

Basic MIPS 0

Basic MIPS 1

Basic MIPS 2

TMR Voter Memory

Figure 1. Triple Modular Redundancy (TMR) MIPS simplified block diagram.

Figure 2. Temporal Software Redundancy (TSR) MIPS simplified block diagram.

The AHR architecture adds a module called the AHR Controller to the TMR architecture as shown
in Figure 3. The AHR Controller is assumed to be immune from errors for this research just as the
TMR voter is assumed to be immune from errors. When AHR operates in TMR mode, the TMR
Voter and three processors operate normally and the signals between the TMR Voter and memory
and from the TMR Voter to the three processors are passed through combinational logic in the AHR
Controller with minimal delay. Figure 4 shows how signals flow when AHR is operating in TMR
mode by illustrating connected signals and modules that are operational in black and those that are
not in red. When operating in TSR mode, the AHR Controller turns off the TMR Voter and two of
the three processors. The remaining single processor communicates directly with memory by passing
signals through combinational logic in the AHR Controller with minimal delay. Figure 5 shows how
signals flow when AHR is operating in TSR mode by illustrating connected signals and modules that
are operational in black and those that are not in red.

AHR begins in TMR mode and switches to TSR mode after a predetermined number of TMR
instructions are completed without encountering an error. AHR remains in TSR mode so long as two
consecutive errors do not occur. Two errors are considered consecutive if a second error occurs after
TSR recovers from a first error and the second error occurs before TSR can create a new save/restore
point. If consecutive errors occur, AHR transitions to TMR when the second error is detected. If TSR
creates a new save/restore point before encountering a second error, the second error is not consecutive
and AHR continues in TSR mode. This approach gives TSR mode an opportunity to recover from
errors so long as the error rate is sufficiently low.

Electronics 2019, 8, 1266 6 of 48

%DVLF�0,36
�

%DVLF�0,36
�

%DVLF�0,36
�

705�9RWHU
$+5

&RQWUROOHU 0HPRU\

Figure 3. AHR MIPS simplified block diagram.

%DVLF�0,36
�

%DVLF�0,36
�

%DVLF�0,36
�

705�9RWHU
$+5

&RQWUROOHU 0HPRU\

Figure 4. AHR MIPS in TMR mode simplified block diagram with disabled portions in red.

%DVLF�0,36
�

%DVLF�0,36
�

%DVLF�0,36
�

705�9RWHU
$+5

&RQWUROOHU 0HPRU\

Figure 5. AHR MIPS in TSR mode simplified block diagram with disabled portions in red.

The processor upon which AHR, TMR, and TSR were based on past work and are based in this
work is the Basic MIPS processor which is a simplified MIPS32TM processor that only supports 33

Electronics 2019, 8, 1266 7 of 48

of the 168 MIPS32TM instructions [36]. The details of the Basic MIPS, TMR MIPS, and AHR MIPS
architectures are available in Air Force Institute of Technology technical reports [36–38].

AHR was shown to bridge the gap between these two methods by switching between TMR
and TSR so that it runs faster than TSR and uses less energy than TMR at the expense of running
slower than TMR and using more energy than TMR [1]. In past work, AHR started in TMR mode and
switched to TSR mode after TMR successfully completed 15,000 instructions without an error in an
error free simulation. This work will examine how AHR performs when the TMR to TSR switch point
is varied as well as how it performs when errors are injected into the simulation.

An appropriate error rate to be used for analysis was determined to be approximately one
Single Event Upset (SEU) per hour by conducting radiation experiments on an Intel Cyclone V Field
Programmable Gate Array (FPGA) at Sandia National Laboratories and performing post experimental
analysis. This is the expected average rate for a space vehicle using the Cyclone V FPGA over the life
of the mission. However, the SEU rate for real missions fluctuates as a result of orbital position with
reference to earth’s magnetic field lines (i.e., SEU rate increases over the South Atlantic Anomaly) and
as a result of solar weather (i.e., changes in solar activity impact the SEU rate). This FPGA was chosen
as a representative inexpensive commercial-off-the-shelf technology for past research and this research.
Based on the experiment and the knowledge that nearly every program used in the previous work and
the current work has a runtime of approximately 50ms or less, it is reasonable to expect no more than
one error per program run.

2. Materials and Methods

The only materials required for this work were a computer with a network connection and
MATLAB installed. Previous work implemented Basic, TMR, TSR, and AHR MIPS architectures in
Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL). Previous
work also made use of Mentor Graphics Questa Sim to simulate the VHDL architectures in order to
determine important timing parameters for use in MATLAB analyses to compute program runtimes on
the various architectures. These timing parameters include the time to complete individual instructions,
program start, program close, save/restore point creation, error recovery, and TMR to TSR transition.
The results of those simulations are used in the simulations and analyses in the current work. Previous
work also made use of the Intel PowerPlay Early Power Estimator for Cyclone IV and Cyclone V tool
to estimate the instantaneous power used by Basic, TMR, TSR, and AHR MIPS [1].

Section 2.1 will discuss the mechanism used to inject errors into Basic MIPS. Section 2.2 will
discuss when and where errors will be injected and provide the analysis tools necessary to calculate
program runtime when an error is injected.

2.1. Error Injection Mechanism

In previous works, fault injection was performed using software manipulation or direct electrical
injection for Hardware-in-the-Loop (HITL) simulations [16,17,23,24,27,28,35]. This research modifies
the Basic MIPS Datapath to directly inject errors into a specific general purpose register at a specific
point during program execution. This is software error injection because Basic MIPS is simulated
in software for this research. The General Purpose Registers (GPRs) were selected as the injection
points because general purpose registers account for 992 bits that are susceptible to SEUs in the
Basic MIPS architecture whereas the remaining susceptible registers account for only 68 bits. These
remaining registers are the program counter, instruction register, Finite State Machine (FSM) register,
and additional Datapath registers. If an SEU were to occur, it has a 94% chance of occurring in a GPR
as opposed to a 6% chance of occurring elsewhere. Additionally, EDDI is unable to detect and correct
all errors occurring in these other registers, so it was determined that it would be better to inject errors
into GPRs so that TSR and AHR operating in TSR could detect and correct the injected errors for a more
accurate performance comparison between TMR, TSR, and AHR. A detailed schematic showing how
the Basic MIPS Datapath was modified to incorporate GPR error injection is provided in Appendix A.

Electronics 2019, 8, 1266 8 of 48

If an error occurred in the program counter of TSR or AHR operating in TSR mode, the error
would cause program execution to jump backwards and repeat instructions or forwards and skip
instructions. If a backwards jump were performed, the impact would be increased runtime and energy
used to complete the program. Additionally, an incorrect result may be written to memory. If a forward
jump were performed, instructions would be skipped. In some instances, this might be detected if
one of two redundant instructions were skipped. In other instances, the illegal branch might go
undetected and several results that should have been written to memory might not be written to
memory. Additionally, program runtime and energy to complete the program would be reduced.

If an error occurred in the instruction register of TSR or AHR operating in TMR mode, the error
would simply be corrected by Basic MIPS internal mechanism if the error resulted in an invalid
instruction. If the error caused the instruction to change to another valid instruction, it might be
detected if the error affected the result of a duplicated instruction. This same error might result in
changing a store word instruction to something else and a result would fail to be written to memory
resulting in an undetected error. A store word instruction error might also cause a result to be written
to a wrong location in memory and this error would also go undetected. An instruction register error
might also create a branch instruction where none existed or change the address of a branch instruction.

A FSM register error could cause TSR or AHR operating in TSR mode to incorrectly jump to
another state which would most likely cause the processor to remain trapped in the incorrect state.
Processing would cease and the program would never complete. At present TSR and AHR have no
protection against such an error.

The other Datapath registers are used in determining whether to execute a program jump or not
when evaluating a branch instruction. An error in one of these registers would cause the incorrect
branch path to be taken. This could result in a longer program execution time with greater energy
usage or a shorter program execution time with reduced energy usage.

2.2. Error Injection Timing

Errors are injected into GPRs that are going to be stored to memory so that the TMR Voter and
the TSR comparison instruction will detect them and initiate error recovery operations. This is done
immediately prior to the TMR instruction to store a GPR to memory and immediately prior to a
TSR comparison instruction before storing a GPR to memory. Injecting an error for every store word
instruction for all 1000 programs used in the current work is not feasible. Instead, errors are selectively
injected to probe the minimum and maximum time and energy performance of the TMR, TSR, and
AHR architectures. In all three architectures, the best-case errors will minimize the amount of time and
energy expended on error detection and recovery and the worst-case errors will maximize the amount
of time and energy expended on error detection and recovery.

Errors intended to maximize the amount of time and energy needed to recover from an error
are injected immediately before Save/Restore Point creation. A TMR processor or AHR processor
in TMR mode has to perform error recovery, then repeat 10,000 instructions to return to the point at
which the error initially occurred. A TSR processor or AHR processor in TSR mode has to perform
error recovery, then repeat 250 main program loops to return to the point at which the error initially
occurred. Errors intended to minimize the amount of time and energy needed to recover from an
error are injected immediately after Save/Restore Point creation. For all processors, this minimizes
the number of instructions that must be repeated after error recovery to return to the point at which
the error initially occurred. For a more detailed discussion concerning when errors are injected and
the calculations performed to determine the program runtime for each type of error, please refer to
Appendix B.

The 1000 programs used in this work were randomly generated and exercise the full range of
Basic MIPS instructions and GPRs. Individual programs may not exercise the full range of Basic MIPS
instructions or utilize all GPRs; however, some programs utilize most, if not all of the Basic MIPS
instructions and some programs utilize all the GPRs.

Electronics 2019, 8, 1266 9 of 48

2.3. Energy Used When Errors Are Injected

The energy computations are much simpler than the timing computations. The energy to complete
a TMR or TSR MIPS program is the time to complete the TMR or TSR MIPS programs multiplied by
the TMR or TSR MIPS instantaneous power respectively. The time to complete AHR programs is the
time spent in TMR mode multiplied by the TMR MIPS instantaneous power plus the time spent in TSR
mode multiplied by the TSR MIPS instantaneous power. For a more detailed discussion concerning
the calculations performed to determine the energy used to complete a program for each type of error,
please refer to Appendix C.

3. Results

This section examines the results of software simulations and computational analysis when errors
are injected as described in Sections 2.2 and 2.3.

Figure 6 shows the average time and energy to complete 1000 programs for each error type in
each architecture (including no error injection) This figure illustrates how AHR MIPS bridges the gap
between TMR MIPS and TSR MIPS performance. The AHR MIPS TMR Type A and Type B-Best errors
appear to fall on a line between the TSR MIPS Best-case error and TMR MIPS Type A and Type B-Best
errors. A similar pattern appears for AHR MIPS TMR Type B-Worst and TSR Worst-case errors which
appear to nearly fall on a line between the TMR Type B-Worst and TSR Worst-case errors. However,
this figure does not tell the entire story as the best-case, worst-case, early, and later errors define
maximum and minimum bounds for AHR MIPS performance in the presence of errors.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type A Error

TMR MIPS Type B-Best Error

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Best-Case Error

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Early Error

AHR MIPS TMR Type A Late Error

AHR MIPS Type B-Best Early Error

AHR MIPS Type B-Best Late Error

AHR MIPS Type B-Worst Early Error

AHR MIPS Type B-Worst Late Error

AHR MIPS TSR Best-Case Error

AHR MIPS TSR Worst-Case Error

AHR TMR Type A Late

AHR TMR Type B-Best Late

AHR, AHR TMR Type A Early,

AHR TMR B-Best Early, AHR TSR Best-Case

TMR MIPS, TMR MIPS Type A, TMR MIPS Type B-Best

TMR MIPS Type B-Worst

TSR MIPS Worst-Case

AHR TSR Worst-Case

AHR Type B-Worst Early, AHR Type B-Worst Late

TSR MIPS, TSR MIPS Best-Case

AHR TMR Type A Late

AHR TMR Type B-Best Late

AHR, AHR TMR Type A Early,

AHR TMR B-Best Early, AHR TSR Best-Case

TMR MIPS, TMR MIPS Type A, TMR MIPS Type B-Best

TMR MIPS Type B-Worst

TSR MIPS Worst-Case

AHR TSR Worst-Case

AHR Type B-Worst Early, AHR Type B-Worst Late

TSR MIPS, TSR MIPS Best-Case

AHR TMR Type A Late

AHR TMR Type B-Best Late

AHR, AHR TMR Type A Early,

AHR TMR B-Best Early, AHR TSR Best-Case

TMR MIPS, TMR MIPS Type A, TMR MIPS Type B-Best

TMR MIPS Type B-Worst

TSR MIPS Worst-Case

AHR TSR Worst-Case

AHR Type B-Worst Early, AHR Type B-Worst Late

TSR MIPS, TSR MIPS Best-Case

AHR TMR Type A Late

AHR TMR Type B-Best Late

AHR, AHR TMR Type A Early,

AHR TMR B-Best Early, AHR TSR Best-Case

TMR MIPS, TMR MIPS Type A, TMR MIPS Type B-Best

TMR MIPS Type B-Worst

TSR MIPS Worst-Case

AHR TSR Worst-Case

AHR Type B-Worst Early, AHR Type B-Worst Late

TSR MIPS, TSR MIPS Best-Case

AHR TMR Type A Late

AHR TMR Type B-Best Late

AHR, AHR TMR Type A Early,

AHR TMR B-Best Early, AHR TSR Best-Case

TMR MIPS, TMR MIPS Type A, TMR MIPS Type B-Best

TMR MIPS Type B-Worst

TSR MIPS Worst-Case

AHR TSR Worst-Case

AHR Type B-Worst Early, AHR Type B-Worst Late

TSR MIPS, TSR MIPS Best-Case

Figure 6. Averaged results of software simulation of all errors: energy vs. time to complete.

Figure 7 shows the performance bounds as bounding boxes when the TMR to TSR transition point
occurs at 15,000 instructions. Note that the points plotted in this figure are the same as those plotted in
Figure 6 and represent the average program completion times; however, the TMR Type B-Best, TSR
Best-Case , AHR TMR Type A Early , AHR TMR Type B-Best Early, and AHR TSR Best-Case errors
have been omitted from this plot. The TMR Type B-Best case error result was nearly identical to the
TMR MIPS with no error result. The TSR MIPS Best-Case error result was nearly identical to the TSR
MIPS with no error result. The AHR TMR Type A Early, AHR TMR Type B-Best Early, and AHR TSR
Best-Case error results were nearly identical to the AHR MIPS with no error result. The bounding

Electronics 2019, 8, 1266 10 of 48

boxes indicate that the average program completion time should fall somewhere within the bounding
box when errors are present.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 7. Average performance bounds for AHR MIPS with a TMR to TSR point at 15,000 instructions.

The corners of the bounding box encompassing the TMR MIPS Type B-Best and Type B-Worst
errors is shown as a dotted blue line. This box indicates that average program completion time and
energy usage for a TMR MIPS program encountering a Type B error will end up within this box and it
nearly overlaps the second box indicated by a solid blue line. The second box is used to outline the
average performance of TMR MIPS when errors may or may not be present. It includes the no error,
TMR Type A, and TMR Type B errors.

The corners of the bounding box encompassing the TSR MIPS Best- and Worst-case errors is
shown as a red dashed line with the red square and the red diamond at opposing corners to indicate
the average Best- and Worst-case error program runtime and energy usage. A second box with a red
solid line is used to outline the average performance of TSR MIPS when errors may or may not be
present. It includes the no error, TSR Best-case, and TSR Worst-case errors. Once again, these boxes
almost overlap one another.

The corners of the bounding box encompassing the AHR MIPS TMR Type A Early and Late errors
is shown as a gray dashed line to indicate how a program will perform in terms of time and energy
usage on average when a TMR Type A error will occur. Similarly, the purple dashed line indicates the
average performance of a program experiencing a TMR Type B-Best case error. The orange dashed line
indicates the average performance of a program experiencing a TMR Type B-Worst error, however,
no such box is visible in this figure as the TMR Type B-Worst Early and Late errors are identical in this
figure. A dark blue dashed line bounding box extends from the left most plus sign (+) to the right most
“X” and from the AHR MIPS no error (green circle) to the top most “X” to show the average bounds
of a AHR MIPS program that encounters any TMR Type B error. The dashed teal line indicates the
bounds of a AHR MIPS TSR error. Finally, the solid green line indicates the average bounds for a AHR
MIPS program experiencing any TMR error, TSR error, or no error.

Note that the portion of the bounding box extending to the left of the average AHR MIPS no
error runtime and energy usage does not necessarily indicate that an error could occur such that the
runtime would decrease without a change in energy usage. It should be expected that a decrease in
runtime would correspond to a greater number of instructions being performed in TMR mode and

Electronics 2019, 8, 1266 11 of 48

a resulting energy increase; however, there is insufficient analysis at this time to determine a more
precise boundary region and the creation of such a region is left for future work.

Now, because the bounding boxes indicate that the average time and energy used to complete a
program in the presence of errors should fall within the boxes, they should not be treated as program
specific bounding boxes. It would be trivial to create program specific bounding boxes, but these are
not shown here for brevity. However, the next figures will begin to show the versatility of the AHR
MIPS approach as the TMR to TSR transition point is varied.

Figures 8–15 show what happens to the bounding boxes as the TMR to TSR transition point
increases from 11,000, to 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, and 80,000 instructions. These
figures are shown to illustrate the flexibility of AHR MIPS as the TMR to TSR transition point is
varied. A space vehicle designer, mission planner, or operator can change the TMR to TSR transition
point depending on the program being run on the processor, radiation environment, processing speed
requirements, power requirements, and other mission needs. For example, it might be desirable to
operate in TMR in a low radiation environment for the purpose of maximizing processing speed when
energy usage is not a concern. This is achieved by setting the TMR to TSR transition point to such a
large value that the TMR to TSR transition never occurs. Alternatively, it might be desirable to operate
in a low power mode regardless of the external radiation environment and its potential impact on
registers other than GPRs. This is achieved by setting the TMR to TSR transition point to zero so
that AHR switches from TMR back to TSR as quickly as possible after AHR suffers multiple errors in
TSR mode.

As the transition point increases, The overall bounding box begins to grow, then shrinks down to
match the TMR MIPS bounding box. Note that in some of these figures, the AHR MIPS TMR Type
B-Worst Early and Late errors do not always coincide. Note also how the size and shapes of the smaller
bounding boxes change. As the TMR to TSR transition point increases, the AHR MIPS TMR Type
B-Best bounding box increases in size, then decreases in size until it becomes nonexistent. The AHR
MIPS TMR Type B-Worst bounding box increases in size from nonexistence, then decreases in size
until becoming nonexistent again. The AHR MIPS TMR Type A box also increases then decreases in
size until becoming nearly nonexistent. The AHR MIPS TSR box decreases in size until becoming
nearly nonexistent.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 8. Average performance bounds for AHR MIPS with a TMR to TSR point at 11,000 instructions.

Electronics 2019, 8, 1266 12 of 48

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500
E

n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 9. Average performance bounds for AHR MIPS with a TMR to TSR point at 20,000 instructions.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 10. Average performance bounds for AHR MIPS with a TMR to TSR point at 30,000 instructions.

While these figures represent the average performance for 1000 programs, they have greater
utility when created for a specific program to show how the expected program runtime and energy
usage change as the TMR to TSR transition point is changed. A satellite designer, mission planner,
or operator could use these to determine the best transition point based on the needs of the system.
For example, the TMR to TSR transition point could be selected in order to meet certain performance
criteria such as staying under maximum runtime or energy constraints.

Electronics 2019, 8, 1266 13 of 48

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500
E

n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 11. Average performance bounds for AHR MIPS with a TMR to TSR point at 40,000 instructions.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 12. Average performance bounds for AHR MIPS with a TMR to TSR point at 50,000 instructions.

Figure 16 shows the same things as Figure 6, but allows the TMR to TSR transition point to vary
from 11,000 to 80,000 instructions in increments of 1000. This figure also provides a slightly different
view to the bounding boxes in the previous figures. It is most useful in visualizing how the average
program runtime and energy usage for each error scenario changes as the TMR to TSR transition
point changes. Curves for all AHR MIPS error scenarios, and the no error scenario, become evident.
When there are only 11,000 instructions completed in TMR before the TMR to TSR transition point,
AHR MIPS behaves much more closely to TSR MIPS. As the transition point moves towards 80,000
instructions, the AHR MIPS results begin moving up and to the left until they coincide with the TMR
MIPS results. Note that the AHR MIPS TSR Best- and Worst-case scenarios collapse to the no error
solution for TMR MIPS when very little, if any time is spent in TSR MIPS because the TMR to TSR

Electronics 2019, 8, 1266 14 of 48

transition point is no longer reached during the duration of most programs. Similarly, the AHR MIPS
TMR Type B-Worst scenarios converge to the TMR Type B-Worst error scenario.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 13. Average performance bounds for AHR MIPS with a TMR to TSR point at 60,000 instructions.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 14. Average performance bounds for AHR MIPS with a TMR to TSR point at 70,000 instructions.

Electronics 2019, 8, 1266 15 of 48

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500
E

n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS TMR Type B-Best Late Error

AHR MIPS TMR Type B-Worst Early Error

AHR MIPS TMR Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 15. Average performance bounds for AHR MIPS with a TMR to TSR point at 80,000 instructions.

13 14 15 16 17 18 19 20 21 22 23

Time to Complete Program(ms)

150

200

250

300

350

400

450

500

E
n
e
rg

y
 t
o
 C

o
m

p
le

te
 P

ro
g
ra

m
(µ

 J
)

TMR MIPS

TMR MIPS Type B-Worst Error

TSR MIPS

TSR MIPS Worst-Case Error

AHR MIPS

AHR MIPS TMR Type A Late Error

AHR MIPS Type B-Best Late Error

AHR MIPS Type B-Worst Early Error

AHR MIPS Type B-Worst Late Error

AHR MIPS TSR Worst-Case Error

Figure 16. TMR to TSR transition varying from 11,000 to 80,000 instructions: energy vs. time to
complete.

Another interesting comparison is to look at the average percent difference in runtime and
energy usage for each error scenario and no error scenario when compared to Basic MIPS with no
errors. The average percent difference for the no error scenarios were given in the previous work [1].
The average percent difference for the programs experiencing errors are given in Equations (1)–(26).

PDTime TMR ErrA v Basic = · · ·

∑
Nprograms
n=1

[
TTMR ErrA(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(1)

Electronics 2019, 8, 1266 16 of 48

PDTime TMR ErrB Best v Basic = · · ·

∑
Nprograms
n=1

[
TTMR ErrB Best(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(2)

PDTime TMR ErrB Worst v Basic = · · ·

∑
Nprograms
n=1

[
TTMR ErrB Worst(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(3)

PDTime TSR Best v Basic = · · ·

∑
Nprograms
n=1

[
TTSR Best(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(4)

PDTime TSR Worst v Basic = · · ·

∑
Nprograms
n=1

[
TTSR Worst(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(5)

PDTime CTMR A Early v Basic = · · ·

∑
Nprograms
n=1

[
TCTMR A Early(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(6)

PDTime CTMR A Late v Basic = · · ·

∑
Nprograms
n=1

[
TCTMR A Late(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(7)

PDTime CTMR B Best Early v Basic = · · ·

∑
Nprograms
n=1

[
TCTMR B Best Early(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(8)

PDTime CTMR B Best Late v Basic = · · ·

∑
Nprograms
n=1

[
TCTMR B Best Late(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(9)

PDTime CTMR B Worst Early v Basic = · · ·

∑
Nprograms
n=1

[
TCTMR B Worst Early(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(10)

PDTime CTMR B Worst Late v Basic = · · ·

∑
Nprograms
n=1

[
TCTMR B Worst Late(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(11)

PDTime CTSR Best v Basic = · · ·

∑
Nprograms
n=1

[
TCTSR Best(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(12)

Electronics 2019, 8, 1266 17 of 48

PDTime CTSR Worst v Basic = · · ·

∑
Nprograms
n=1

[
TCTMR Worst(n)− TBasic MIPS(n)

TBasic MIPS(n)
× 100%

]
Nprograms

(13)

PDEnergy TMR ErrA v Basic = · · ·

∑
Nprograms
n=1

[
ETMR ErrA(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(14)

PDEnergy TMR ErrB Best v Basic = · · ·

∑
Nprograms
n=1

[
ETMR ErrB Best(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(15)

PDEnergy TMR ErrB Worst v Basic = · · ·

∑
Nprograms
n=1

[
ETMR ErrB Worst(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(16)

PDEnergy TSR Best v Basic = · · ·

∑
Nprograms
n=1

[
ETSR Best(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(17)

PDEnergy TSR Worst v Basic = · · ·

∑
Nprograms
n=1

[
ETSR Worst(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(18)

PDEnergy CTMR A Early v Basic = · · ·

∑
Nprograms
n=1

[
ECTMR A Early(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(19)

PDEnergy CTMR A Late v Basic = · · ·

∑
Nprograms
n=1

[
ECTMR A Late(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(20)

PDEnergy CTMR B Best Early v Basic = · · ·

∑
Nprograms
n=1

[
ECTMR B Best Early(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(21)

PDEnergy CTMR B Best Late v Basic = · · ·

∑
Nprograms
n=1

[
ECTMR B Best Late(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(22)

PDEnergy CTMR B Worst Early v Basic = · · ·

∑
Nprograms
n=1

[
ECTMR B Worst Early(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(23)

Electronics 2019, 8, 1266 18 of 48

PDEnergy CTMR B Worst Late v Basic = · · ·

∑
Nprograms
n=1

[
ECTMR B Worst Late(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(24)

PDEnergy CTSR Best v Basic = · · ·

∑
Nprograms
n=1

[
ECTSR Best(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(25)

PDEnergy CTSR Worst v Basic = · · ·

∑
Nprograms
n=1

[
ECTSR Worst(n)− EBasic MIPS(n)

EBasic MIPS(n)
× 100%

]
Nprograms

(26)

The average percent difference equations were used to calculate the average percent difference
for all programs experiencing errors and no errors when the TMR to TSR transition point from 11,000
to 80,000 in increments of 1000. The results for the runtime calculations are shown in Figure 17 and the
results for energy usage calculations are shown in Figure 18. These figures really highlight how AHR
MIPS runtime and energy performance changes when compared to Basic MIPS as the TMR to TSR
transition point changes. As in some of the previous figures, the TMR Type A and TMR Type B-Best
error results are omitted because they are nearly identical to the TMR no error results. The same is
true for the TSR Best error results because they are identical to the TSR no error results. Additionally,
the AHR TMR Type A Early, AHR TMR Type B-Best Early, and AHR TSR Best error results have been
omitted because they are nearly identical to the AHR no error results. The first thing to note from
these figures is how the AHR MIPS no error, AHR TMR Type A, AHR TMR Type B-Best, AHR TSR
Best, and AHR TSR Worst average percent differences approach the TMR average percent difference
as the number of instructions before the TMR to TSR transition increases. This is consistent with prior
results because AHR MIPS performance is nearly identical to TMR MIPS performance as the number
of instructions that AHR MIPS processes in TSR mode approaches zero and nearly all instructions are
processed in TMR mode. Additionally, the AHR MIPS TMR Type B-Worst average percent differences
approach the TMR Type B-Worst average percent difference, which is also expected for the same
reasons just given.

There are a few other things to note from the percent difference figures. The first is that programs
experiencing an AHR TMR Type A Late error complete faster than programs experiencing an AHR
TMR Type B-Best Late error. Both of these complete faster than AHR MIPS programs experiencing no
error, AHR TMR Type A Early, AHR TMR Type B-Best Early, and AHR TSR Best-case errors. The no
error, AHR TMR Type A Early, AHR TMR Type B-Best Early, and AHR TSR Best-case error scenarios
all take less time to complete than programs experiencing AHR TMR Type B-Worst Early, AHR TMR
Type B Worst Late, and AHR TSR Worst-case errors. Programs experiencing AHR TMR Type B-Worst
Late errors always complete faster than those experiencing AHR TMR Type B-Worst Early errors.
AHR MIPS programs experiencing TSR Worst-case errors have the worst runtime when the TMR to
TSR transition point is under about 30,000, but runs faster than programs experiencing TMR Type
B-Worst Early errors when the transition point is greater than 31,000 instructions and faster than
programs experiencing TMR Type B-Worst Late errors when the transition point is greater than about
37,000 instructions.

Electronics 2019, 8, 1266 19 of 48

1 2 3 4 5 6 7 8

TMR to TSR Transition Point Instruction Count ×10
4

60

80

100

120

140

160

180

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 T

im
e
 f
ro

m
 B

a
s
ic

 M
IP

S
 w

it
h
 N

o
 E

rr
o
rs

TMR

TMR Type B-Worst

TSR

TSR Worst

AHR MIPS

AHR MIPS TMR Type A Late

AHR MIPS TMR Type B-Best Late

AHR MIPS TMR Type B-Worst Early

AHR MIPS TMR Type B-Worst Late

AHR MIPS TSR Worst

Figure 17. AHR MIPS TMR to TSR transition varying from 11,000 to 80,000 instructions: energy vs.
time to complete.

1 2 3 4 5 6 7 8

TMR to TSR Transition Point Instruction Count ×10
4

100

150

200

250

300

350

400

450

500

550

600

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 E

n
e
rg

y
 f
ro

m
 B

a
s
ic

 M
IP

S
 w

it
h
 N

o
 E

rr
o
rs

TMR

TMR Type B-Worst

TSR

TSR Worst

AHR MIPS

AHR MIPS TMR Type A Late

AHR MIPS TMR Type B-Best Late

AHR MIPS TMR Type B-Worst Early

AHR MIPS TMR Type B-Worst Late

AHR MIPS TSR Worst

Figure 18. AHR MIPS TMR to TSR transition varying from 11,000 to 80,000 instructions: energy vs.
time to complete.

AHR MIPS programs experiencing no error, TMR Type A Early, TMR Type B-Best Early, and TSR
Best-case all take about the same amount of energy to complete and use less energy than an AHR
MIPS program experiencing any other type of error. AHR MIPS programs experiencing TMR Type
B-Worst Late errors use the most energy followed by programs experiencing TMR Type B-Worst Early
errors, then TMR Type A Late errors, then TSR Worst-case errors.

Electronics 2019, 8, 1266 20 of 48

One final thing to note are the jump discontinuities in the AHR MIPS TMR Type B-Best Late
and AHR MIPS TMR Type B-Worst Late timing and energy percent differences. These are a direct
result of the TMR to TSR transition point moving passed one of the TMR save/restore point creation
times which occur every 10,000 instructions. Note that these discontinuities occur as the TMR to
TSR transition point passes 20,000, 30,000, and 40,000 instructions. This is because these late errors
go from having a minimal impact when the TMR to TSR transition point occurs immediately before
a save/restore point creation to a maximum impact when the TMR to TSR transition point occurs
immediately after a save/restore point creation.

Figures 19 and 20 are essentially derivative plots of Figures 17 and 18 except that they use the
average time and energy results rather than the percent differences. Each point on these graphs
represent the difference in average time and average energy to complete 1000 different programs
with the given error type (or no error at all) from one AHR transition point value to the previous
AHR transition point value where these transition points started at 11,000 instructions, ended at
80,000 instructions, and had step sizes of 1000 instructions. Plots like these may help a mission planner
determine the most optimal point, in terms of processing speed and energy usage, at which to transition
AHR from TMR mode to TSR mode.

1 2 3 4 5 6 7 8

TMR to TSR Transition Point Instruction Count ×10
4

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

∆
 T

im
e
(m

s
)/
∆

 T
ra

n
s
it
io

n
 P

o
in

t

AHR MIPS

AHR MIPS TMR Type A Late

AHR MIPS TMR Type B-Best Late

AHR MIPS TMR Type B-Worst Early

AHR MIPS TMR Type B-Worst Late

AHR MIPS TSR Worst

Figure 19. Time Difference Between Successive Steps of TMR to TSR Transition Point When Varying
from 11,000 to 80,000 in Steps of 1000.

Electronics 2019, 8, 1266 21 of 48

1 2 3 4 5 6 7 8

TMR to TSR Transition Point Instruction Count ×10
4

-10

0

10

20

30

40

50

60
∆

 E
n
e
rg

y
(µ

 J
)/
∆

 T
ra

n
s
it
io

n
 P

o
in

t

AHR MIPS

AHR MIPS TMR Type A Late

AHR MIPS TMR Type B-Best Late

AHR MIPS TMR Type B-Worst Early

AHR MIPS TMR Type B-Worst Late

AHR MIPS TSR Worst

Figure 20. Energy difference between successive steps of TMR to TSR transition point when varying
from 11,000 to 80,000 in steps of 1000.

4. Discussion

AHR uses less energy than TMR and takes less time than TSR to complete programs when errors
are injected. Additionally, changing the TMR to TSR transition point allows space vehicle designers,
mission planners, and operators the flexibility to select operating points that meet mission processing
speed and energy usage requirements not only under optimal error free conditions, but also in the
worst-case error scenarios. This was demonstrated through simulation results shown in Section 3
where the time to complete programs varied between the TMR time to complete a program and
the TSR time to complete a program as the TMR to TSR transition point was varied. This was also
shown as the energy used to complete programs varied between the TMR energy used to complete a
program and the TSR energy used to complete a program. The figures illustrated how a space vehicle
designer, mission planner, or operator could choose a TMR to TSR transition point that meets the
specific needs of their mission. As previously noted, if a mission needed to maximize processing speed
at the expense of increased energy usage regardless of the external radiation environment, the TMR to
TSR transition point could be set to such an arbitrarily large value that AHR always remains in TMR
mode. In contrast, if a mission needs to minimize energy usage at the expense of slower processing
speeds regardless of the radiation environment, the TMR to TSR transition point could be set to zero to
ensure that AHR remains in TSR mode. For mission needs in between these two extremes, the TMR to
TSR transition point could be set to a value that meets certain timing and energy performance criteria
while accounting for the radiation environment and its impact on processing speed and energy usage.
Additionally, the transition point can be program specific for a processor entrusted with running
many different programs so that the transition point is optimized for each program. Furthermore, the
transition point can be varied at any time over the course of the mission. It could even be changed
during a single orbit to ensure an optimal value at all times when radiation levels and mission needs
are taken into account.

Future work will implement TMR, TSR, and AHR on a Cyclone V FPGA to determine how they
perform under error free and error injection conditions in terms of time and energy performance. This
will be done in an effort to verify that this method works in application and not just in the realm of
simulation and analysis.

Electronics 2019, 8, 1266 22 of 48

Another area for future work is expanding AHR to include more redundancy methods such as
dual modular redundancy, N-modular redundancy, and advanced TSR methods that can detect and
correct program counter errors, which EDDI is unable to detect.

Author Contributions: Conceptualization, N.H.; methodology, N.H.; software, N.H.; validation, N.H., S.G., T.C.
and A.B.; formal analysis, N.H.; investigation, N.H.; resources, N.H.; data curation, N.H. and J.P.; writing, original
draft preparation, N.H.; writing, review and editing, N.H. and S.G.; visualization, N.H.; supervision, S.G.; project
administration, S.G.; funding acquisition, T.C.

Funding: No sponsor funding provided for this research. Authors are United States Government employees and
compensated by the government.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to
publish the results.

Disclaimer: The views expressed in this paper are those of the authors, and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the U.S. Government. This document has been
approved for public release; distribution unlimited, Case #88ABW-2019-4400.

Abbreviations

The following abbreviations are used in this manuscript:

AHR Adaptive-Hybrid Redundancy
EDDI Error Detection by Duplicated Instructions
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPR General Purpose Register
TMR Triple Modular Redundancy
TSR Temporal Software Redundancy
SET Single Event Transient
SEU Single Event Upset

Appendix A. Basic MIPS Datapath Error Injection Schematics

Errors are injected into Basic MIPS GPRs by adding hardware to the Basic MIPS Datapath. The
Basic MIPS Datapath is shown in Figure A1. The modified Basic MIPS Datapath that enables error
injection is shown in Figure A2 and changes are denoted in red. The Error_Inject module overrides the
inputs to the GPR_Bank at a predetermined program counter value and loop count value when Basic
MIPS is in state zero. The Error_Inject module injects an error at this predetermined time by inverting
the value of a single predetermined bit of a predetermined register in the GPR_Bank.

Electronics 2019, 8, 1266 23 of 48

LB0(0B287
LBGDWD RB4��
 RB4��

 RB4��
LBVHO RB4��

*35B%DQN

�

RB57B'7
ZB$/8B5(68/7

LB6725(B)520B0(0

LBLPP�������

LB57B6(/

�

LB5(*B6(/

��

�

��

�

��

LB56B6(/

�

LB57B6(/

LBLPP�������

LB56B'7 RB$/8B5HVXOW

LB57B'7

LB5'B'7

LBLPP

LB3&

LB$/8B65&B$

LB$/8B65&B%

LB$/8B,19B%

LB&203B6(/

LB29(5B&75/

LB$/8B287387

LBXQVLJQHG

LBRYHUIORZ

LBLPPBH[WHQG

$/8B&25(

LBLPP

LB$/8B65&B$

LB$/8B65&B%

LB$/8B,19B%

LB&203B6(/

LB29(5B&75/

LB$/8B287387

LBXQVLJQHG

LBRYHUIORZ

LBLPPBH[WHQG

ZB$/8B5(68/7

�

�

LB0(0B$''5(66B6(/

LBGDWD���RB4

LBHQ

3&�5HJLVWHU

ZB3&B�

�

�

�

�

�

LB5(*B6(/

LB3&B(1

�

�

�

�

�

�

�

� ZB$/8B5(68/7

LB$ ��������RB6

LB% ��������RB&

LB&

&DUU\B6HOHFWB$GGHU��B6&

�

�

ZB3&B�
������ ������

�����

RB0(0B$''5(66

�

�

�

�

�

�

Figure A1. Basic MIPS Datapath Schematic.

LB0(0B287 LBGDWD RB4��
 RB4��

 RB4��

 RB4��
LBVHO RB4��

*35B%DQN
RB57B'7 ZB$/8B5(68/7

LB6725(B)520B0(0
��

�

��

�

��

LB56B6(/

�

LB57B6(/

LBLPP�������

LB56B'7 RB$/8B5HVXOW

LB57B'7

LB5'B'7

LBLPP

LB3&

LB$/8B65&B$

LB$/8B65&B%

LB$/8B,19B%

LB&203B6(/

LB29(5B&75/

LB$/8B287387

LBXQVLJQHG

LBRYHUIORZ

LBLPPBH[WHQG

$/8B&25(

LBLPP

LB$/8B65&B$

LB$/8B65&B%

LB$/8B,19B%

LB&203B6(/

LB29(5B&75/

LB$/8B287387

LBXQVLJQHG

LBRYHUIORZ

LBLPPBH[WHQG

ZB$/8B5(68/7

�

�

LB0(0B$''5(66B6(/

LBGDWD���RB4

LBHQ

3&�5HJLVWHU

ZB3&B�

�

�

�

�

�

LB5(*B6(/

LB3&B(1

�

�

�

�

�

�

�

� ZB$/8B5(68/7

LB$ ��������RB6

LB% ��������RB&

LB&

&DUU\B6HOHFWB$GGHU��B6&

�

�

ZB3&B�
������ ������

�����

RB0(0B$''5(66

�

�

�

LBLPP�������

LB57B6(/

�

LB5(*B6(/

�

�

�

�

�

�

LBGDWD��� �������������������RBGDWD

LBVWDWH ���������RB5(*B6(/

LB3& ������������������RBHUURU

LBORRSBFRXQW

(UURU�,QMHFW

�

�

LBVWDWH

Figure A2. Basic MIPS Datapath With Error Injection Schematic.

Appendix B. Error Injection Timing and Calculations

TMR errors are divided into single and multiple processor errors. A single processor error, called
a TMR Type A error, recovers to the same instruction at which the initial error occurred as shown in
Figure A3. A multiple processor error, called a TMR Type B error, occurs when all three processors
disagree and all three processors are reset and restored to a previously saved state called a save/restore

Electronics 2019, 8, 1266 24 of 48

point. This is shown in Figure A4. In this figure, the acronym SRP denotes points in the TMR program
execution at which a save/restore point is created. The TMR Type A error is one example of a best-case
TMR error. A TMR Type B error that occurs immediately after creation of a save/restore point is
another example of a best-case TMR error because it minimizes the number of instructions that must
be recomputed to fully recover from the error. This is called a TMR Type B-Best error. The worst-case
TMR error occurs when a Type B error occurs during save/restore point creation and maximizes the
number of instructions to be recomputed to fully recover from the error. This is called a TMR Type
B-Worst error. The Type B-Best and Type B-Worst errors are shown in Figure A5.

6WDUW (QG 653 653 653 653

%DVLF�0,36��

%DVLF�0,36��

%DVLF�0,36��

7\SH�$�(UURU

7\SH�$
(UURU

5HFRYHU\

653

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

Figure A3. TMR MIPS Type A error timing diagram.

6WDUW (QG 653 653 653

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

653

%DVLF�0,36��

%DVLF�0,36��

%DVLF�0,36��

7\SH�%�(UURU

7\SH�%
(UURU

5HFRYHU\

653

Figure A4. TMR MIPS Type B error timing diagram.

The runtime for a TMR MIPS Type A error is given in Equation (A1) where TTMR MIPS is the time
for TMR MIPS to complete a program in the absence of an error from the previous work [1], TTMR ttdA
is error detection time, TTMR recA is the Type A recovery time, TTMR retA is the time to return to the
instruction at which the error occurred, and TTMR repA is the time required to repeat the instruction at
which the error occurred. The last four of these values are determined from simulation.

TTMR ErrA = TTMR MIPS + TTMR ttdA + TTMR recA + TTMR retA + TTMR repA (A1)

The runtime for TMR MIPS Type B Best-case error is given in Equation (A2) where TTMR ttdB is the
error detection time, TTMR recB is the Type B recovery time, TTMR retB Best is the time to re-accomplish
the instructions between the last completed save/restore point and the instruction at which the error
occurred. The time to detect the error and recover from the error are determined from simulation, but
the time to return from the error to the point at which the error occurred is determined by analysis.

TTMR ErrB Best = TTMR MIPS + TTMR ttdB + TTMR recB + TTMR retB Best (A2)

Electronics 2019, 8, 1266 25 of 48

While there are many locations in a program where a TMR Type B-Best error may occur, the
absolute Best-case error is the one that minimizes the number of instructions between the return
from save/restore point creation and the store word instruction following it. In order to determine
which pairing of save/restore point creation and store word instructions has the shortest distance
between them, the loop count and instruction index of every save/restore point creation and store word
instruction must be determined. The store word instruction indices are simply located by examining
the program. Equation (A3) shows how to calculate where save/restore point creation occurs where
SITMR is a vector containing the instruction index in the TMR program where save/restore points are
created, SLTMR is a vector containing the program loop count values where the save/restore points
are created, and STTMR is a vector containing the amount of time from the beginning of the program
to the points at which save/restore points are created. STTMR is not used now in calculating the TMR
Type B-Best program completion time, but will be used shortly.

f or m = 0 to nSRP − 1
i f m = 0

SITMR(m + 1) = 1
SLTMR(m + 1) = 0
STTMR(m + 1) = 0

else
SITMR(m + 1) = mod(m · nsave − nTMR init, NTMR) + nTMR_init + 1

SLTMR(m + 1) =
⌊

m · nsave − nTMR init
nTMR

⌋
Tadd = ∑

SITMR(m+1)−1
n=nTMR init+1 tITMR n

STTMR(m + 1) = TTMR init + TTMR loop · SLTMR(m + 1) + Tadd + · · ·
(m− 1) · TTMR SRP

end
end

(A3)

6WDUW (QG 653 653

%DVLF�0,36��

%DVLF�0,36��

%DVLF�0,36��

7\SH�%�(UURU�%HVW-&DVH

7\SH�%
(UURU

5HFRYHU\

653

7\SH�%�(UURU�:RUVW-&DVH

7\SH�%
(UURU

5HFRYHU\

653 653

0LQLPXP�
5H-ZRUN

0D[LPXP�
5H-ZRUN

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

Figure A5. TMR MIPS Type B Best- and Worst-Case error timing diagram.

The next step is to compute all possible differences (SD1) between save/restore point indices and
store word indices as shown in Equation (A4) where SIT

TMR is the transpose of SITMR. This formula
states SD1 is a matrix of row vectors such that the nth row subtracts each value of SITMR from the nth

Electronics 2019, 8, 1266 26 of 48

SWTMR value. Note that SWTMR is a vector containing the indices of every store word instruction in
a program.

f or n = 1 to length(SWTMR)

SD1(n, :) = SWTMR(n)− SIT
TMR

end
(A4)

Next, because some of the values in SD1 may be negative because a save/restore point may occur
at the end of one loop and the next store word may occur at the beginning of the next loop, SD1 is
modified so that all values are positive as shown in Equation (A5). In this equation, the “<” and
“>” operators are logical operators that populate a matrix with ones or zeros depending on whether
the individual matrix entries are less than or greater than the argument to the right of the operator.
The term SD1. · (SD1 > 0) creates a matrix with all the positive values of SD1 and where all the
negative values of SD1 are set to zero (the “.·” operator denotes element-wise multiplication). The term
SD1. · (SD1 < 0) creates a matrix with all the negative values of SD1 and where all the positive
values of SD1 are set to zero. The term NTMR · (SD1 < 0) creates a matrix where all the negative
values of SD1 are replaced by NTMR and all the positive values of SD1 are set to zero. The term
SD1. · (SD1 < 0) + NTMR · (SD1 < 0) creates a matrix where all the negative values of SD1 are
replaced by the positive number of instructions from the save/restore point at the end of a loop to the
store word instruction at the beginning of the next loop and accounts for the fact that code execution
jumped from the end of the loop back to the start of the loop. Finally, SD2 contains all the positive
instruction distances between save/restore points and the store words following them.

SD2 = SD1. · (SD1 > 0) + (SD1. · (SD1 < 0) + NTMR · (SD1 < 0)) (A5)

The next step is to determine the minimum distance between a save/restore point creation and
a store word instruction. Equation (A6) is used to calculate the minimum distance where min is a
function that returns the minimum value of each column vector of a matrix in the row vector a1 and
returns the index of each minimum value in each column vector in the row vector b1. For a vector,
min returns the minimum value in c1 and the index of the minimum value in d1. The value d1 is as
an index into the columns of SD2 and tells which column contains the minimum distance between
a save/restore point and a store word. The value b1(d1) is an index into the rows of SD2 and tells
which row contains the minimum distance between a save/restore point and a store word. Because the
columns of SD2 correspond to the save/restore point indices SITMR and the rows correspond to the
store word indices SWTMR, SITMR(d1) is the address of the instruction at which the save/restore point
is created closest to the store word instruction at the address specified to SWTMR(b1(d1)). In other
words, this is the absolute shortest distance between the creation of a save/restore point and when an
error could occur at a store word and constitutes the best-case multiple processor error for TMR MIPS.

[a1, b1] = min(SD2)

[c1, d1] = min(a1)
(A6)

The formula for determining TTMR retB Best is now presented in Equation (A7). The reason for the
if-else statement is because the program is in a loop and SWTMR(b1(d1)) could be less than SITMR(d1).

i f SWTMR(b1(d1)) ≥ SITMR(d1)

TTMR retB Best = ∑
SWTMR(b1(d1))
n=SITMR(d1)

tITMR n

else
TTMR retB Best = ∑

nTMR_init+NTMR
n=SITMR(d1)

tITMR n + ∑
SWTMR(b1(d1))
n=nTMR_init+1 tITMR n

end

(A7)

Electronics 2019, 8, 1266 27 of 48

The definition of the min function in Equation (A6) presents an interesting situation when SWTMR
or SITMR is a scalar rather than a vector. In this situation, SD2 will be a vector instead of a matrix and
performing the operations in Equation (A6) will not provide usable results for proper indexing into SW
and SI in Equation (A7). If SWTMR is a scalar, b1 is used as the indexing variable into SITMR and no
index variable is used for SWTMR because it is a scalar. These adjustments are made to Equation (A7)
as shown in Equation (A8). If SITMR is a scalar, b1 is used as the indexing variable into SWTMR and no
index variable is used for SITMR because it is a scalar. These adjustments are made to Equation (A7) as
shown in Equation (A9).

i f SWTMR ≥ SITMR(b1)

TTMR retB Best2 = ∑SWTMR
n=SITMR(b1)

tITMR n

else
TTMR retB Best2 = ∑

nTMR_init+NTMR
n=SITMR(b1)

tITMR n + ∑SWTMR
n=nTMR_init+1 tITMR n

end

(A8)

i f SWTMR(b1) ≥ SITMR

TTMR retB Best = ∑
SWTMR(b1)
n=SITMR

tITMR n

else
TTMR retB Best = ∑

nTMR_init+NTMR
n=SITMR

tITMR n + ∑
SWTMR(b1)
n=nTMR_init+1 tITMR n

end

(A9)

The Type B-Worst error occurs at the end of creating a save/restore point so that the error
is detected before successful save/restore point creation. The multiple bit error is injected when
attempting to write the loop counter when creating the save/restore point such that a multiple
processor error is detected and triggers recovery operations. In this scenario, 10,000 instructions and
save/restore point creation must be repeated to return to the point in the program at which the error
occurred. The Type B Worst-case error is shown in Figure A5.

The runtime for TMR MIPS Type B Worst-case error is given in Equation (A10) where TTMR SRP Err
is the time it takes TMR MIPS to encounter an error during creation of a save/restore point when the
error occurs in the loop counter of multiple processors when attempting to save the loop counter to
memory, TTMR recB is the time to recover from a multiple processor error, TTMR retB Worst is the time to
return to the instruction at which the error occurred. The time TTMR SRP Err is determined from the
simulation, but TTMR retB Worst is determined by analysis.

TTMR ErrB Worst = TTMR MIPS + TTMR SRP Err + · · ·
TTMR recB + TTMR retB Worst

(A10)

To compute the worst-case scenario time to return to the instruction at which the error occurred,
the worst-case time between save points must first be determined according to Equation (A11) where
STTMR was previously defined in Equation (A3), SLTMR(m) is the number of full loops completed
by the time the mth save/restore point creation is reached, Tadd is the time from the start of the loop
in which the save/restore point is created to the instruction in that loop at which the save/restore
point is created, STTMR(m) is the time from the beginning of the program to the time at which the
mth save/restore point creation begins, SDTTMR is the save time difference between consecutive
save points, and WSITMR is the index of the worst-case SDTTMR. The value of SDTTMR is obtained
by subtracting the 1st value of STTMR from the second value, the second value from the third, and
so on until the (nSRP − 1)th value is subtracted from the nth

SRP. The maximum value of SDTTMR is
TTMR retB Worst.

Electronics 2019, 8, 1266 28 of 48

SDTTMR = STTMR − [0, STTMR(1 to length(STTMR)− 1)]
[TTMR retB Worst, WSITMR] = max(SDTTMR)

(A11)

TSR best-case and worst-case errors are similar to TMR Type B-Best and TMR Type B-Worst errors
in that they occur immediately after save/restore point error and during save/restore point creation
respectively. These errors are shown in Figure A6.

6WDUW

%HVW-&DVH�(UURU

(QG

:RUVW-&DVH

0LQLPXP�
5H-ZRUN

0D[LPXP�
5H-ZRUN

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�IHZHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

653
&UHDWH

(UURU
5HFRYHU\

653
�QG�6HJPHQW

653
�QG�6HJPHQW

653
�VW�6HJPHQW

Figure A6. TSR MIPS Best- and Worst-Case error timing diagram.

The best-case scenario minimizes the number of instructions which must be executed after error
recovery to return to the point in the program at which the error occurred. Therefore, the best-case
error occurs immediately after creation of a save/restore point. The error is injected immediately prior
to the branch comparison instruction before the first store word instruction after creating a save/restore
point. The error is injected into one of the registers to be compared.

The TSR MIPS Best-case error is computed using Equation (A12) where TTSR MIPS is the time
to complete a program in the absence of an error from the previous work [1], TTSR Rec is the time to
perform error recovery operations and is determined from simulation results, and TTSR Ret is the time
needed to return from the most recent save/restore point to the instruction at which the error occurred.

TTSR Best = TTSR MIPS + TTSR Rec + TTSR Ret (A12)

The time to return to the instruction at which the error occurred is determined using Equation (A13)
where nTSR init is the number of instructions needed to initialize a TSR program (4 instructions)
and SWTSR is a vector containing the instruction indices of all store word instructions in a TSR
MIPS program.

TTSR ret =
NTSR

∑
n=NTSR−3

tITSR n +
SWTSR(1)

∑
n=nTSR init+1

tITSR n (A13)

The TSR MIPS Worst-case scenario maximizes the number of instructions which must be executed
after error recovery to return to the point in the program at which the error occurred. Therefore, the
worst-case error occurs at the end of creating a save/restore point. This error would specifically target
the loop counter, which is the last register to be written to the save/restore point during save/restore
point creation. This error would force TSR MIPS to restore itself from the previous save/restore

Electronics 2019, 8, 1266 29 of 48

point and then proceed past the end of the next save/restore point creation, which means completing
250 program loops all over again. Additionally, the worst-case error will occur when creating the
save/restore point in the second segment of save/restore point memory rather than the first segment
because the second segment takes longer to create.

The TSR MIPS Worst-case error is computed using Equation (A14) where TTSR loop is the time
to complete a single TSR program loop defined in previous work [1] and TTSR SRP1 Err is the time
from the start of save/restore point creation to the time at which an error is detected in the difference
between the loop counter and duplicate loop counter. The value of TTSR SRP1 Err is determined from the
simulation. The term ∑NTSR

n=NTSR−3 tITSR n is the time to complete the loop after performing error recovery
and the term 250 · TTSR loop is the time to re-complete the 250 loops between save/restore points.

TTSR Worst = TTSR MIPS + TTSR Rec + ∑NTSR
n=NTSR−3 tITSR n + · · ·

250 · TTSR loop + TTSR SRP1 Err
(A14)

AHR may experience a TMR or TSR error depending on whether AHR is operating in TMR or
TSR mode. TMR errors are further subdivided into early and late errors depending on whether they
occur near the beginning of the program or near the TMR to TSR transition point respectively. Early
errors have less impact on total program runtime and energy usage than late errors because early errors
do not significantly affect the location of the TMR to TSR transition point. This is because the TMR to
TSR transition point depends upon completing a predetermined number of instructions without error
before transitioning AHR from TMR to TSR mode. Late errors have more impact on total program
runtime and energy usage because they cause the TMR to TSR transition point to move towards the
end of the program so that more of the program is executed in TMR mode. The result is that program
runs faster, but uses more energy than if an early error or no error occurred. Errors encountered when
AHR MIPS is operating in TSR mode are virtually identical to the errors encountered by TSR MIPS,
but depend upon the point at which the TMR to TSR transition occurs within a program.

When AHR MIPS encounters a TMR Type A error, it handles the error the same way that TMR
MIPS would. If the error occurs early in the program, such as at the first store word instruction in the
program, the TMR to TSR transition point is only moved by a few instructions as shown in Figure A7.
This is referred to as a Type A Early error and it has a minimal impact on the program runtime.

6WDUW (QG 653 653 653

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

2ULJLQDO
765�

7UDQVLWLRQ

653

7\SH�$�(UURU�(DUO\
1HZ�765�
7UDQVLWLRQ

Figure A7. AHR MIPS TMR Type A Early error timing diagram.

Equation (A15) shows how to calculate the AHR MIPS Type A Early error timing where
Ploops TMR A Early is the new transition point loop count determined according to Equation (A16)
and nCSRP A Early is the number of save/restore points to create prior to the transition determined
by Equation (A17). The TMR to TSR transition point determines how many save/restore points are

Electronics 2019, 8, 1266 30 of 48

created in TMR and TSR mode. The TMR mode save/restore points are determined by nCSRP A Early,
but the number of TSR mode save/restore points depends on where the transition occurs relative to
the creation point for the TSR mode save/restore points which only occur at 250, 500, and 750 loops.
This is the rationale for the if-else statements in these equations. There is also a possibility that the
Type A error may push the TMR to TSR transition point out past the end of the program, in which
case, AHR MIPS never enters TSR mode. Note also that tCTMRAE TMR and tCTMRAE TSR are the time
AHR MIPS spends in TMR and TSR mode respectively when encountering a TMR Type A Early error.
The time spent in TMR and TSR are separated to make the energy calculations simpler.

tnom AE = tTMR init + Ploops TMR A Early · TTMR loop + · · ·
TTMR SRP · nCSRP A Early
terr AE = TTMR ttdA + TTMR recA + TTMR retA + TTMR repA
i f Ploops TMR A Early < 250

tCTMRAE TMR = tnom AE + terr AE + tTMR→TSR
tCTMRAE TSR = (nloops − Ploops TMR A Early) · tTSR loop + · · ·
TTSR SRP0 + 2 · TTSR SRP1 + TTSR conc − TTSR skip

elsei f 250 ≤ Ploops TMR A Early < 500
tCTMRAE TMR = tnom AE + terr AE + tTMR→TSR
tCTMRAE TSR = (nloops − Ploops TMR A Early) · tTSR loop + · · ·
TTSR SRP0 + TTSR SRP1 + TTSR conc − TTSR skip

elsei f 500 ≤ Ploops TMR A Early < 750
tCTMRAE TMR = tnom AE + terr AE + tTMR→TSR
tCTMRAE TSR = (nloops − Ploops TMR A Early) · tTSR loop + · · ·

TTSR SRP1 + TTSR conc −
2
3

TTSR skip

elsei f 750 ≤ Ploops TMR A Early < nloops
tCTMRAE TMR = tnom AE + terr AE + tTMR→TSR
tCTMRAE TSR = (nloops − Ploops TMR A Early) · tTSR loop + · · ·
TTSR conc

elsei f Ploops TMR A Early ≥ nloops
tCTMRAE TMR = tTMR init + nloops · TTMR loop + · · ·
TTMR SRP · (nSRP − 1) + terr AE
tCTMRAE TSR = 0

end
TCTMR A Early = tCTMRAE TMR + tCTMRAE TSR

(A15)

Ploops TMR A Early =

⌈
SWTMR(1) + ntransition − nTMR_init

NTMR

⌉
(A16)

nCSRP A Early =

⌊Ploops TMR A Early · NTMR + nTMR_init

nsave

⌋
(A17)

If the TMR Type A error occurs late in the program, such as at the last store word instruction
before the TMR to TSR transition, the TMR to TSR transition is moved by nearly 15,000 instructions
past the point at which it would have occurred if there were no error. This is shown in Figure A8.
This is referred to as a Type A Late error and it causes the program to execute more instructions in
TMR MIPS and fewer instructions in TSR MIPS than if no error had occurred. The expected effect is a
significantly shorter runtime and increased energy usage.

Electronics 2019, 8, 1266 31 of 48

6WDUW (QG 653

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

1HZ�765�
7UDQVLWLRQ

2ULJLQDO
765�

7UDQVLWLRQ

7\SH�$�(UURU�/DWH

653 653 653

Figure A8. AHR MIPS TMR Type A Late error timing diagram.

Equation (A18) shows how to calculate the AHR MIPS Type A Late error timing where
Ploops TMR A Late is the new transition point loop count determined according to Equation (A19) and
nCSRP A Late is the number of save/restore points to create prior to the transition determined by
Equation (A20). Note also that tCTMRAL TMR and tCTMRAL TSR are the time AHR MIPS spends in TMR
and TSR mode respectively when encountering a TMR Type A Late error.

tnom AL = tTMR init + Ploops TMR A Late · TTMR loop + · · ·
TTMR SRP · nCSRP A Late
terr AL = TTMR ttdA + TTMR recA + TTMR retA + TTMR repA
i f Ploops TMR A Late < 250

tCTMRAL TMR = tnom AL + terr AL + tTMR→TSR
tCTMRAL TSR = (nloops − Ploops TMR A Late) · tTSR loop + · · ·
TTSR SRP0 + 2 · TTSR SRP1 + TTSR conc − TTSR skip

elsei f 250 ≤ Ploops TMR A Late < 500
tCTMRAL TMR = tnom AL + terr AL + tTMR→TSR
tCTMRAL TSR = (nloops − Ploops TMR A Late) · tTSR loop + · · ·
TTSR SRP0 + TTSR SRP1 + TTSR conc − TTSR skip

elsei f 500 ≤ Ploops TMR A Late < 750
tCTMRAL TMR = tnom AL + terr AL + tTMR→TSR
tCTMRAL TSR = (nloops − Ploops TMR A Late) · tTSR loop + · · ·

TTSR SRP1 + TTSR conc −
2
3

TTSR skip

elsei f 750 ≤ Ploops TMR A Late < nloops
tCTMRAL TMR = tnom AL + terr AL + tTMR→TSR
tCTMRAL TSR = (nloops − Ploops TMR A Late) · tTSR loop + · · ·
TTSR conc

elsei f Ploops TMR A Late ≥ nloops
tCTMRAL TMR = tTMR init + nloops · TTMR loop + · · ·
TTMR SRP · (nSRP − 1) + terr AL
tCTMRAL TSR = 0

end
TCTMR A Late = tCTMRAL TMR + tCTMRAL TSR

(A18)

Ploops TMR A Late =

⌈
SWTMR(length(SWTMR)) + ntransition − nTMR_init

NTMR

⌉
(A19)

Electronics 2019, 8, 1266 32 of 48

nCSRP A Late =

⌊Ploops TMR A Late · NTMR + nTMR_init

nsave

⌋
(A20)

AHR MIPS may also encounter TMR MIPS Type B-Best errors early or late and these are referred
to as TMR Type B-Best Early and TMR Type B-Best Late errors. As with the TMR Type A Early error,
the TMR Type B-Best Early error has a minimal impact on runtime. As with the TMR Type A Late
error, the TMR Type B-Best Late error is expected to significantly decrease runtime and increase energy
usage. The TMR Type B-Best Early error is shown in Figure A9 while the TMR Type B-Best Late error
is shown in Figure A10.

6WDUW (QG 653 653 653

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

2ULJLQDO
765�

7UDQVLWLRQ

653

7\SH�%
(UURU

5HFRYHU\

7\SH�%�(UURU�%HVW-&DVH�(DUO\
1HZ�765�
7UDQVLWLRQ

Figure A9. AHR MIPS TMR Type B Best-Case Early error timing diagram.

6WDUW (QG 653

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

1HZ�765�
7UDQVLWLRQ

2ULJLQDO
765�

7UDQVLWLRQ

7\SH�%�(UURU�%HVW-&DVH�/DWH

653 653

7\SH�%
(UURU

5HFRYHU\

Figure A10. AHR MIPS TMR Type B Best-Case Late error timing diagram.

In order to determine the AHR MIPS runtime for programs with Type B-Best Early and Late
errors, some of the variables used in computing TMR MIPS runtime for programs with Type B-Best
errors need to be modified. The variable SITMR needs to be modified so it only contains instruction
indices of save/restore points that occur before the original TMR to TSR transition was expected to
take place. The values of SLTMR and STTMR must also be updated. These updates are illustrated in
Equation (A21) where the SLTMR(SLTMR < Ploops) returns the vector of SLTMR where the values of
SLTMR are less than the TMR to TSR transition point and all other values of the original SLTMR vector
are excluded.

Electronics 2019, 8, 1266 33 of 48

SLCTMR = SLTMR(SLTMR < Ploops)

SICTMR = SITMR(1 to length(SLTMR))

STCTMR = STTMR(1 to length(SLTMR))

(A21)

Next, all possible differences between save/restore point indices and store word indices are
calculated according to Equation (A22). Note that this is different when compared with Equation (A4)
because this formula must account for the fact that an error cannot be allowed to occur after the TMR
to TSR transition or it would be a TSR error rather than a TMR Type B Error.

f or n = 1 to length(SWTMR)

SD3(n, :) = SWTMR(n)− SIT
TMR

i f SLCTMR(length(SLCTMR)) = Ploops
i f SD3(n, length(SLCTMR)) < 0

SD3(n, length(SLCTMR)) = 106

end
end

end

(A22)

Then, just as Equation (A5) made all values of SD1 positive, Equation (A23) makes all values of
SD3 positive as well.

SD4 = SD3. · (SD3 > 0) + (SD3. · (SD3 < 0) + NTMR · (SD3 < 0)) (A23)

The next step is to determine which store word indices minimize the difference between each store
word and save index. This is computed in Equation (A24). Note that this differs from Equation (A6)
because there is no second step to determine the absolute minimum distance. This is because it is
desirable to determine the early and late scenarios for a Type B-Best error. The absolute minimum of
SD4 might not minimize or maximize the number of instructions computed in TMR mode. Instead,
each possible combination of minimum distance from a save index to a store word index is evaluated for
total program completion time. The total program completion time for each scenario is then evaluated
against the completion times to determine which is slowest (Early) and which is fastest (Late).

[a2, b2] = min(SD4) (A24)

Equations (A25)–(A27) show how to compute the time to complete each program for each possible
combination of minimum distance from a save index to a store word index. (Equation (A27) is a
continuation of Equation (A26) because the entire equation could not fit on one page.) Equation (A26)
(and Equation (A27)) also shows that the Type B-Best Early solution is the maximum of these times and
the Type B-Best Late solution is the minimum of these times. The Flag variable is used to keep track of
whether a particular combination of save index and store word index is allowed. The flag is 1 if the
combination is not allowed because the store word following the save index would occur after the TMR
to TSR transition. The variable Ploops TMR B Best(n) is the new TMR to TSR transition point based on the
error location for the nth save index. The variable nCSRP B Best(n) is the new number of save/restore
points to create for the nth save index. The variable Tadd(n) is the amount of time required to return
from the save index to the store word index at which the error occurred for the nth save index. The
time to complete the TMR portion of the program for the nth save index is tCTMRBB TMR(n). The time
to complete the TSR portion of the program for the nth save index is tCTMRBB TSR(n). The value NaN
is assigned to tCTMRBB TMR(n) and tCTMRBB TSR(n) when Flag = 1 because the max and min functions
ignore NaN values and return only numerical values. Finally, tCTMRBBE TMR(n), tCTMRBBE TSR(n) are
the time AHR MIPS spends in TMR and TSR mode when a TMR Type B-Best Early error is encountered.

Electronics 2019, 8, 1266 34 of 48

Similarly, tCTMRBBL TMR(n), tCTMRBBL TSR(n) are the time AHR MIPS spends in TMR and TSR mode
when a TMR Type B-Best Late error is encountered.

f or n = 1 to length(b2)

Flag = 0
i f SICTMR = 1

Ploops TMR B Best(n) = Ploops
else

Ploops TMR B Best(n) = · · ·⌈
SICTMR(n) + SLCTMR · NTMR + ntransition − nTMR_init

NTMR

⌉
end

nCSRP B Best(n) =

⌊
Ploops TMR B Best(n) · NTMR + nTMR_init

nsave

⌋
i f SICTMR(n) ≤ SWCTMR(b2(n))− 1

Tadd(n) = ∑
SWCTMR(b2(n))−1
m=SICTMR(n)

tITMR m

elsei f SLCTMR(n) < Ploops TMR B Best(n)
Tadd(n) = ∑

nTMR_init+NTMR
m=SICTMR(n)

tITMR m + ∑
SWCTMR(b2(n))−1
nTMR_init+1 tITMR m

else
Tadd(n) = 0
Flag = 1

end
end

(A25)

f or n = 1 to length(b2)

i f Flag = 1
tCTMRBB TMR(n) = NaN
tCTMRBB TSR(n) = NaN

else
tnom BB = tTMR init + Ploops TMR B Best(n) · TTMR loop + · · ·
TTMR SRP · nCSRP B Best(n)
terr BB = TTMR ttdB + TTMR recB + Tadd(n)
i f Ploops TMR B Best(n) < 250

tCTMRBB TMR(n) = tnom BB + terr BB + tTMR→TSR
tCTMRBB TSR(n) = (nloops − Ploops TMR B Best(n)) · tTSR loop + · · ·
TTSR SRP0 + 2 · TTSR SRP1 + TTSR conc − TTSR skip

elsei f 250 ≤ Ploops TMR B Best(n) < 500
tCTMRBB TMR(n) = tnom BB + terr BB + tTMR→TSR
tCTMRBB TSR = (nloops − Ploops TMR B Best(n)) · tTSR loop + · · ·
TTSR SRP0 + TTSR SRP1 + TTSR conc − TTSR skip

elsei f 500 ≤ Ploops TMR B Best(n) < 750
tCTMRBB TMR(n) = tnom BB + terr BB + tTMR→TSR
tCTMRBB TSR = (nloops − Ploops TMR B Best(n)) · tTSR loop + · · ·

TTSR SRP1 + TTSR conc −
2
3

TTSR skip

(A26)

Electronics 2019, 8, 1266 35 of 48

elsei f 750 ≤ Ploops TMR B Best(n) < nloops
tCTMRBB TMR(n) = tnom BB + terr BB + tTMR→TSR
tCTMRBB TSR = (nloops − Ploops TMR B Best(n)) · tTSR loop + TTSR conc

elsei f Ploops TMR B Best(n) ≥ nloops
tCTMRBB TMR(n) = tTMR init + nloops · TTMR loop + · · ·
TTMR SRP · (nSRP − 1) + terr BB
tCTMRBB TSR = 0

end
end

end
[TCTMR B Best Early, b3] = max(tCTMRBB TMR + tCTMRBB TSR)

tCTMRBBE TMR = tCTMRBB TMR(b3)

tCTMRBBE TSR = tCTMRBB TSR(b3)

[TCTMR B Best Late, b4] = min(tCTMRBB TMR + tCTMRBB TSR)

tCTMRBBL TMR = tCTMRBB TMR(b4)

tCTMRBBL TSR = tCTMRBB TSR(b4)

(A27)

Remembering that the min function used in Equation (A24) is defined and used in the same manner
as in Equation (A6), the same problem with SD2 possibly being a vector arises for SD4 as well. This
affects the indices used in Equations (A25) and (A26). If SWTMR is a scalar, Equation (A25) is rewritten
in Equation (A28). If SICTMR is a scalar, these equations are rewritten in Equations (A29)–(A31) where
Equation (A31) is a continuation of Equation (A30).

f or n = 1 to length(b2)

Flag = 0
i f SICTMR = 1

Ploops TMR B Best(n) = Ploops
else

Ploops TMR B Best(n) = · · ·⌈
SICTMR(n) + SLCTMR · NTMR + ntransition − nTMR_init

NTMR

⌉
end

nCSRP B Best(n) =

⌊
Ploops TMR B Best(n) · NTMR + nTMR_init

nsave

⌋
i f SICTMR(n) ≤ SWCTMR − 1

Tadd(n) = ∑SWCTMR−1
m=SICTMR(n)

tITMR m

elsei f SLCTMR(n) < Ploops TMR B Best(n)
Tadd(n) = ∑

nTMR_init+NTMR
m=SICTMR(n)

tITMR m + ∑SWCTMR−1
nTMR_init+1 tITMR m

else
Tadd(n) = 0
Flag = 1

end
end

(A28)

Electronics 2019, 8, 1266 36 of 48

Flag = 0
i f SICTMR = 1

Ploops TMR B Best = Ploops
else

Ploops TMR B Best = · · ·⌈
SICTMR + SLCTMR · NTMR + ntransition − nTMR_init

NTMR

⌉
end

nCSRP B Best =

⌊Ploops TMR B Best · NTMR + nTMR_init

nsave

⌋
i f SICTMR ≤ SWCTMR(b2)− 1

Tadd = ∑
SWCTMR(b2)−1
m=SICTMR

tITMR m

elsei f SLCTMR(n) < Ploops TMR B Best(n)
Tadd = ∑

nTMR_init+NTMR
m=SICTMR

tITMR m + ∑
SWCTMR(b2)−1
nTMR_init+1 tITMR m

else
Tadd = 0
Flag = 1

end

(A29)

i f Flag = 1
tCTRMBB TMR = NaN
tCTRMBB TSR = NaN

else
tnom BB = tTMR init + Ploops TMR B Best(n) · TTMR loop + · · ·
TTMR SRP · nCSRP B Best(n)
terr BB = TTMR ttdB + TTMR recB + Tadd(n)

i f Ploops TMR B Best < 250
tCTRMBB TMR = tnom BB + terr BB + tTMR→TSR
tCTRMBB TSR = (nloops − Ploops TMR B Best) · tTSR loop + · · ·
TTSR SRP0 + 2 · TTSR SRP1 + TTSR conc − TTSR skip

elsei f 250 ≤ Ploops TMR B Best < 500
tCTRMBB TMR = tnom BB + terr BB + tTMR→TSR
tCTRMBB TSR = (nloops − Ploops TMR B Best) · tTSR loop + · · ·
TTSR SRP0 + TTSR SRP1 + TTSR conc − TTSR skip

elsei f 500 ≤ Ploops TMR B Best < 750
tCTRMBB TMR = tnom BB + terr BB + tTMR→TSR
tCTRMBB TSR = (nloops − Ploops TMR B Best) · tTSR loop + · · ·

TTSR SRP1 + TTSR conc −
2
3

TTSR skip

elsei f 750 ≤ Ploops TMR B Best < nloops
tCTRMBB TMR = tnom BB + terr BB + tTMR→TSR
tCTRMBB TSR = (nloops − Ploops TMR B Best) · tTSR loop + · · ·
TTSR conc

(A30)

Electronics 2019, 8, 1266 37 of 48

elsei f Ploops TMR B Best ≥ nloops
tCTRMBB TMR = tTMR init + nloops · TTMR loop + · · ·
TTMR SRP · (nSRP − 1) + terr BB
tCTRMBB TSR = 0

end
end
TCTMR B Best Early = tCTRMBB TMR + tCTRMBB TSR
tCTRMBBE TMR = tCTRMBB TMR
tCTRMBBE TSR = tCTRMBB TSR
TCTMR B Best Late = tCTRMBB TMR + tCTRMBB TSR
tCTRMBBL TMR = tCTRMBB TMR
tCTRMBBL TSR = tCTRMBB TSR

(A31)

AHR MIPS may also encounter TMR MIPS Type B-Worst errors early or late and these are referred
to as TMR Type B-Worst Early and TMR Type B-Worst Late errors. As with the TMR Type A Early
error, the TMR Type B-Worst Early error has a minimal impact on runtime. As with the TMR Type A
Late error, the TMR Type B-Worst Late error is expected to significantly decrease runtime and increase
energy usage. The TMR Type B-Worst Early error is shown in Figure A11 while the TMR Type B-Worst
Late error is shown in Figure A12.

6WDUW (QG 653 653 653

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

2ULJLQDO
765�

7UDQVLWLRQ

653

7\SH�%
(UURU

5HFRYHU\

7\SH�%�(UURU�:RUVW-&DVH�(DUO\
1HZ�765�
7UDQVLWLRQ

Figure A11. AHR MIPS TMR Type B Worst-Case Early error timing diagram.

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

1HZ�765�
7UDQVLWLRQ

2ULJLQDO
765�

7UDQVLWLRQ

7\SH�%�(UURU�:RUVW-&DVH�/DWH

653

7\SH�%
(UURU

5HFRYHU\

653 653

Figure A12. AHR MIPS TMR Type B Worst-Case Late error timing diagram.

Electronics 2019, 8, 1266 38 of 48

Equation (A32) shows how to compute the time to complete a AHR MIPS program with a
TMR Type B-Worst Early error where Ploops TMR B Worst Early is the number of loops at which the
transition point occurs when accounting for the error, nCSRP B Worst Early is the number of save/restore
points to create in TMR MIPS when accounting for the error, and TCTMR retB Worst Early is the time
needed to return to the point at which the error occurred after recovering from the error. Note that
tCTMRBWE TMR and tCTMRBWE TSR are the time AHR MIPS spends in TMR and TSR mode respectively
when encountering a TMR Type B-Worst Early error.

tnom BWE = tTMR init + Ploops TMR B Worst Early · TTMR loop + · · ·
TTMR SRP · nCSRP B Worst Early
terr BWE = TTMR SRP Err + TTMR recB + TCTMR retB Worst Early
i f Ploops TMR B Worst Early < 250

tCTMRBWE TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWE TSR = (nloops − Ploops TMR B Worst Early) · tTSR loop + · · ·
TTSR SRP0 + 2 · TTSR SRP1 + TTSR conc − TTSR skip

elsei f 250 ≤ Ploops TMR B Worst Early < 500
tCTMRBWE TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWE TSR = (nloops − Ploops TMR B Worst Early) · tTSR loop + · · ·
TTSR SRP0 + TTSR SRP1 + TTSR conc − TTSR skip

elsei f 500 ≤ Ploops TMR B Worst Early < 750
tCTMRBWE TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWE TSR = (nloops − Ploops TMR B Worst Early) · tTSR loop + · · ·

TTSR SRP1 + TTSR conc −
2
3

TTSR skip

elsei f 750 ≤ Ploops TMR B Worst Early < nloops
tCTMRBWE TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWE TSR = (nloops − Ploops TMR B Worst Early) · tTSR loop + TTSR conc

elsei f Ploops TMR B Worst Early ≥ nloops
tCTMRBWE TMR = tTMR init + nloops · TTMR loop + · · ·
TTMR SRP · (nSRP − 1) + terr BWE tCTMRBWE TSR = 0

end
TCTMR B Worst Early = tCTMRBWE TMR + tCTMRBWE TSR

(A32)

The time TCTMR retB Worst Early is computed according to Equation (A33) where SDTCTMR is the
save time difference between consecutive save points and WSICTMR is the index of the worst-case
SDTCTMR. This is nearly identical to Equation (A11).

SDTCTMR = STCTMR − [0, STCTMR(1 to length(STCTMR)− 1)]
TCTMR retB Worst Early = SDTCTMR(2)

(A33)

Next, the loop count at which the TMR to TSR transition will occur after encountering an error is
determined using Equation (A34).

i f SLCTMR(1) = 0
Ploops TMR B Worst Early = Ploops

else
Ploops TMR B Worst Early = · · ·⌈

SICTMR(1) + SLCTMR(1) · NTMR + ntransition − nTMR_init
NTMR

⌉
end

(A34)

Electronics 2019, 8, 1266 39 of 48

Finally, nCSRP B Worst Early is determined according to Equation (A35).

nCSRP B Worst Early =

⌊Ploops TMR B Worst Early · NTMR + nTMR_init

nsave

⌋
(A35)

Equation (A36) shows how to compute the time to complete a AHR MIPS program with a TMR
Type B-Worst Late error where Ploops TMR B Worst Late is the number of loops at which the transition
point occurs when accounting for the error, nCSRP B Worst Late is the number of save/restore points to
create in TMR MIPS when accounting for the error, and TCTMR retB Worst Late is the time needed to return
to the point at which the error occurred after recovering from the error. Note that tCTMRBWL TMR and
tCTMRBWL TSR are the time AHR MIPS spends in TMR and TSR mode respectively when encountering
a TMR Type B-Worst Late error.

tnom BWL = tTMR init + Ploops TMR B Worst Late · TTMR loop + · · ·
TTMR SRP · nCSRP B Worst Late
terr BWL = TTMR SRP Err + TTMR recB + TCTMR retB Worst Early
i f Ploops TMR B Worst Late < 250

tCTMRBWL TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWL TSR = (nloops − Ploops TMR B Worst Late) · tTSR loop + · · ·
TTSR SRP0 + 2 · TTSR SRP1 + TTSR conc − TTSR skip

elsei f 250 ≤ Ploops TMR B Worst Late < 500
tCTMRBWL TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWL TSR = (nloops − Ploops TMR B Worst Late) · tTSR loop + · · ·
TTSR SRP0 + TTSR SRP1 + TTSR conc − TTSR skip

elsei f 500 ≤ Ploops TMR B Worst Late < 750
tCTMRBWL TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWL TSR = (nloops − Ploops TMR B Worst Late) · tTSR loop + · · ·

TTSR SRP1 + TTSR conc −
2
3

TTSR skip

elsei f 750 ≤ Ploops TMR B Worst Late < nloops
tCTMRBWL TMR = tnom BWE + terr BWE + tTMR→TSR
tCTMRBWL TSR = (nloops − Ploops TMR B Worst Late) · tTSR loop + TTSR conc

elsei f Ploops TMR B Worst Late ≥ nloops
tCTMRBWL TMR = tTMR init + nloops · TTMR loop + · · ·
TTMR SRP · (nSRP − 1) + terr BWE
tCTMRBWL TSR = 0

end
TCTMR B Worst Late = tCTMRBWL TMR + tCTMRBWL TSR

(A36)

The time TCTMR retB Worst Late is computed according to Equation (A37). This is nearly identical to
Equation (A11).

TCTMR retB Worst Late = SDTCTMR(length(SDTCTMR)) (A37)

Next, the loop count at which the TMR to TSR transition will occur after encountering an error is
determined using Equation (A38).

Electronics 2019, 8, 1266 40 of 48

i f SLCTMR(length(SDTCTMR)− 1) = 0
Ploops TMR B Worst Late = Ploops

else
Ploops TMR B Worst Late = · · ·⌈(
SICTMR(length(SDTCTMR)− 1) + · · ·

SLCTMR(length(SDTCTMR)− 1) · NTMR + · · ·

ntransition − nTMR_init

)/
NTMR

⌉
end

(A38)

Finally, nCSRP B Worst Late is determined according to Equation (A39).

nCSRP B Worst Late =

⌊Ploops TMR B Worst Late · NTMR + nTMR_init

nsave

⌋
(A39)

In contrast to the TMR errors which can affect the TMR to TSR transition point, TSR errors do
not affect the transition point; however, TSR worst-case errors may be affected by the transition point.
The best-case errors are unaffected by the transition point.

When AHR MIPS encounters a TSR Best-case error, it encounters it immediately after the creation
of a save/restore point. This could be the save/restore point created by the transition from TMR
to TSR, or any of the save/restore points created by TSR MIPS after AHR MIPS enters TSR mode.
Regardless of where the which save/restore point the TSR Best-case error occurs after, the recovery
time is always the same. This is because of the way the TSR MIPS Best-case error was defined to be
injected immediately prior to the branch comparison instruction before the first store word instruction
after creating a save/restore point. A few examples of AHR MIPS TSR Best-case errors are shown
in Figures A13–A16 where the transition occurs before the first, second, or third TSR save/restore
creation point or after the third TSR save/restore creation point respectively.

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

765�%HVW-&DVH

653
�QG�6HJPHQW

653
�QG�6HJPHQW

653
�VW�6HJPHQW

Figure A13. AHR MIPS TSR Best-Case Early Error Timing Diagram 1.

Electronics 2019, 8, 1266 41 of 48

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

765�%HVW-&DVH

653 653
�VW�6HJPHQW

653
�QG�6HJPHQW

Figure A14. AHR MIPS TSR Best-Case Early Error Timing Diagram 2.

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

765�%HVW-&DVH

653 653
�QG�6HJPHQW

653

Figure A15. AHR MIPS TSR Best-Case Early Error Timing Diagram 3.

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

765�%HVW-&DVH

653 653 653

Figure A16. AHR MIPS TSR Best-Case Early Error Timing Diagram 4.

Electronics 2019, 8, 1266 42 of 48

The time needed to complete a AHR MIPS program experiencing a TSR Best-case error is given in
Equation (A40) where TTSR Rec and TTSR ret were previously defined in Equation (A12).

TCTSR Best = TAHR MIPS + TTSR Rec + TTSR ret
TCTSR Best = tAHR TMR + tAHR TSR + TTSR Rec + TTSR ret
tCTSRB TMR = tAHR TMR
tCTSRB TSR = tAHR TSR + TTSR Rec + TTSR ret
TCTSR Best = tCTSRB TMR + tCTSRB TSR

(A40)

TSR Worst-case errors in AHR MIPS require special attention. While TSR Worst-case errors in TSR
MIPS take place at the end of creating a save/restore point in the second save/restore point memory
segment, that may not be possible in AHR MIPS depending on when the TMR to TSR transition takes
place. If that transition occurs before the first TSR MIPS save/restore point is created, then the TSR
worst-case error is still encountered at the end of creating a save/restore point in the second segment;
in this case this would be the save/restore point created when the loop counter is at 250. This scenario
is shown in Figure A17.

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

765�:RUVW-&DVH

653
�QG�6HJPHQW

653
�QG�6HJPHQW

653
�VW�6HJPHQW

Figure A17. AHR MIPS TSR Worst-Case Early Error Timing Diagram 1.

When the TMR to TSR transition occurs after what would have been the first TSR MIPS
save/restore point creation and before the second TSR MIPS save/restore point creation, there are
two possibilities for a worst-case error. These possibilities are shown in Figure A18. Note that the
first save/restore point created after the transition is always to the second save/restore point memory
segment. This means that an error at the end of this save/restore point creation may not be the
worst-case error. The worst-case error may be the one that occurs at the end of the next save/restore
point creation which saves to the first save/restore point memory segment. The time to recover from
the error and return to the point at which the error was encountered is calculated for both of these
scenarios and the one that takes longer is the worst-case error.

If the TSR Worst-case error occurs after the second TSR MIPS save/restore point creation and
before the third, then it is unclear what the worst-case error might be. According to the original
definition of a TSR MIPS Worst-case error, it is an error that maximizes the number of instructions that
TSR MIPS must re-execute. Therefore, the error may occur at the end of creating the third TSR MIPS
save/restore point or at the last branch comparison at the end of the program. The amount of time to
return to the point at which the error occurred is calculated for both scenarios, and the one that takes
longer is the worst-case scenario. This is illustrated graphically in Figure A19.

Electronics 2019, 8, 1266 43 of 48

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

653 653
�VW�6HJPHQW

653
�QG�6HJPHQW

765�:RUVW-&DVH
,V�/RQJHVW�RI�7KHVH�7ZR

Figure A18. AHR MIPS TSR Worst-Case Early Error Timing Diagram 2.

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

765�:RUVW-&DVH
,V�/RQJHVW�RI�7KHVH�7ZR

653 653
�QG�6HJPHQW

653

Figure A19. AHR MIPS TSR Worst-Case Early Error Timing Diagram 3.

Finally, if the TSR Worst-case error occurs after the last TSR MIPS save/restore point creation,
the worst-case error occurs at the last branch comparison at the end of the program as shown in
Figure A20.

No errors are injected to Basic MIPS because it has no way of detecting or correcting the errors.
Any errors injected into a register to be stored to memory would not impact the runtime or energy usage
of Basic MIPS. The only manifestation would be that the resulting computations would be incorrect.

Equations (A41) and (A42) show how to compute the time to complete a AHR MIPS program
experiencing a TSR Worst-case error where Equation (A42) is a continuation of Equation (A41). If the
transition point occurs before the completion of the first 250 loops, the AHR MIPS TSR worst-case
error is identical to the TSR MIPS worst-case error in that the added time to complete the program is
the same as in Equation (A14).

If the transition point occurs between the completion of 250 loops and 500 loops, there are
two possibilities for the worst-case error. The first is that the error occurs at the end of creating
the save/restore point upon completion of 500 loops, in which case all loops after the TMR to TSR
transition must be re-completed and the save/restore point must be completed without error as
well (ctsrw1). The second is that the error occurs at the end of creating the save/restore point upon
completion of 750 loops, in which case all loops after previous save/restore point creation must be

Electronics 2019, 8, 1266 44 of 48

re-completed and the save/restore point at loop number 750 must be completed without error as
well (ctsrw2).

6WDUW (QG

1RW�GUDZQ�WR�VFDOH���1XPEHU�RI�653V�
PD\�EH�JUHDWHU�RU�IHZHU�WKDQ�VKRZQ���
7HPSRUDU\��SHUPDQHQW��DQG�VDYH�
UHVWRUH�SRLQW�PHPRU\�QRW�LOOXVWUDWHG�

765�
7UDQVLWLRQ

765�:RUVW-&DVH

653 653 653

Figure A20. AHR MIPS TSR Worst-Case Early Error Timing Diagram 4.

If the transition point occurs between the completion of 500 loops and 750 loops, there are
two possibilities for the worst-case error. The first is that the error occurs at the end of creating
the save/restore point upon completion of 750 loops, in which case all loops after the TMR to TSR
transition must be re-completed and the save/restore point must be completed without error as well
(ctsrw3). The second is that the error occurs at the last store word instruction in the program and the
nearly 250 complete loops since the creation of the save/restore point at loop 750 must be re-completed
(ctsrw4). The only way to know which takes longer to complete is to calculate the values for both,
compare the results, and select the larger of the two. If the transition point occurs after the completion
of 750 loops, the worst-case error occurs at the last store word at the end of the program and all loops
from the TMR to TSR transition to the end of the program must be re-completed.

Note that tCTSRW TMR and tCTSRW TSR are the time AHR MIPS spends in TMR and TSR mode
respectively when encountering a TSR Worst-case error.

i f Ploops < 250
tCTSRW TMR = tAHR TMR

tCTSRW TSR = tAHR TSR + TTSR Rec + ∑NTSR
n=NTSR−3 tITSR n + · · ·

250 · TTSR loop + TTSR SRP1 Err
elsei f 250 ≤ Ploops < 500

ctsrw1 = TTSR Rec + ∑NTSR
n=NTSR−3 tITSR n + (500− Ploops) · TTSR loop + · · ·

TTSR SRP1 Err

ctsrw2 = TTSR Rec + ∑NTSR
n=NTSR−3 tITSR n + 250 · TTSR loop + TTSR SRP0 Err

tCTSRW TMR = tAHR TMR
i f ctsrw1 > ctsrw2

tCTSRW TSR = tAHR TSR + ctsrw1

else
tCTSRW TSR = tAHR TSR + ctsrw2

end

(A41)

Electronics 2019, 8, 1266 45 of 48

elsei f 500 ≤ Ploops < 750
ctsrw3 = TTSR Rec + ∑NTSR

n=NTSR−3 tITSR n + · · ·
(750− Ploops) · TTSR loop + TTSR SRP1 Err

ctsrw4 = TTSR Rec + ∑NTSR
n=NTSR−3 tITSR n + 249 · TTSR loop + · · ·

∑
SWTSR(length(SWTSR)−1)
nTSR init+1 tITSR n

tCTSRW TMR = tAHR TMR
i f ctsrw3 > ctsrw4

tCTSRW TSR = tAHR TSR + ctsrw3

else
tCTSRW TSR = tAHR TSR + ctsrw4

end
elsei f Ploops ≥ 750

tCTSRW TMR = tAHR TMR

tCTSRW TSR = tAHR TSR + TTSR Rec + ∑NTSR
n=NTSR−3 tITSR n + · · ·

(nloops − Ploops − 1) · TTSR loop + ∑
SWTSR(length(SWTSR)−1)
nTSR init+1 tITSR n

end
TCTSR Worst = tCTSRW TMR + tCTSRW TSR

(A42)

Appendix C. Error Injection Energy Calculations

The energy computations are straightforward for TMR MIPS and TSR MIPS programs even
when errors are injected. The time to complete these programs is multiplied by the dynamic power
used by the appropriate architecture. The TMR Type A, Type B-Best, and Type B-Worst error energy
calculations are shown in Equations (A43)–(A45) respectively. The TSR MIPS Best-case and Worst-case
error energy calculations are shown in Equations (A46) and (A47) respectively.

ETMR ErrA = PTMR MIPS · TTMR ErrA (A43)

ETMR ErrB Best = PTMR MIPS · TTMR ErrB Best (A44)

ETMR ErrB Worst = PTMR MIPS · TTMR ErrB Worst (A45)

ETSR Best = PTSR MIPS · TTSR Best (A46)

ETSR Worst = PTSR MIPS · TTSR Worst (A47)

While it was trivial to calculate the energy used by TMR MIPS and TSR MIPS programs
experiencing errors, it is more complicated to calculate the energy used by programs running in
AHR MIPS. It is more difficult because of the time divided between TMR and TSR modes of operation.
Fortunately, the times to complete the TMR and TSR portions were recorded separately to make these
calculations simpler.

Equations (A48) and (A49) show how to calculate the energy used by AHR MIPS when
encountering TMR Type A Early and Late errors respectively.

ECTMR A Early = PCTMR MIPS · tCTMRAE TMR + PCTSR_MIPS · tCTMRAE TSR (A48)

ECTMR A Late = PCTMR MIPS · tCTMRAL TMR + PCTSR_MIPS · tCTMRAL TSR (A49)

Equations (A50) and (A51) show how to calculate the energy used by AHR MIPS when
encountering a TMR Type B-Best Early and Late error respectively.

ECTMR B Best Early = PCTMR MIPS · tCTMRBBE TMR + · · ·
PCTSR_MIPS · tCTMRBBE TSR

(A50)

Electronics 2019, 8, 1266 46 of 48

ECTMR B Best Late = PCTMR MIPS · tCTMRBBL TMR + · · ·
PCTSR_MIPS · tCTMRBBL TSR

(A51)

Equations (A52) and (A53) show how to calculate the energy used by AHR MIPS when
encountering a TMR Type B-Worst Early and Late error respectively.

ECTMR B Worst Early = PCTMR MIPS · tCTMRBWE TMR + · · ·
PCTSR_MIPS · tCTMRBWE TSR

(A52)

ECTMR B Worst Late = PCTMR MIPS · tCTMRBWL TMR + · · ·
PCTSR_MIPS · tCTMRBWL TSR

(A53)

Equations (A54) and (A55) show how to calculate the energy used by AHR MIPS when
encountering a TSR Type Best-Case and Worst-Case error respectively.

ECTSR Best = PCTMR MIPS · tCTSRB TMR + PCTSR_MIPS · tCTSRB TSR (A54)

ECTSR Worst = PCTMR MIPS · tCTSRW TMR + PCTSR_MIPS · tCTSRW TSR (A55)

Appendix D. VHDL Code to Reproduce Basic MIPS, TMR MIPS, TSR MIPS, and AHR MIPS

The VHDL code used to implement Basic MIPS, TMR MIPS, TSR MIPS, AHR MIPS and perform
error injection for simulations is available on GitHub at: https://github.com/nicolas-hamilton/
Adaptive-Hybrid-Redundancy-VHDL.

References

1. Hamilton, N.S. Adaptive-Hybrid Redundancy for Radiation Hardening. Ph.D. Thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, USA, 2019.

2. Espinosa, D.C.; Geist, A.; Petrick, D.J.; Flatley, T.P.; Hosler, J.C.; Crum, G.A.; Buenfil, M. Radiation-Hardened
Processing System. Provisional Patent 2011/0107158 A1, 5 May 2011.

3. Flatley, T.P. Radiation-Hardened Hybrid Processor. Provisional Patent 2011/0078498 A1, 2011.
4. Geist, A.; Flatley, T.P.; Lin, M.R.; Petrick, D.J. Radiation-Hardened Hybrid Processor. Provisional Patent

2011/0099421 A1, 2011.
5. Tamir, Y. Fault Tolerance for VLSI Multicomputers. Ph.D. Thesis, University of California, Berkeley, CA,

USA, 1985.
6. Gomaa, M.A.; Scarbrough, C.; Vijaykumar, T.N.; Pomeranz, I. Transient-Fault Recovery for Chip

Multiprocessors. IEEE Micro 2003, 23, 76–83. doi:10.1109/MM.2003.1261390.
7. Bickel, R.E. Fault Tolerant Processing Architecture. Provisional Patent 2003/0061535 A1, 27 March 2003.
8. Bickel, R.E. Fault Tolerant Processing Architecture. U.S. Paten 6,938,183 B2, 30 August 2005.
9. Breuer, M.A.; Carlan, A.J. State-of-the-Art Assessment of Testing and Testability of Custom LSI-VLSI Circuits.

Volume VI. Redundancy, Testing Circuits, and Codes; Technical Report; Aerospace Corporation: El Segundo,
CA, USA, 1982.

10. Grecki, M. SEUs Tolerance in FPGAs Based Digital LLRF System for XFEL. In Proceedings of
the 2012 18th IEEE-NPSS Real Time Conference, Berkeley, CA, USA, 9–15 June 2012; pp. 1–3.
doi:10.1109/RTC.2012.6418114.

11. Iturbe, X.; Venu, B.; Özer, E.; Das, S. A Triple Core Lock-Step (TCLS) ARM Cortex-R5 Processor for
Safety-Critical and Ultra-Reliable Applications. In Proceedings of the 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshop (DSN-W), Toulouse, France, 28
June–1 July 2016; pp. 246–249. doi:10.1109/DSN-W.2016.57.

12. Liddell, D.C.; Williams, E.J. Method and Apparatus for Reducing the Effects of Hardware Faults in a
Computer System Employing Multiple Central Processing Modules. U.S. Patent US5627965A, 6 May 1997.

13. Sterpone, L.; Du, B. Analysis and Mitigation of Single Event effects on Flash-Based FPGAs. In Proceedings
of the 2014 19th IEEE European Test Symposium (ETS), Paderborn, Germany, 26–30 May 2014; pp. 1–6.
doi:10.1109/ETS.2014.6847804.

https://github.com/nicolas-hamilton/Adaptive-Hybrid-Redundancy-VHDL
https://github.com/nicolas-hamilton/Adaptive-Hybrid-Redundancy-VHDL
https://doi.org/10.1109/MM.2003.1261390
https://doi.org/10.1109/RTC.2012.6418114
https://doi.org/10.1109/DSN-W.2016.57
https://doi.org/10.1109/ETS.2014.6847804

Electronics 2019, 8, 1266 47 of 48

14. Espinosa, D.C.; Geist, A.; Petrick, D.J.; Flatley, T.P.; Hosler, J.C.; Crum, G.A.; Buenfil, M. Radiation-Hardened
Processing System. U.S. Patent 8,484,509 B2, 9 July 2013.

15. Singh, A.D.; Gray, F.G. Periodically Self Restoring Redundant Systems for VLSI Based Highly Reliable Design;
Technical Report; University of Massachusettes and Virginia Tech: Boston, MA, USA, 1986.

16. Tabero, J.; Regadío, A.; Pérez, C.; Pazos, J.; Reviriego, P.; Sánchez-Macian, A.; Maestro, J.A. Modular
Fault Tolerant Processor Architecture on a SoC for Space. Microelectron. Reliab. 2018, 83, 84–90.
doi:10.1016/j.microrel.2018.02.011.

17. Oh, N.; Shirvani, P.P.; McCluskey, E.J. Error Detection by Duplicated Instructions in Super-Scalar Processors.
IEEE Trans. Reliab. 2002, 51, 63–75. doi:10.1109/24.994913.

18. Oh, N.; McCluskey, E.J. Low Energy Error Detection Technique Using Procedure Call Duplication.
In Proceedings of the 2001 International Symposium on Dependable Systems and Networks, Goteborg,
Sweden, 1–4 July 2001.

19. Tokponnon, M.P.; Lobelle, M.; Ezin, E.C. Entirely Protecting Operating Systems Against Transient Errors in
Space Environment. arXiv 2017, arXiv:1708.06450.

20. Oh, N.; Shirvani, P.P.; McCluskey, E.J. Control-Flow Checking by Software Signatures. IEEE Trans. Reliab.
2002, 51, 111–122. doi:10.1109/24.994926.

21. Reis, G.A.; Chang, J.; Vachharajani, N.; Rangan, R.; August, D.I. SWIFT: Software Implemented Fault
Tolerance. In Proceedings of the International Symposium on Code Generation and Optimization, New York,
NY, USA, 20–23 March 2005.

22. Reis, G.A.; Chang, J.; August, D.I. Automatic Instruction-Level Software-Only Recovery. IEEE Micro 2007,
27, 36–47. doi:10.1109/MM.2007.4.

23. Frenkel, C.; Legat, J.D.; Bol, D. A Partial Reconfiguration-Based Scheme to Mitigate Multiple-Bit Upsets
for FPGAs in Low-Cost Space Applications. In Proceedings of the 2015 10th International Symposium on
Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC), Bremen, Germany, 29 June–1 July
2015; pp. 1–7. doi:10.1109/ReCoSoC.2015.7238095.

24. Lima, F.; Carmichaell, C.; Fabula, J.; Padovanil, R.; Reis, R. A Fault Injection Analysis of Virtex
FPGA TMR Design Methodology. In Proceedings of the 2001 6th European Conference on Radiation
and Its Effects on Components and Systems, Grenoble, France, 10–14 September 2001; pp. 275–282.
doi:10.1109/RADECS.2001.1159293.

25. Mahmoud, D.G.; Alkady, G.I.; Amer, H.H.; Daoud, R.M.; Adly, I.; Essam, Y.; Ismail, H.A.; Sorour, K.N. Fault
Secure FPGA-Based TMR Voter. In Proceedings of the 2018 7th Mediterranean Conference on Embedded
Computing, Budva, Montenegro, 10–14 June 2018; pp. 1–4. doi:10.1109/MECO.2018.8406016.

26. Nidhin, T.S.; Battacharyya, A.; Behera, R.P.; Jayanthi, T.; Velusamy, K. Understanding Radiation Effects in
SRAM-Based Field Programmable Gate Arrays for Implementing Instrumentation and Control Systems of
Nuclear Power Plants. Nucl. Eng. Technol. 2017, 49, 1589–1599. doi:10.1016/j.net.2017.09.002.

27. Ostler, P.S.; Caffrey, M.P.; Gibelyou, D.S.; Graham, P.S.; Morgan, K.S.; Pratt, B.H.; Quinn, H.M.; Wirthlin,
M.J. SRAM FPGA Reliability Analysis for Harsh Radiation Environments. IEEE Trans. Nucl. Sci. 2009,
56, 3519–3526. doi:10.1109/TNS.2009.2033381.

28. Straka, M.; Kastil, J.; Kotasek, Z. Fault Tolerant Structure for SRAM-Based FPGA via Partial Dynamic
Reconfiguration. In Proceedings of the 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, Lille, France, 1–3 September 2010; pp. 365–372. doi:10.1109/DSD.2010.12.

29. Czajkowski, D.R. SEU and SEFI Fault Tolerant Computer. U.S. Patent 7,260,742, 21 August 2007.
30. Mariani, R.; Kuschel, T.; Shigehara, H. A Flexible Microcontroller Architecture for Fail-Safe and

Fail-Operational Systems. In Proceedings of the HiPEAC Workshop on Design for Reliability (HiPEAC),
Pisa, Italy, 25–27 January 2010.

31. Kontoleon, J. Soft Error Recovery in Simplex and Triplex Memory Systems. Microelectron. Reliab. 2009,
49, 410–423. doi:10.1016/j.microrel.2008.12.009.

32. Ray, J.; Hoe, J.C.; Falsafi, B. Dual Use of Superscalar Datapath for Transient-Fault Detection and Recovery.
In Proceedings of the 34th Annual ACM/IEEEE International Symposium on Microarchitecture, Austin, TX,
USA, 1–5 December 2001; pp. 214–224. doi:10.1109/MICRO.2001.991120.

33. Shirvani, P.P.; Saxena, N.R.; McCluskey, E.J. Software Implemented EDAC Protection Against SEUs.
IEEE Trans. Reliab. 2000, 49, 273–284. doi:10.1109/24.914544.

https://doi.org/https://doi.org/10.1016/j.microrel.2018.02.011
https://doi.org/10.1109/24.994913
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/MM.2007.4
https://doi.org/10.1109/ReCoSoC.2015.7238095
https://doi.org/10.1109/RADECS.2001.1159293
https://doi.org/10.1109/MECO.2018.8406016
https://doi.org/https://doi.org/10.1016/j.net.2017.09.002
https://doi.org/10.1109/TNS.2009.2033381
https://doi.org/10.1109/DSD.2010.12
https://doi.org/https://doi.org/10.1016/j.microrel.2008.12.009
https://doi.org/10.1109/MICRO.2001.991120
https://doi.org/10.1109/24.914544

Electronics 2019, 8, 1266 48 of 48

34. LaMares, B.J.; Gauer, C. A Power-Efficient Design Approach to Radiation Hardened Digital Circuitry using
Dynamically Selectable Triple Modulo Redundancy. In Proceedings of the 2008 Military & Aerospace
Programmable Logic Devices (MAPLD) Conference, Annapolis, MD, USA, 15–18 September 2008.

35. Wang, S.; Hu, J.; Ziavras, S.G. Self-Adaptive Data Caches for Soft-Error Reliability. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 2008, 27, 1503–1507. doi:10.1109/TCAD.2008.925789.

36. Hamilton, N.S. Basic MIPS Architecture Version 1.4; Technical Report; Air Force Institute of Technology:
Wright-Patterson AFB, OH, USA, 2019.

37. Hamilton, N.S. Triple Modular Redundancy MIPS Architecture Version 1.4; Technical Report; Air Force Institute
of Technology: Wright-Patterson AFB, OH, USA, 2019.

38. Hamilton, N.S. Adaptive-Hybrid Redundancy MIPS Architecture Version 2.2; Technical Report; Air Force
Institute of Technology: Wright-Patterson AFB, OH, USA, 2019.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/TCAD.2008.925789
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Hardware Redundancy
	Software Redundancy
	Hybrid Redundancy
	Adaptive Redundancy

	Adaptive-Hybrid Redundancy

	Materials and Methods
	Error Injection Mechanism
	Error Injection Timing
	Energy Used When Errors Are Injected

	Results
	Discussion
	Basic MIPS Datapath Error Injection Schematics
	Error Injection Timing and Calculations
	Error Injection Energy Calculations
	VHDL Code to Reproduce Basic MIPS, TMR MIPS, TSR MIPS, and AHR MIPS
	References

