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Abstract: The strong relationship between music and health has helped prove that soft and peaceful
classical music can significantly reduce people’s stress; however, it is difficult to identify and collect
examples of such music to build a library. Therefore, a system is required that can automatically
generate similar classical music selections from a small amount of input music. Melody is the main
element that reflects the rhythms and emotions of musical works; therefore, most automatic music
generation research is based on melody. Given that melody varies frequently within musical bars,
the latter are used as the basic units of composition. As such, there is a requirement for melody
extraction techniques and bar-based encoding methods for automatic generation of bar-based music
using melodies. This paper proposes a method that handles melody track extraction and bar encoding.
First, the melody track is extracted using a pitch-based term frequency–inverse document frequency
(TFIDF) algorithm and a feature-based filter. Subsequently, four specific features of the notes within a
bar are encoded into a fixed-size matrix during bar encoding. We conduct experiments to determine
the accuracy of track extraction based on verification data obtained with the TFIDF algorithm and
the filter; an accuracy of 94.7% was calculated based on whether the extracted track was a melody
track. The estimated value demonstrates that the proposed method can accurately extract melody
tracks. This paper discusses methods for automatically extracting melody tracks from MIDI files and
encoding based on bars. The possibility of generating music through deep learning neural networks
is facilitated by the methods we examine within this work. To help the neural networks generate
higher quality music, which is good for human health, the data preprocessing methods contained
herein should be improved in future works.

Keywords: deep learning; encoding; feature engineering; melody; music generation; healthcare;
term frequency–inverse document frequency

1. Introduction

Many studies that have analyzed the relationship between music and health found that music
positively affects human health [1–5]. Music has been shown to reduce human stress levels and has a
considerable positive effect on psychological state [6–9]. Although serene classical music is known to
be beneficial during patient treatment, it is time-consuming to collect specific classical music pieces that
have been shown to positive affect health; therefore, presenting a need for a system is to automatically
generate beneficial musical pieces. Recently, many researchers have begun to explore the possibilities
of deep learning techniques in the field of artistic creation. Deep learning has had great achievement
in search engine, data mining, machine translation, natural language processing, computer vision,
and other related fields. The deep learning algorithm has given great support on interpretation of data
such as text, images, and sounds by learning the rules in the sample data. Its goal is to enable machines
to have the ability to analyze text [10], images [11], and sounds [12] like humans. The achievements
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of this complex machine learning algorithm in sound and image processing far exceed the previous
related technologies.

Currently, most deep learning-based music generation used real music as sample data. Melody
is an important compositional element that reflects the rhythm and emotion of musical works.
Although the non-melody compositional aspects also play important roles in the automatic generation
of music [13], these non-melody elements correlate strongly with the melodic aspects. Therefore,
the generation of melody compositional element is necessary and informs the generation of other
compositional elements. To generate the melody, a training library of isolated melody tracks are
required. Musical instrument digital interface (MIDI) files, often used in deep learning-based automatic
music generation studies, contain multiple tracks. Beneficially, there is usually one track in a MIDI file
that stores melody information. To generate music using these melody tracks, methodologies must be
developed to accurately extract melody track information from among multiple present tracks [14–17].
Melody changes occur frequently within bars, where bars are used as basic units of composition;
accordingly, composers typically produce music around this bar structure. However, to generate music
based on bars, a matrix-based bar encoding method is first required.

In traditional music composition, the composer has developed specialized semantic knowledge of
music and combines both emotion and creative experience into generating music. As computer
technology has evolved, various music-related technologies have also been developed [18–22].
Music can be divided into several parts that are recombined based on semantic knowledge of musical
composition to compose new music. The ILLIAC I computer has generated a novel musical piece known
as the Illiac Suite based on a Markov chain algorithm [23]. The experiments in musical intelligence
(EMI) used a recombinant algorithm to analyze music, then generated compositions by imitating the
style of famous composers [24]. A considerable amount of time is required to create new music. Thus,
recurrent neural network-based music generation systems are being developed to help composers to
more rapidly produce new musical pieces. C-RNN-GAN [25] is an RNN-based GAN model for music
generation. GAN models consist of two components: The generator and the discriminator. In general,
GANs show high performance for image generation; similarly, the C-RNN-GAN shows great promise
for the generation of music. However, there exist two problems requiring improvement in musical
generation systems: (1) C-RNN-GAN utilizes a few melodic tracks or analyzed nonmelodic tracks
to generate music. In most MIDI files, the melody tracks are not labeled, and using only manually
labeled melody tracks under time constraints can result in insufficient learning data. However, without
distinction, all the tracks are used as training data; hence, latent space features containing nonmelodic
information will be generated. (2) Music is typically composed in units of bars, being organized
sections of tonal notes. As composers compose music by the bar, this method for generating music,
being close to the methods used by composers, should be studied.

This paper proposes the following methods to resolve issues with traditional music generation
methodologies, thereby improving performance. The melody track must be extracted from the MIDI
files to generate music based on melody tracks. The term frequency–inverse document frequency
(TFIDF) algorithm [26] and feature-based filtering are used to extract the melody tracks. The tracks are
extracted from the one MIDI file and the TFIDF value is calculated between the one of the extracted
tracks and real melody track set. The track with minimum TFIDF value is selected to the melody
track. In addition, a bar encoding method is studied to generate new music based on bars. All the
note information contained in the bar is encoded into the bar matrix through the bar encoding method.
The bar matrix can accurately represent the start time, duration, pitch, and intensity of each note.

The GAN model can train to generate music using the results of the preprocessing as follows.
First, the generator output the music using recurrent neural networks based on bars. Second, the music
generated from the generator and real music is input to the discriminator. Third, the discriminator
outputs the compare result by compared two music. Fourth, the compared result is inputted to the
generator and the generator is trained. The trained generator can generate music.
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Additionally, the generator can be used to modulate the instruments and style of music.
Instruments whose sounds are beneficial to health can be soloed or featured during playback of
the generated music. In order to evaluate the generated music, audience-based evaluation can be
leveraged to assess the quality of generated music [27]. However, in order to evaluate automatically,
we utilized the pitch structure to determine if the generated music and the music within the training
dataset are sufficiently similar.

Our contributions are as follows:

• Automatically melody extraction: In the automatic music generation research based on MIDI
files, a melody track is required as the learning data when generating the melody. This research
utilizes the TFIDF algorithm and feature-based filters to automatically extract melody tracks from
MIDI files.

• Bar encoding method for more features: Bar encoding encodes the start time, duration, pitch,
and intensity of the notes contained in the bar into the bar matrix. The bar matrix can accurately
represent the detailed features of each note.

• Improved preprocessing for music generation based on deep learning: Automatic melody
extraction and bar encoding can enable the deep learning neural network to train the composition
method better.

The remainder of this paper is organized as follows. Section 2 introduces studies on deep
learning-based music generation. Section 3 describes melody track extraction and the bar encoding
methods. Section 4 describes the content and results of the experiments. Section 5 contains our
concluding remarks.

2. Related Literature

Typical data representations used during the design and training of music automatic generation
algorithms are signal, transformed signal (e.g., spectrum, via Fourier transformation), piano roll,
MIDI, text, etc. The most recent research on deep learning methods for music generation use only
the melody track contained within MIDI files as training data [25,28]. However, there are other,
non-melody tracks within MIDI files. Traditional melody extraction research includes Skyline [29],
Best Channel [30], Top Channel [31], Entropy Channel [32], Entropy Part [33], and Revised Skyline [34].
The most common method of extracting melody tracks of extracting melody tracks from MIDI files
is the Skyline algorithm [26], which combines all notes into a single track and selects the highest
pitch sounds (typically a representative feature of the melody portions of a musical piece). However,
there are three disadvantages with the Skyline algorithm. First, the hold time of the note itself can
change if a new note with a higher pitch appears; meaning that the playing of the first note ceases,
and the new note is played instead. Consequently, the extracted melody track may be different from
the true melody of the musical composition. Second, notes of low intensity in a melody track may
be erased. Skyline automatically finds and fills all time periods with the highest previously played
pitch if no sounds are played for a certain period; thereby, further altering the melody. Third, there are
many compositions in which the melody contains pitches lower than those of other tracks. Therefore,
the Skyline algorithm cannot derive melody tracks accurately.

Madsen et al. [35] proposed a method for measuring musical complexity and applied it to a melody
extraction model. The music complexity model did not utilize musical expertise. TANG et al. [36]
assumed that there is only one melody track in music, and [37] proved that this assumption is universal.
When extracting the melody track, five methods were proposed. The first three methods, AvgVel,
PMRatio, and SilenceRatio, sort the probabilities of the tracks considered to be melody by analyzing
the track features. The other two methods, TrackName and Range, can directly divide the tracks
into melody tracks or non-melody tracks. In the 16,012 collected MIDI files, 247 melody tracks were
extracted by TrackName. TrackName is the most efficient way to extract melody tracks in five ways,
but only a small number of MIDI files can be sorted by TrackName
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Rizo et al. [38] proposed a feature-based melody filtering method for determining a melody track
by analyzing features important to the melody track, differentiating it from other tracks. Their method
uses track information, pitch, intensity, lasting time, and total number of notes as track features [39].
However, this method cannot be applied to large volumes of data as the labeling of features is performed
manually. Herein, we apply the TFIDF algorithm to the traditional feature-based filtering method.
By first using the pitch frequency-based TFIDF algorithm, we can remove most of the non-melody
tracks both quickly and automatically.

Most methods of melody extraction only focus on the temporal continuity of the frequency,
and seldom consider the temporal correlations between the frequency and amplitude, resulting in
the poor extractions of the melody by many algorithms. Consequently, we propose a new melody
extraction method [40] based on the frequency–amplitude correlations.

Within the automatic music generation literature using recurrent neural networks, there are
different data representation encoding methods. Table 1 describes the difference between various data
representation and encoding methods used by previous studies and proposed methods.

Table 1. Differences between traditional music generation systems and the proposed method.

C-RNN-GAN [25] MidiNet [28] MuseGAN [41] Proposed Method

Data representation MIDI MIDI Piano-roll MIDI
Encoding Based notes Based bars Based notes Based bars

Mogren [25] utilizes MIDI files as training data. The pitch, start time, hold time, and intensity of
the note are all accurately represented. As it contains a note end event, it addresses this oversight of the
Piano-roll representation. However, notes-based music generation method is unsuitable to generate
the music [42]. There are limitations in performance compared to the bar encoding. In MidNet [28],
MIDI files and bar-based encoding method are utilized; it may not be trivial to easily distinguish between
a long note and two short repeating notes (i.e., consecutive notes with the same pitch). MuseGAN [41]
utilizes the data represented by the Piano-roll [43] format for its training data. Piano-roll is one of the
most commonly used data representations and can represent both the pitch and hold time of a sound;
however, it has several limitations. First, note termination information does not exist. Therefore, it is
impossible to distinguish between a long note and two short and equal notes. Second, Piano-roll
cannot represent the intensity of a note.

In order to solve the above problem, this paper proposes two methods. First, the melody tracks
extracted by TrackName are used as the comparison dataset. The difference between the non-melody
track and the comparison dataset is calculated by the TFIDF algorithm. Then, the track with the
minimum TFIDF is extracted as the melody track. Second, in order to represent more features of
note, an encoding method based on bar is proposed to represent the start time, lasting time, pitch,
and intensity of the note.

3. Proposed Method

3.1. Music Generation Process of the Proposed Method

Our proposed music generation process method is shown in Figure 1. First, during the melody
track extraction phase, the TFIDF algorithm and feature-based filtering are used to extract multiple
melody tracks from the collected MIDI files. Second, during the bar encoding phase, the extracted
melody tracks are encoded based on bars. As the proposed method generates MIDI files based on
bars, melody tracks are segmented into multiple bars. Each divided bar is encoded based on the pitch,
start time, length, and intensity of the notes within the bar. Next, data are integrated into a single
melody matrix. Third, during the MIDI file generation phase, the melody matrix sets are used to train
a deep learning-based music generation model. Accordingly, new MIDI files are generated.
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Figure 1. Proposed music generation system process.

3.2. TFIDF-Based Melody Track Extraction

The melody, chord, and drum accompaniment are stored in different tracks within the MIDI file.
This section describes the methods used to extract the melody track from the MIDI file.

Typically, the TrackNameEvent attribute track metatags to the melody track. If the value is “Melody,”
the track is a melody track. If there is no TrackNameEvent attribute in the track, or if its value is not
“Melody,” it is difficult to determine whether the track is a melody track or not. Herein, we assume
that there is at most one melody track in a MIDI file. The proposed method uses the TFIDF algorithm
and feature-based filtering to extract the melody tracks from the MIDI files, as shown in Figure 2.

For example, T = {60, 70, 65, 79, 61, 62, 61, 64}, T is a set of pitches, which indicates a pitch
included in one of the tracks in the MIDI. When using the TFIDF algorithm, the TF (term frequency)
value of each note in each track must be calculated. The TF value represents the number of times a
note appears in the current track. For example, if a 60 Hz pitch appears once in the first track, then the
TF value corresponding to this pitch is 1. The IDF (inverse document frequency) value of each note in
each track then needs to be calculated. The IDF value represents the reciprocal of the number of tracks
containing this note within the collected melody tracks. If the number of tracks containing this note is
1000, then the IDF value of the note is 0.001. The TFIDF value of each note in the track is determined by
multiplying the TF and IDF values. Based on the example note discussed, the TFIDF value of this note
is 0.001. The average of the TFIDF values of each note within the track is the TFIDF value of the track.
If the current track and melody track set are similar, the TFIDF average value will be low. Therefore,
the track with the lowest average value of TFIDF will be extracted as the melody track.

First, the collected MIDI file set, M, is classified. The total MIDI file set contains files that are
both labeled and unlabeled as melodies via the TrackNameEvent attribute; the unclassified files are
represented as MU and the classified MIDIs are referred to as MM. The ith MIDI files, mi, mU

i , and mM
i

obey the relationships mi ∈ M, mU
i ∈ MU, and mM

i ∈ MM, respectively. If “Melody” appears in the
TrackNameEvent of the tracks included in the ith MIDI file mi, it is added to the MIDI file set MM.
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If TrackNameEvent does not exist or if “Melody” does not appear, it is added to the unconfirmed MIDI
file set, MU.

Electronics 2019, 8, x FOR PEER REVIEW  6 of 15 

 

If TrackNameEvent does not exist or if “Melody” does not appear, it is added to the unconfirmed MIDI 

file set, 𝑀 . 

 

Figure 2. Melody track extraction process. 

Second,  the  melody  tracks  of  the  MIDI  files  are  separated.  All  tracks  included  in  each 

unconfirmed MIDI  file 𝑚   in  the unconfirmed MIDI  file set 𝑀   are defined as  the unconfirmed 

track set  𝑇 . Accordingly,  𝑡 , , which is the  jth track in the unconfirmed MIDI file 𝑚 , is added to the 

unconfirmed track set  𝑇 . The  jth track  𝑡 ,   is  𝑡 , ∈ 𝑇 , and  𝑇 ∈ 𝑇 . In the MIDI file set 𝑀   that 

includes melody, the melody track set  𝑇   is defined as the only melody track set. The melody tracks 

are extracted from the MIDI file set 𝑀   that includes melodies, and they are added to the melody 

track set  𝑇 . Correspondingly,  𝑡 ∈ 𝑇 . Third, the TFIDF value is calculated. The TFIDF algorithm 

is a method of calculating the difference between an element and a set [26]. It is used to (a) calculate 

the  difference  between  track  𝑡 ,   and  the  tracks  in  the melody  track  set  𝑇   and  (b)  to  use  the 

calculated TFIDF value to represent the track. Pitch is the degree of highness or lowness of a note. 

Additionally,  𝜃   is the minimum value in the allowable pitch range and  𝜃   is the maximum 

value in the allowable pitch range. Pitch  p  is a pitch in the allowable pitch range and it is an integer 

between  𝜃   and  𝜃 . Equivalently,  𝑛   is the number of tracks in melody track set  𝑇   in which 

pitch  p  appears at  least once. In turn,  𝑠 ,   is the total number of notes  in the  individual track  𝑡 , . 

Additionally,  𝑛 , ,   is the frequency of pitch  p  in the separated track  𝑡 , . The number of tracks in the 

Figure 2. Melody track extraction process.

Second, the melody tracks of the MIDI files are separated. All tracks included in each unconfirmed
MIDI file mU

i in the unconfirmed MIDI file set MU are defined as the unconfirmed track set TU
i .

Accordingly, tU
i, j, which is the jth track in the unconfirmed MIDI file mU

i , is added to the unconfirmed

track set TU
i . The jth track tU

i, j is tU
i, j ∈ TU

i , and TU
i ∈ TU. In the MIDI file set MM that includes melody,

the melody track set TM is defined as the only melody track set. The melody tracks are extracted
from the MIDI file set MM that includes melodies, and they are added to the melody track set TM.
Correspondingly, tM

i ∈ TM. Third, the TFIDF value is calculated. The TFIDF algorithm is a method of
calculating the difference between an element and a set [26]. It is used to (a) calculate the difference
between track tU

i, j and the tracks in the melody track set TM and (b) to use the calculated TFIDF value
to represent the track. Pitch is the degree of highness or lowness of a note. Additionally, θMIN is the
minimum value in the allowable pitch range and θMAX is the maximum value in the allowable pitch
range. Pitch p is a pitch in the allowable pitch range and it is an integer between θMIN and θMAX.
Equivalently, nTM

p is the number of tracks in melody track set TM in which pitch p appears at least
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once. In turn, sU
i, j is the total number of notes in the individual track tU

i, j. Additionally, nU
i, j,p is the

frequency of pitch p in the separated track tU
i, j. The number of tracks in the melody track set TM is

defined as the track quantity α, while f U
i, j,p is the TFIDF value of pitch p in the separated track tU

i, j; f U
i, j is

the average TFIDF value of pitch p corresponding to the TFIDF value of the separated track tU
i, j. In the

proposed method, the TFIDF value of track tU
i, j is calculated based on the pitch frequency, as shown in

Algorithm 1.

Algorithm 1. Term frequency–inverse document frequency (TFIDF) value calculation algorithm.

FUNCTION Calculate TFIDFvalue(tU
i, j, α)

OUTPUT
fi, j//TFIDF value of tU

i, j
BEGIN

FOR p← θMIN to SIZE(θMAX)
nTM

p ← Calculate frequency of track containing p in TM

END FOR
sU

i, j ← Size of tU
i, j

FOR p← θMIN to SIZE(θMAX)
nU

i, j,p ← Calculate frequency of p in tU
i, j

f U
i, j,p ←

nU
i, j,p

SU
i, j
× log

(
α

nT
p

M

)
END FOR
f U
i, j ← Calculate average of f U

i, j,p
END

Fourth, shallow structure description [38] of each unconfirmed MIDI file melody track is used to
perform filtering. The shallow structure description includes the track’s maximum pitch, minimum
pitch, average pitch, maximum lasting time, minimum lasting time, average lasting time, maximum
intensity, minimum intensity, and average intensity. The proposed method filters the tracks using the
average pitch, average lasting time, and average intensity that were derived from the dataset analysis.
For the kth note in the melody track tM

i , the pitch is defined as pM
i,k, the lasting time as hM

i,k, and the

intensity as eM
i,k. The threshold values for each stage are defined as the average pitch pM

i,A, average note

lasting time hM
i,A, and the average note intensity eM

i,A of the melody track tM
i included in the melody

track set TM. Additionally, pM
i,A, hM

i,A, and eM
i,A, are used as the filtering values for each feature. To find

pM
i,A, hM

i,A, and eM
i,A, the values pM

i,k, hM
i,k, and eM

i,k, are used to find the averages for each feature, respectively,
as indicated in Equation (1).

pM
i,A =

pM
i,1+pM

i,2+······+pM
i,k

k

hM
i,A =

hM
i,1+hM

i,2+······+hM
i,k

k

eM
i,A =

eM
i,1+eM

i,2+······+eM
i,k

k

(1)

The average pitch, lasting time, and intensity of each melody track feature are then used to
determine the filtering values for each feature. In this respect, pMIN is defined as the pitch filtering
value setting the minimum value of the average pitch calculated in the melody tracks; hMIN and hMAX
are defined as the lasting time filtering values, where hMIN sets the minimum value of the average
lasting time calculated in the melody tracks and hMAX. sets the maximum value of the average lasting
time calculated in the melody tracks. The eMIN value is defined as the filtering value for the intensity
of the notes and is set as the minimum value of the average intensity calculated in the melody tracks.
Track tU

i, j, which is found based on the lowest TFIDF value f U
i, j , undergoes a three-stage filtering process.

The average pitch of tU
i, j is checked to ascertain if it is less than pMIN, and the average note lasting time
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of tU
i, j is checked to assess whether it is less than hMIN or greater than hMAX. The average note intensity

of track tU
i, j is checked to assess if it is less than eMIN. If the average pitch, average note lasting time,

and average note intensity of tU
i, j do not satisfy the set conditions, the track is deleted and the track

with the next lowest TFIDF value is selected to perform the filtering process. Fifth, the melody tracks
to be used in the unconfirmed MIDI file set are determined. As the TFIDF values of the tracks included
in the unconfirmed MIDI files become smaller, the track set becomes more similar with the melody
track set TM. The unconfirmed MIDI files are used to define the preprocessed unconfirmed track set
T,U. It is defined as the preprocessed unconfirmed tracks t,U

i in the unconfirmed MIDI track files.
Accordingly, t,U

i ∈ T,U. For each unconfirmed MIDI file, the track with the lowest TFIDF value is set as
an unconfirmed track t,U

i . The preprocessed unconfirmed track t,U
i that is selected in the unconfirmed

MIDI file is set as the preprocessed unconfirmed track set T,U. Sixth, the melody tracks to be used
during music generation are created. The melody track set T is defined as the melody tracks used
in music generation. The melody track set T is created by combining the preprocessed unconfirmed
track set T,U and the melody track set TM. The melody-containing track set T is ultimately used to
generate music.

3.3. Bar Encoding

Encoding is used to show each bar contained in a melody track as a matrix. Traditional music
generation studies have operated on insufficient musically relevant features as they perform note-based
encoding. To resolve this, we encode tracks within out process based on bars, which are groups of
notes. The proposed bar encoding method is shown in Figure 3.
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First, the melody track is used to separate the bars. Additionally, the lasting time information of
each track in the MIDI file is available. The melody track lasting time is li. The li value is the lasting
time of the ith melody track, ti, in the melody track set T during the bar division process. The lasting
time of each bar in the same melody track is the same, and it is defined as li,B, which is calculated
by beat. Bars are separated into [bi,1, bi,2, . . . , bi, j, . . . , bi,|br |] according to the bar lasting time li,B,
as shown in Figure 4. The melody is divided into bars and strictly divided according to the beat,
which can be obtained from MIDI file. If bars are re-segmented, the structure of the melody will remain
unchanged. The notes included in the jth bar of the melody track are defined as bi, j. Additionally, vi, j is
a two-dimensional (2D) matrix that shows the pitch, start time, length, and intensity of the notes in
each bar, as shown in Figure 5.
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Second, the divided bars are used to perform the process of encoding the track segments within a
bar matrix. When encoding is performed, a 2D matrix is used to represent the pitch of each note within
a bar, as well as the start time, length, and intensity, as shown in Figure 5.

The size of the x-axis of the 2D matrix is the bar’s lasting time, li,B, which is the unit of lasting
time in the MIDI file, referred to as a Tick. The time by counting the number of Ticks can be quantified.
The variable y-dimension is representative of pitch range. The size of the y-axis determines the
maximum value, θMAX, and the minimum value, θMIN, of the allowable pitch range in the MIDI files.
The jth bar of the melody track to be encoded is bi, j. The melody matrix, vi, is the matrix storing the
results of the encoding of all the bars that are included in the melody track ti. The melody matrix, vi,
consists of [vi,1, vi,2, . . . , vi, j, . . . , vi,|vr |]. The bar matrix, vi, j, defines the results that are encoded based
on each bar bi, j of the melody track ti. For vi, j, the notes included in each bar bi, j are converted to a bar
matrix, as shown in Figure 5. In turn, bi, j,k,F is defined as the pitch of the kth note of bi, j. The value of
bi, j,k,F is set by the pitch of the kth note of bi, j, and it is a value between θMIN and θMAX according to the
allowed pitch range of the MIDI file. The bi, j,k,F value is used to determine the position of the current
note corresponding to the y-axis. The onset of the kth note of bi, j is defined as bi, j,k,S, while bi, j,k,S is
set as the start time of the kth note in the bi, j. The bi, j,k,S value is used to determine where the current
note begins on the x-axis. Additionally, bi, j,k,L, which is the length of the kth note of bi, j, is defined
as the note’s duration time, and bi, j,k,L is set as the time during which the kth note of bi, j is sustained.
bi, j,k,L is then used to determine the length of the current note on the x-axis. The intensity bi, j,k,V of the
kth note of bi, j is defined as the volume of the sound. Furthermore, the variable bi, j,k,V sets the matrix
as the intensity of the kth note of bi, j. After the position of the current note in the measure matrix is
determined, fill with bi, j,k,V. Each bar is encoded as a matrix, as shown in Figure 5, and the empty
spaces are filled with zeros.
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The encoded bar matrix, vi, j, is integrated with the melody matrix vi. The set of the melody
matrices is defined as the melody matrix set V. The encoded melody matrix, vi, is added to the melody
matrix set V.

In the MIDI file, the start time and end time are clearly specified for each note. When using these
data to encode the bar matrix, the start time and end time of the note will not be changed.

4. Experiments and Results

4.1. Experimental Objectives

We conducted several experiments including melody track extraction accuracy verification and
bar-based encoding performance verification experiments. The melody track extraction accuracy
verification experiments determine whether melody tracks are accurately extracted from MIDI files.
Verified MIDI melody files marked with "Melody" in the TrackNameEvent attribute are used for melody
track extracted verification, and these MIDI files are part of the dataset [44]. In the melody track
extraction accuracy verification experiments, the level of accuracy was extracted as shown below
to verify the performance of the proposed TFIDF-based melody track extraction method. First,
the melody tracks were extracted from the verification MIDI file set. Second, the text parameter of
the TrackNameEvent attribute, which is included in the extracted melody metatags, was checked to
assess whether its value was “Melody,” and the level of accuracy was determined. The bar encoding
performance verification experiments assessed whether the bar information could be accurately
represented by a matrix.

4.2. Experimental Data

The verification MIDI file set was used to support experiments intended to verify the melody track
extraction accuracy. In the MIDI file quality verification experiment, the melody track set extracted by
the melody track extraction method was encoded based on bars and used as the input data.

For the MIDI files, the data needed in the experiments were extracted by the Python MIDI
library, as shown in Figure 6. The MIDI files consist of multiple tracks, and there is usually one
melody track among the multiple tracks. A track has TrackNameEvent, NoteOnEvent, and EndOfEvent
attributes. In Track #1, the NoteOnEvent and NoteOffEvent attributes show the start and end instants of
a note. NoteOnEvent includes three types of information: Start time, pitch, and intensity. Conversely,
NoteOffEvent includes duration time, pitch, and intensity, with the intensity is expressed as zero.
EndOfTrackEvent indicates the end of the track. In experiments, it is assumed that the collected MIDI
files are good for health and each MIDI file usually has one melody track.

During melody track extraction accuracy verification experiments, 150 of the 763 MIDI files,
which the TrackNameEvent parameter value was “Melody” in all 2000 MIDI files, were used as the
verification MIDI file set. One hundred and fifty melody tracks would be extracted from the verification
MIDI file set. The melody tracks were extracted from the remaining 613 MIDI files and used as a
comparison melody track set.

In the bar encoding performance verification experiments, the melody track set extracted by
the TFIDF algorithm-based melody track extraction method was used as input. The melody track
set consisted of 2000 melody tracks. As shown in Figure 6, the start time information included in
NoteOnEvent is the time relative to the onset of the previous note. Because a single note is expressed
as two events, NoteOnEvent and NoteOffEvent, a preprocessing stage is required before utilizing this
information as the input in the quality verification experiments. Figure 7 shows the preprocessing stage.
In the melody track, the start time, which includes the event logs of the melody track, is converted
from relative time (red) to absolute time (black), and the start time (red), length (green), pitch (blue),
and intensity (purple) of each note are contained in a single vector.
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4.3. Experimental Results

This subsection describes the results of the extraction of the melody tracks from MIDI files using
the TFIDF algorithm, as well as the performance of the proposed bar encoding method.

Table 2 shows the results derived from the TFIDF algorithm and the filtering stage. Three features
were used to filter the tracks that were separated from the MIDI file, starting with the track that had the
lowest TFIDF value based on the comparison with the melody tracks. Threshold values were found for
the three features, including the average pitch, average note lasting time, and average note intensity.
The purpose of providing an average value is to determine the range of the average pitch and average
intensity for each melody track. During the related task of extracting melody tracks from MIDI files,
the average value is often used as an important feature for analysis. It should be noted that since the
pitch and intensity of the notes in the MIDI file range is from 0 to 127, the average pitch and average
intensity must be between 0 and 127. The average pitch, average note lasting time, and average note
intensity were extracted from the comparison melody track set to determine the threshold values for
each of the features that the melody tracks had. When features such as the maximum pitch, minimum
pitch, maximum lasting time, minimum lasting time, maximum intensity, and minimum intensity
are used for filtering, the melody track cannot be distinguished from the other tracks. Therefore,
these features have low information density in relation to the present tasks. Given that the minimum
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value of the extracted average pitches was 66, the pitch filtering value was 66. Additionally, given that
the average lasting time was between 0.3 and 1.3, for easy comparison, here the tick was converted to
seconds and the filtering value range was between 0.3 s and 1.3 s. Furthermore, given that the average
strengths were above 60, the filtering value was set to 60. If a track passed through the filtering stage
without engaging the filters, it was considered a melody track and was extracted. If it did not pass the
filtering stage, the track was skipped, and filtering was performed on the track with the next lowest
TFIDF value. If no tracks passed through the filtering stage, the track with the lowest TFIDF value
was considered to be the melody track. The tracks marked with Y are the accurately extracted melody
tracks, and the tracks marked with N are the inaccurately extracted melody tracks.

Table 2. Results of extracted melody tracks.

Index TFIDF (Minimum) Average Pitch Average Lasting Time Average Intensity Y/N

1 0.045 71.285 0.810 83.027 Y
2 0.041 71.285 0.350 103.163 Y
3 0.025 68.694 0.501 79.956 Y
4 0.054 73.078 0.520 106.039 Y
5 0.037 71.651 0.681 100 Y
6 0.044 72.291 0.835 90 Y
7 0.045 67.778 0.679 100 N
8 0.079 73.914 0.530 100 Y
. . . . . . . . . . . . . . . . . .

150 0.049 71.953 0.696 90 Y

Table 3 shows the accuracy of the proposed TFIDF-based melody track extraction method. MIDI
files were used, and 150 tracks were extracted with the proposed method. Of these melody tracks,
142 tracks, or 94.7%, were extracted accurately.

Table 3. Accuracy of extracted melody track.

MIDI File
Number True False Accuracy

150 142 8 94.7%

The bar encoding performance verification experiments confirmed that the bar encoding method
can accurately represent the four features of each notes: Pitch, start time, length, and intensity. Figure 8
shows the results of the encoding of the output of Figure 7. The encoded results are formulated within a
fixed-size matrix. This matrix represents a bar consisted of four notes. The orange- and yellow-colored
boxes show the results associated with playing notes at different intensities for a certain amount of
time. In the note-based encoding method, the numbers of notes in the bars are different. Therefore,
the encoding matrix sizes are different. Encoding matrices with different sizes cannot be used as input
for the neural networks with fixed input feature dimension sizes. In the MIDI file, the start and end
times are clearly specified for each note. When using these data to encode the bar matrix, the start time
and end time of the note should remain unchanged.

A comparative experiment was performed between music generated based on notes and music
generated based on bars. Music produced with units of bars was perceived to be of higher quality than
music produced by a note-by-note method. However, this paper focuses on the preparation process,
which is the preprocessing method suitable for most automatic music generation research based on the
recurrent neural network.
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5. Conclusions

Comfortable music can help people relieve stress, but collecting music requires professional
knowledge of music and needs a lot of time. Deep learning has had great achievements in various
fields, and it has also been active in the field of automatic music generation. To help the deep
automatic generation system based on deep learning generate music, which is beneficial to human
health, this paper proposed new preprocessing methods that perform melody track extraction and bar
encoding on MIDI file encoded music. Herein, we introduce a TFIDF-based melody track extraction
method. To extract the melody track among various other tracks, the TFIDF algorithm and three types
of feature-based filtering were used to accurately extract the melody track based on the pitch frequency.
Furthermore, we explore a new bar-based encoding method. To express all the note information in
a bar in the form of a matrix, four note features (i.e., pitch, start time, length, and sound intensity)
were used to encode bars as the matrices with the same size. The 142 melody tracks were accurately
extracted from 150 MIDI files by the proposed melody track extraction technique with an accuracy
rate of 94.7%. The bar matrices that were encoded by the bar-based encoding method had the same
size, unlike the matrices encoded by the note-based encoding methods. Correspondingly, the cost and
standardization of the bar-based encoding method were verified.

In this paper, the TFIDF algorithm-based melody track extraction method and the bar encoding
method were proposed to support the research of automatic music generation based on deep learning.
In future research, the comparison datasets will be classified by genre or composer. By this way,
features for each genre or composer will be obtained and utilizing these features can extract music more
accurately; and for bar encoding, in addition to the information of the notes, it is necessary to improve
the existing methods to express the rhythm and speed of the music to express more musical features.
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