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Abstract: This paper presents a computationally efficient state-of-health (SOH) estimator that is
readily applicable to automotive battery management systems (BMSs). The proposed scheme uses
a recursive estimator to improve the original scheme based on a batch estimator. In the batch
process, state estimation requires significantly longer CPU time than data measurement, and the
original scheme may fail to satisfy real-time guarantees. To prevent this problem, we apply recursive
least-squares. By replacing the batch process to solve the normal equation with a recursive update,
the proposed scheme can spread CPU utilization and reduce memory footprint. The benefits of the
recursive estimator are quantitatively validated by comparing its CPU time and memory footprint
with those of the batch estimator. A similar level of SOH estimation accuracy is achievable with over
60% less memory usage, and the CPU time stabilizes around 5 ms. This enables implementation of
the proposed scheme in automotive BMSs.

Keywords: lithium-ion battery; battery management system; electric vehicle; state-of-health; recursive
least-squares

1. Introduction

It is established that lithium-ion batteries (LIBs) have been the predominantly used type for vehicle
electrification. Battery electric vehicles (BEVs) powered by LIBs were first produced in-series and sold
to the public, six to seven years back. By the end of 2018, the cumulative global sales of BEVs had
reached four million units. In 2011, global EV sales were approximately 50,000 units, and seven years
later, they increased over 80-fold. This high volume of BEV sales is primarily owing to the continuous
increase in the energy density of LIBs. For example, the second generation (2018 model year) of Nissan
Leaf features a 40 kWh battery pack with a range of 243 km on a single charge. The pack is made of
192 cells, with an energy density of 224 Wh/kg (460 Wh/l) per cell. This is equivalent to an increase in
energy density by over 40% because the cell energy density of the first generation (2011 model year) is
157 Wh/kg (317 Wh/l) [1].

However, LIBs are subject to energy and power loss as they age. Compared to power loss, capacity
loss is conveniently noticed by BEV owners because it is directly related to distance-to-empty. There are
no specific data on the number of units that start to exhibit a shorter range because of lower capacity.
However, it probably becomes more common from earlier deliveries. The aging mechanisms of LIBs
in service are complicated to characterize. This is attributable mostly to the interplay of different
operational factors. Nonetheless, their aging level is more or less straightforwardly indicated by
a battery performance metric: the state-of-health (SOH). With regard to energy, the SOH typically
represents the present capacity with respect to the nominal capacity. The capacity of LIBs can be
measured conveniently with battery testers in a process of constant current charging at a specified
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rate until the voltage reaches an end-of-charge voltage; constant voltage charging until the current
drops to a specified level, resting for 2 h; and constant current discharging at a specified rate down to a
cut-off voltage. This method is available for battery manufacturers to nameplate the nominal capacity
immediately before shipping. However, it is not practical for battery management systems (BMSs) to
capture changes in the present capacity of LIBs under load. Diverse approaches have been developed
and demonstrated, with the aim of achieving on-line monitoring of SOH [2–13].

At present, SOH estimation is gaining increased attention with applications in repurposing LIBs
retired from BEVs. The time to retire LIBs in service is not specified. Nonetheless, we could refer to its
end-of-life (EOL) to decide. The EOL is mostly defined by the SOH. Consider the state-of-the-art BEVs
as an example. Their EOL is typically set as 70% SOH. The LIB at EOL implies a 30% shorter range of
BEVs as well as potentially less dependable battery systems. For example, their cells are unbalanced
irreversibly. Hence, it is not favorable to continue using the LIB close to its EOL. The number of
LIBs that remained operational beyond their EOL is modest. However, it should be more common in
the near future. The most recent research conducted by the German Renewable Energy Federation
forecasts that the cumulative capacity of expired LIBs will hit 230 GWh by 2025, which will increase by
over four times to 1000 GWh by 2030 [14]. This forecast is based on a battery size of 40 kWh, repurpose
rate of 80%, and replacement timescale of seven years, in conjunction with Bloomberg Finance’s
prediction of 6.7 million cumulative sales of EVs by 2020 and 88 million by 2030. Considering this
prospect, identifying methods to repurpose expired LIBs is becoming more urgent than ever. The best
method of repurposing expired LIBs can be first selected from among several options by assessing
their SOH. For example, battery packs with high SOH levels could be reused directly as spare parts
to replace damaged ones in automotive applications. Battery packs with mediocre SOH levels could
also be reused in stationary applications, which are generally less demanding than automotive ones.
The battery packs exhibiting SOH levels below their EOL may have to be recycled by being dismantled
into modules or cells. As mentioned above, all the decision-making from retiring to repurposing LIBs
relies essentially on their SOH.

Therefore, we continue to pay attention to an efficient and robust SOH estimation scheme,
particularly considering the unpredictable quantity and quality of LIBs of BEVs to be repurposed.
We proposed an efficient and robust SOH estimation scheme in [15], and subsequently improved the
original scheme in [16]. The improved scheme is capable of addressing a high severity of failure in
on-line monitoring of the SOH, e.g., a battery or its BMS replacement in service. This paper is intended
as a sequel to our previous work in [15]. The original scheme is primarily made of a battery model and
its state estimator. In the battery model, changes in the shape of the charge curve with respect to the
SOH are efficiently described by means of the data-driven metamodel [15–17]. In the state estimator,
the SOH (a state in the battery model) is estimated using weighted least-squares (WLS). The WLS
enables us to provide more weights to more reliable data points on the charge curve. This makes
our state estimator robust against the charge curve, whose shape is partly distorted by varying the
operational factors before charging. Consequently, the original scheme becomes adequately efficient
for computationally light BMSs and adequately robust to tolerate various real-world conditions that
LIBs for BEVs undergo.

In this study, we improve the original scheme further in another aspect: its state estimator is
replaced with recursive least-squares (RLS). For on-line state estimation, a recursive process such as
the RLS is typically more favorable than a batch process. The advantages of the RLS are magnified
when implemented in BMSs with limited computational resources. In general, matrix inversions are
required to solve a cost function. However, it is no longer required for a recursive process. The matrix
inversions are CPU intensive operations. Therefore, eliminating them will aid in reducing CPU
time. Considering BMS implementation, spreading the CPU utilization, rather than reducing CPU
time, is more meaningful. This is because BMSs, particularly for use in BEVs, require hard real-time
guarantees. State estimators are commonly composed of data measurement and state estimation. Batch
estimators run them in series, whereas recursive estimators do so in parallel. It is apparent that the
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state estimation will consume significantly longer CPU time than the data measurement. Accordingly,
it is challenging for batch estimators to level off CPU utilization, whereas recursive estimators can do it
straightforwardly. This is considered a benefit of the RLS, specifically for CPU utilization (see Figure 1).
With regard to memory footprint, multiple and long vectors are not necessary for a recursive process.
In contrast, a batch process typically requires the vectors of measurements, estimates, residuals, and
Jacobian. Specifically for the WLS, the vectors of weights are added to them. As previously stated,
different weights need to be applied to each of the data points because they are not equally reliable for
the SOH estimation. This requirement could be realized simply by using a forgetting factor in the RLS.
Thus, we expect to achieve higher applicability of the SOH estimator to computationally inexpensive
BMSs, by means of the RLS.

Figure 1. 
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Figure 1. Comparison of (a) batch estimator and (b) recursive estimator in terms of their BMS implementation.
The batch estimator exhibits a nonuniform execution time in that the time required for the state estimation
is significantly longer than that for the data measurement. Furthermore, the batch estimator exhibits an
uncertain execution time as the time required for convergence is not guaranteed. To prevent these drawbacks,
the recursive estimator is introduced. It is expected to exhibit higher BMS-applicability in on-line monitoring
of SOH.

2. Reviewing the Original Scheme

Before addressing a recursive estimator, we briefly revisit the original scheme based on a batch
estimator. In the process of the original scheme, we utilize several types of batch estimators. Thereby,
we could estimate the state and parameters of the battery model (see Table 1).
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Table 1. Comparison of batch estimators used in the original scheme.

Type of Estimator Estimate Notes

Linear Least-squares Parameters in the battery model State (SOH) is measured and provided.
Non-linear Least-Squares State (SOH) in the battery model Parameters are estimated and provided.

Weighted Least-Squares ditto Each measurement is unequally weighted
according to its confidence.

2.1. Linear Least-Squares

As presented in Table 1, linear least-squares is applied to estimate parameters in the battery model.
In this paper, we will call it ordinary least-squares (OLS) in contrast with weighted least-squares (WLS).
As discussed earlier, the original scheme exploits changes in the shape of the charge curve with respect
to the SOH. This complex relationship can be captured conveniently with the battery model through
metamodeling. A series of reformulations of the charge curve finally yields the battery model in the
form of the times elapsed to reach target voltages with respect to the SOH. Accordingly, the battery
model is reformulated in the form of a second-degree polynomial as

tk =
2∑

p=0

ak,p × SOHp = ak,1 + ak,2 × SOH + ak,3 × SOH2 (1)

where the values of the parameters ak,p (k = 1–n, p = 1–3) are determined by the corresponding target
voltages Vk (k = 1–n). Equation (1) can be expanded as

t1

t2
...

tn

 =


a1,1

a2,1
...

an,1

+


a1,2

a2,2
...

an,2

× SOH +


a1,3

a2,3
...

an,3

× SOH2 (2)

where n = 13 as the target voltage increases from 3650 to 3950 mV at 25 mV intervals. For example, the
time required to reach the first target voltage V1 (3650 mV) is predicted as t1 = a1,1 + a1,2 × SOH + a1,3 ×

SOH2. Hence, the values of the parameters a1,p corresponded to their target voltage V1. Similarly, the
time required to reach the final target voltage V13 (3950 mV) is t13 = a13,1 + a13,2 × SOH + a13,3 × SOH2.
This can be also expressed as

t13 =
(

1 SOH SOH2
)

a13,1

a13,2

a13,3

 (3)

If formally organized, suppose
(
ak,1, ak,2, ak,3

)T
= Hk is a constant yet unknown parameter vector;(

1, SOH, SOH2
)
= (x1, x2, x3) = x is a known state vector; and tk = yk is a noisy measurement. As the

parameters of the reformulate model are linear, y can be a linear combination of x with the addition of
certain measurement noise ν. Accordingly, Equation (3) can be generalized as

yk = xHk + νk (4)

This section describes determination of the best estimate H̃k of Hk by using the linear OLS. Given
the state vector x, the difference between the measured values and predicted values, namely, the
prediction error, is described as

ε =
n∑

k=1

(
yk − xH̃k

)
(5)
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From the perspective of least-squares, the value of H̃k that minimizes the cost function is obtained by

cost
(
H̃k

)
= εTε =

n∑
k=1

(
yk − xH̃k

)2
(6)

The minimum of Equation (6) can be determined by setting the derivative of the cost function
with respect to H̃k as zero

∂cost
(
H̃k

)
∂H̃k

= −2xT
(
yk − xH̃k

)
= 0 (7)

The solution of Equation (7) results in a normal equation that enables us to estimate H̃k

(
xTx

)
H̃k =

n∑
k=1

xT yk (8)

Provided xTx is non-singular and invertible, the solution takes the form

H̃k =
(
xTx

)−1
n∑

k=1

xT yk (9)

where the measurement yk is obtained from battery cells at different SOHs ranging from 100 to 70%,
which corresponds to the state x. As shown in Figures 7 and 10 in [15], the shape of the charge curve is
affected by the SOH as well as other operational factors before charging, including the duty cycle, rest
time, SOC, and temperature. Thus, the values of the contributing factors other than SOH are carefully
selected and fixed while measuring the training data. Thereby, they represent various real-world
conditions that LIBs for BEVs undergo (see Table 2).

Table 2. Test conditions for measuring the training data.

Duty Cycle Rest Time SOC Temperature C-Rate

FTP 1 min 40% 25 ◦C 1.45C (equivalent to 50 kW charging)

The resulting parameter vector H̃k by means of the linear OLS is tabulated in Table 3.

Table 3. Estimated parameters in the battery model.

Vk ak,1 ak,2 ak,3

3650 −1.542 9.934 × 102 1.125
3675 −4.000 1.000 × 103

−1.291 × 10−10

3700 5.430 × 10 8.258 × 102 1.317 × 102

3725 9.359 × 10 6.697 × 102 2.843 × 102

3750 2.111 × 102 2.751 × 102 6.296 × 102

3775 2.278 × 102 1.477 × 102 8.197 × 102

3800 1.612 × 102 2.745 × 102 8.357 × 102

3825 1.311 × 102 3.226 × 102 8.923 × 102

3850 1.013 × 102 3.797 × 102 9.414 × 102

3875 1.086 × 10 6.121 × 102 8.704 × 102

3900 −1.183 × 102 9.740 × 102 7.018 × 102

3925 −2.112 × 102 1.252 × 103 5.789 × 102

3950 −2.848 × 102 1.495 × 103 4.689 × 102
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2.2. Non-Linear Least-Squares

The parameters in the reformulated model are determined by employing the linear OLS. Thus,
our battery model becomes ready for use. Because the battery model is non-linear in its state, i.e., SOH,
Equation (1) can be expressed with a non-linear function of h as

tk = h
(
akp, SOH

)
(10)

The previous section described the determination of the values of the parameters ak,p
(k = 1–n, p = 1–3) (see Table 3). Because they are determined by the corresponding target voltages Vk
(k = 1–n), Equation (10) can be rewritten as

tk = h(Vk, SOH) (11)

If formally stated, suppose SOH = x̃ is an unknown state; and tk = yk is a noisy measurement at
the corresponding voltages Vk. Equation (11) can be generalized as

yk = h(x̃) + νk (12)

This section describes our determination of the best estimate x̃ of x by using the non-linear OLS.
For such non-linear systems, the normal equation in Equation (9) needs to be modified as

∆x̃ =
(
JT J

)−1
n∑

k=1

JT∆yk (13)

where the state x̃ is estimated by successive approximation, x̃ = x̃ + ∆x̃. The Jacobian matrix J in
Equation (13) is defined as

J =
∂h(x̃)
∂x̃

(14)

where J is in the form of a single column vector because the state x is a scalar value. The measurement
yk in Equation (13) is acquired from battery packs in use for a fleet of BEVs. This is distinct from
the training data whose preparation was described in the previous section. Now, we validate the
parameterized model and its state estimator, i.e., the non-linear OLS. To achieve this, such noisy
measurements are necessary, which will reflect randomly specified real-world conditions. We call it
test data, in contrast to the training data. As shown in Figure 12 in [15], our validation concludes that
the OLS is not reliable against the test data as it fails to satisfy the requirements, including that of an
estimation error less than 3%. This is primarily owing to the measurements with significant noise,
which correspond to the shape of the charge curve distorted by the uncontrolled operational factors
before charging. It is also illustrated that the early part of the charge curve is more vulnerable to being
noisy. This can be interpreted as the early part being less reliable than the later part. In order to provide
higher weights to more reliable data points on the later part of the charge curve, we introduce the WLS
in the next section.

2.3. Weighted Least-Squares

The battery model is equivalent to Equation (1). However, in this section, we assume the
measurements to be unequally reliable. This is reflected in test data. Suppose the noise for each
measurement νk (k = 1–n) has zero mean and is independent of each other. Then, the covariance
matrix for all the measurement noise can be represented as

R = E
(
ννT

)
= diag

(
σ2

1, σ2
2, · · · , σ2

n

)
(15)
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The prediction error is considered as before. Thus, the residual vector is ε = (ε1, ε2, · · · , εn)
T. For

the WLS, the cost function to be minimized is the summation of squared residuals weighted divided
by the error variance:

cost(̃x) = εTR−1ε =
ε2

1

σ2
1

+
ε2

2

σ2
2

+ · · ·+
ε2

n

σ2
n

(16)

At a minimum, the partial derivative of the cost function should vanish, so that

∂cost(̃x)
∂̃x

= −2yTR−1H + 2̃xTHTR−1H = 0 (17)

Equation (17) is solved to obtain the normal equation that enables us to estimate the state x̃ against
the unequally reliable measurement y:

x̃ =
(
HTR−1H

)−1
HTR−1y (18)

Replacing R−1 with the weight vector W yields

x̃ =
(
HTWH

)−1
HTWy (19)

Again, for similar non-linear systems, the normal equation in Equation (19) is modified as

∆x̃ =
(
JTWJ

)−1
JTW∆y (20)

As shown in Figure 12 in [15], our validation concludes that the WLS is reliable against the test
data as it is capable of satisfying the requirements including an estimation error less than 3%. By
providing more weights to the later part of the charge curve, where the data points are more reliable
that those in the early part, the estimation error is reduced by 7.8% point.

3. Problem Statement

With reference to the implementation of the WLS to BMSs, we could identify scope for further
improvement. This is motivated primarily by our need for an alternative state estimator that exhibits
higher BMS-applicability than the WLS, while being as reliable as the WLS.

For on-line state estimation, a recursive process tends to be preferred over a batch process. This is
true also for SOH estimation. For the BMS, SOH estimation is one of its multiple tasks. Therefore,
the implemented SOH estimator is required to run in conjunction with other tasks within a common
timeframe. To process multiple tasks using a single-core processor, a scheduler is necessary to decide
the task to be executed next. A scheduler in the BMS assigns a timeslot to each task in equal portion and
in circular order, thereby processing multiple tasks without priority. We generally call it a round-robin
scheduler. A default timeframe common to all the tasks is set to 10 ms. Tasks that need to be executed
at higher frequency are assigned at every 10 ms timeslot. The 10 ms tasks primarily include cell
monitoring. For example, the voltages from every 96 cells are measured at every 10 ms interval.
The current is measured similarly. Such cell monitoring generally consumes less than 2 ms out of the 10
ms timeslot. Tasks that may run at lower frequencies are assigned once every ten 10 ms timeslots. This
operates in conjunction with the 100 ms timeslot. The 100 ms tasks involve, for example, battery state
estimation. SOH estimation belongs to this category. The SOC and internal resistance are also predicted
at every 100 ms interval. Taking into account the relatively slow dynamics of battery states, the 100 ms
intervals are considered timely. Within the 10 ms timeslot, the 100 ms tasks are assigned after the 10
ms tasks. This implies that the 100 ms tasks should be performed during the time remaining within
the 10 ms timeslot, which is at most approximately 5 ms with a time margin of safety (see Figure 2). If
the 100 ms tasks run out of time, the task to be run next lags behind schedule. Thus, a scheduler in the
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BMS fails to satisfy real-time guarantees. The problem we are concerned with is the vulnerability of
batch estimators to this failure.

10 ms 

8 9 10 6 7 8 9 10 1 2 3 4 5 1 2 

100 ms 

… … 

10 ms 
task 

8th 100 ms 
task 

10 ms 

~2 ms ~5 ms 

Figure 2. 

Figure 2. Schematic of the real-time scheduler in the BMS.

As previously noted, the implemented SOH estimator comprises two steps: data measurement
and state estimation. As SOH estimation is a 100 ms task, the time periods available to each of these is
5 ms. However, the execution times required to complete them are unequal. The data measurement
typically consumes approximately 2 ms or less, whereas the state estimation generally uses up the
maximum permitted time and occasionally exceeds it. This is mainly because the state estimation
incurs longer CPU time than the data measurement does. During the data measurement, the times
consumed for reaching the target voltages are measured and then stored in the measurement vector.
In contrast, the state estimation is supposed to address computationally denser tasks in the provided
time. During the state estimation, the times required to reach the target voltages are first predicted
from the battery model and then stored in the estimate vector. The residual vector is produced by
subtracting the estimate vector from the measurement vector. Next, the weight vector is produced by
taking the reciprocal of the residual vector. Then, the Jacobian, the partial derivative of the residual
vector, is numerically calculated. With the calculated Jacobian, the state is updated iteratively until
it converges. As a consequence, the execution time required for the state estimation is significantly
longer and more uncertain than that required for the data measurement. This is more likely to break
real-time guarantees.

This potential albeit critical problem could be addressed by applying a recursive estimator to on-line
state estimation. In the following section, we introduce recursive least-squares (RLS) that aids in spreading
the computational costs across consecutive timeslots, which is crucial to the BMS implementation.

4. Introducing the Revised Scheme

Similar to the original scheme, the revised scheme captures the shape of the charge curve varying
with the SOH. However, rather than the batch estimators, a recursive estimator is employed, expecting
its higher applicability to on-line monitoring of the SOH. Suppose we estimate a state x̃k−1 after k− 1
measurements and then obtain a new measurement yk. Using the RLS, we update x̃k−1 to x̃k without
requiring the solving of the normal equation in Equations (9) or (20), which is computationally intensive.

We first observe the final form of the RLS:

x̃k = x̃k−1 + Kk(yk − x̃k−1Hk) (21)

where the gain vector Kk corrects the previous state x̃k−1 with the one-step-ahead prediction error
yk − x̃k−1Hk. That is, the new state x̃k is corrected from the previous state x̃k−1 by the gain vector Kk.
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With the aim of deriving Equation (21), the normal equation in the previous section is rewritten in the
recursive context, so that  n∑

k=1

HkHT
k

x̃k =
n∑

k=1

Hkyk (22)

Provided that
∑

HkHT
k is non-singular and invertible, the solution takes the following form:

x̃k =

 n∑
k=1

HkHT
k

−1 n∑
k=1

Hkyk (23)

Reformulating with Pk and bk yields
x̃k = Pkbk (24)

where Pk =
(∑

HkHT
k

)−1
and bk =

∑
Hkyk. In the recursive perspective, Pk and bk can be described

with the previous Pk−1 and bk−1, respectively:

P−1
k = P−1

k−1 + HkHT
k (25)

bk = bk−1 + Hkyk (26)

Equation (25) is rearranged as

Pk−1 = Pk + PkxkxT
k Pk−1 (27)

Then, multiplying by xk yields

Pk−1xk = Pkxk
(
1 + xT

k Pk−1xk
)

(28)

Multiplying this by
(
1 + xT

k Pk−1xk
)−1

xT
k Pk−1 yields

Pk−1xk
(
1 + xT

k Pk−1xk
)−1

xT
k Pk−1 = PkxkxT

k Pk−1 (29)

Substituting Equations (27), (29) is formulated as

Pk = Pk−1 − Pk−1xk
(
1 + xT

k Pk−1xk
)−1

xT
k Pk−1 (30)

Now, substituting Equations (26) and (30) into Equation (24) yields

x̃k =
{
Pk−1 − Pk−1xk

(
1 + xT

k Pk−1xk
)−1

xT
k Pk−1

}{
bk−1 + Hkyk

}
(31)

Noting that xk−1 = Pk−1bk−1, Equation (31) can be expanded to yield

x̃k = x̃k−1 + Kk(yk − x̃k−1Hk) (32)

with the gain vector

Kk = Pk−1xk
(
1 + xT

k Pk−1xk
)−1

(33)

As the WLS mitigates the effect of obsolete measurements on the state estimation, the RLS is also
expected to do so. As aforementioned, this is mainly related to the fact that not all measurements
are equally reliable. The early part of the charge curve is subject to being noisier than the later part
because it is more exposed to the effect of the operational factors before charging. For recursive
estimators, there are generally two options to provide higher weights to more reliable data points.
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One is commonly called a moving rectangular window, and the other is an exponentially weighted
window (see Figure 3a,b). The second option is selected in this work as it functions more similarly to
the WLS. As its name indicates, the exponentially weighted window can provide progressively higher
weights to the more current data points. Thereby, it causes the state estimation to be more sensitive to
recent changes in the shape of the charge curve. By applying an exponential forgetting factor α, the
gain vector Kk in Equation (33) is modified as

Kk = Pk−1xk
(
α+ xT

k Pk−1xk
)−1

(34)

with the covariance matrix
Pk =

1
α

(
Pk−1 −KkxT

k Pk−1

)
(35)

Figure 3. 
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(c) Effect of forgetting factor α on the shape of the memory in the recursive estimator. The exponentially
fading memory is characterized by a decay time constant τ.

In Equations (34) and (35), α is relevant to a decay time constant τ by

α = exp
(
−

∆t
τ

)
(36)

where ∆t is a time interval within data points (see Figure 3c). A more detailed description of RLS is
available in [18].

5. Experimental Validation of the Revised Scheme

In this section, we describe the experimental validation of the revised scheme from two aspects.
One is from the perspective of BMSs. It addresses, for example, the CPU time and memory footprint
required to implement the recursive estimator. The other is from the batteries’ perspective. It addresses
the accuracy of the SOH estimation by using the recursive estimator. Each of these performance metrics
of the recursive estimator is compared to those of the batch estimator such that the revised scheme
could be evaluated in comprehensive and quantitative terms.

Prior to assessing the revised scheme, we briefly introduce the hardware specification of the BMS
used in this work. As described in [15], the previous BMS is not equipped with the floating-point unit
(FPU), which is specifically designed to perform floating-point arithmetic. It is established that the RLS
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exhibits finite precision effects, which causes it to become numerically unstable and eventually fail to
converge. In order to run the RLS in a fast, effective, and reliable manner, an FPU-equipped BMS is
newly deployed in this work (see Table 4).

Table 4. Comparison of BMS hardware specification.

Previous New

Model XC2387 TC264D
CPU 16 bit, 80 MHz, without FPU 32 bit, 200 MHz, with FPU

RAM, ROM 82 kB, 768 kB 240 kB, 2.5 MB

5.1. BMS Implementation

With the introduction of the RLS, the process of the revised scheme comprises of the iteration of
the data measurement, and the state estimation. Before the first measurement (k = 0), we have certain
prior information about the state. This becomes our initial state. If we do not have the prior SOH, the
initial SOH is set as one. Although this is an unfavorable condition to the SOH estimator, it could
occur if the prior SOH stored in a BMS is unavailable, e.g., owing to the battery or its BMS replacement.
There is some uncertainty of the initial state. This becomes our initial covariance. The initial covariance
is set close to zero, i.e., 1e-4. After the first measurement (k = 1), we sequentially update the state
and its error covariance according to (32–35). As noted before, the target voltages are predetermined
as 3650–3950 mV at intervals of 25 mV. Thereby, 13 data points are produced. Hence, after the 13th
measurement (k = 13), we finalize this update. In order to impose higher weights upon the more
recent measurements, a forgetting factor of 0.7 is selected and applied. With these hyper-parameters,
the recursive estimator is implemented to the BMS.

It is observed that the implemented recursive estimator is capable of spreading CPU time across
consecutive timeslots while guaranteeing real-time execution of tasks (see Figure 4). The recursive
estimator exhibits a largely even execution time in the order of 5 ms. In contrast, the batch estimator
exhibits a varying execution time ranging from 1 to 8 ms. This is related mainly to its two steps. The data
measurement consumes less than 2 ms, whereas the state estimation requires 6–7 ms. It is also observed
that the implemented recursive estimator can reduce the memory footprint by over 60%. The batch
estimator primarily carries eight long vectors. They include the vectors of measurements, estimates,
residuals, weights, and Jacobian. They also include the three parameter vectors. Their column size is
13. Each vector thus consumes 104 bytes (8 bytes × 13 floating-point numbers). Moreover, overall,
832 bytes of RAM are always required during run-time. In contrast, the recursive estimator uses
only the three parameter vectors. Thus, only 312 bytes of RAM are occupied. It is observed that this
comparison considers only such long vectors that require relatively large arrays. Considering the
uniform CPU time and the low memory usage, it is concluded that a recursive process is more readily
applicable to the BMS than a batch process is.
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Figure 4. Comparison of (a) WLS and (b) RLS in terms of execution time required.
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5.2. SOH Estimation

The test data sets are consistent with those provided in the original work. Two battery packs
in use for a fleet of BEVs are employed to provide the test data. Their present capacities are first
measured under the standard conditions. The values obtained are 35.8 Ah and 29.6 Ah, respectively.
Each of them has a nominal capacity of 42 Ah. Thus, their SOHs are 85.3% and 70.4%, respectively.
It is observed that the SOH of the entire pack is determined by the cell that has the least capacity and
generally exhibits the largest internal resistance. Then, their present capacities are estimated under
randomly specified real-world conditions. With respect to the test data, it is observed that the recursive
estimator is as reliable as the batch estimator (see Figure 5); the difference between the two estimators
is less than 1%. The difference between the estimate from the recursive estimator and the measurement
is also within 1%.
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Figure 5. Comparison of WLS and RLS in terms of estimation error. The test data is obtained from the
battery packs at (a) 85.3% SOH and (b) 70.4% SOH, which is consistent with that presented in Figure 12
in [15].

These results are from the recursive estimator for implementation with hyper-parameters, including
a forgetting factor of 0.7. In general, the forgetting factor affects two conflicting properties of a recursive
estimator: tracking and convergence. The selection of an effective value for the forgetting factor is thus
based on a trade-off between these. It is observed that as the forgetting factor reduces to 0.7, better
tracking is achieved (see Figure 6a–d). In contrast, as the forgetting factor decreases below 0.7, lower
convergence is observed (see Figure 6e,f). This illustrates that specifically for our problem, a forgetting
factor of 0.7 is optimal in that it will aid the RLS in straightforwardly adapting to recent measurements,
while preventing the RLS from becoming too sensitive to measurement noise.
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Figure 6. Effect of forgetting factor α on tracking and convergence performance of RLS. The forgetting
factors α to be compared are (a) 1, (b) 0.9, (c) 0.8, (d) 0.7, (e) 0.6, and (f) 0.5. The test data is obtained
from the battery pack at 85.3% SOH.

6. Conclusions

In this work, the original scheme based on a batch process is revised, considering its BMS
implementation. The original scheme uses the WLS, which requires Jacobian calculation and matrix
inversion to solve the normal equation. Therefore, in a batch process, state estimation requires significantly
more intensive CPU utilization and larger memory footprint than those for data measurement. This is
detrimental to its BMS implementation. By replacing a batch process to solve the normal equation with a
recursive update, the revised scheme aids in spreading CPU utilization. The revised scheme also aids
in reducing memory footprint because it does not require long and multiple vectors to formulate the
normal equation. The advantage of the revised scheme is quantitatively validated against the test data.
It is observed that the recursive estimator spends largely uniform execution time in the order of 5 ms.
This is in contrast to the batch estimator, which exhibits varying execution time ranging from 1 to 8 ms.
Furthermore, it is observed that the recursive estimator occupies more than 60% less memory footprint
than the batch estimator does. Notwithstanding such substantial revisions made to the state estimator, a
similar level of accuracy of SOH estimation is attained.
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