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Abstract: The bird swarm algorithm (BSA) is a bio-inspired evolution approach to solving optimization
problems. It is derived from the foraging, defense, and flying behavior of bird swarm. This paper
proposed a novel version of BSA, named as BSAII. In this version, the spatial distance from the center
of the bird swarm instead of fitness function value is used to stand for their intimacy of relationship.
We examined the performance of two different representations of defense behavior for BSA algorithms,
and compared their experimental results with those of other bio-inspired algorithms. It is evident
from the statistical and graphical results highlighted that the BSAII outperforms other algorithms on
most of instances, in terms of convergence rate and accuracy of optimal solution. Besides the BSAII
was applied to the energy management of extended-range electric vehicles (E-REV). The problem is
modified as a constrained global optimal control problem, so as to reduce engine burden and exhaust
emissions. According to the experimental results of two cases for the new European driving cycle
(NEDC), it is found that turning off the engine ahead of time can effectively reduce its uptime on the
premise of completing target distance. It also indicates that the BSAII is suitable for solving such
constrained optimization problem.
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1. Introduction

Nowadays, society is facing the increasing depletion of petrochemical energy, the serious
destruction of the ecological environment, and increasing car ownership. These factors promote the
rapid development of new energy vehicles like the electric vehicle. However, the power battery of the
pure electric vehicle has a series of problems, such as high cost, short range and over discharge, which
is not conducive to long-distance driving.

As a transitional model of pure electric vehicle, the extended-range electric vehicle (E-REV)
can effectively address the shortcomings above. The basic structure of a typical E-REV is shown in
Figure 1. The auxiliary engine and power generation device has been added to the mechanism of
the electric vehicle, which extends driving distance of electric vehicle. The integration of engine and
generator constitute is called the range extender (RE), the main function of which is to charge the
battery under the condition of insufficient power supply, for purpose of providing enough power to
extend driving distance. Because of separation of the engine from the road load and the balance of the
battery load, E-REV can keep the engine at the optimum working efficiency point (85%) and improve
the fuel efficiency greatly. Additional E-REV has two energy sources: engine and power battery, so an
efficient control strategy is essential to practice the coordination of the two devices, improve vehicle
performance, e.g., fuel efficiency and exhaust pollution.
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Figure 1. System structure of extended-range electric vehicle (E-REV). 
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Figure 1. System structure of extended-range electric vehicle (E-REV).

The energy management of E-REV has always been a research hotspot [1–3]. Under the different
driving conditions, the on-off time of RE for the E-REV is optimized with the target distance as the
constraint condition. The main principle of the E-REV energy management strategy is that the use of
engine is as little as possible as well as keeps the vehicle running in pure electric mode. The traditional
control strategy is that when the battery power reaches the minimum threshold, the vehicle enters
the extended range mode, the engine starts and drives the generator to produce electricity. Part of
the generated electricity charges the battery, and the other part drives the vehicle to continue driving.
When the battery power reaches the maximum threshold, the engine shuts down and vehicle enters
the pure electric drive mode.

Control method like fuzzy control has been adopted in the energy management. It has been
used for powering the battery, to keep the state of charge (SOC) in the designed threshold and
avoid overcharge and over discharge [4]. As energy management can be considered an optimization
problem, conventional planning methods were applied to the problem, such as dynamic programing,
genetic algorithm (GA), and particle swarm optimization (PSO), etc. A hybrid genetic particle swarm
optimization (GPSO) algorithm was proposed to optimize the parameters of energy management
strategy [5]. In order to solve the problem of frequent start-stop of electric vehicle engines, a
non-dominant sequencing genetic algorithm was used to optimize the start-stop interval of engines.
The optimization effect of the running time of the extender under the two control modes of early
opening and early closing is analyzed, in new European driving cycle (NEDC), urban dynamometer
driving schedule (UDDS) cycles [6]. Energy management strategy of E-REV based on dynamic
programming was designed, and optimal control rules of extender start-stop corresponding to SOC
and motor power were established [7]. Driving behavior based on prediction of vehicle speeds was
integrated into the energy management of the electric vehicle [8].

In recent years, with the unprecedented development of bionic optimization, a series of novel
algorithms have emerged [9–17]. These include the teaching and learning optimization algorithm
(TLBO, 2011) and its variants, the grey wolf optimizer (GWO, 2014) and its variants, the pigeon swarm
algorithm (PSA, 2014), the whale optimization algorithm (WOA, 2016) and the bird swarm algorithm
(BSA, 2016). Compared with GA, PSO and other mature algorithms, the optimization performance
of these new bio-derived algorithms has been greatly improved. Therefore, the application of these
algorithms in engineering attracted the attention of researchers.

The BSA as a novel algorithm, simulates the foraging behavior, defensive behavior and flight
behavior of birds. It has the advantages of few parameters and it is easy to adjust. This paper extends
the basic idea proposed in [17]. We propose a new method called BSAII with new coefficients for
evaluating birds’ ability to reach to the center. Then solve the optimization problem of engine on-off

control in E-REV with the proposed algorithm.
The rest of paper will be organized as follows. Section 2 will outline the background to BSA,

the formulation of motions for BSA, and its variants. We also propose another formulation of defense
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behavior of birds and explain the workflows of optimization with BSAII. Section 3 formulates the
energy management in E-REV. Section 4 conducts extensive optimizing simulation, and analyzes the
experiment results. Section 5 will present the experiment results of the application of BSAII on energy
management of E-REV. Conclusions are drawn at the end of the paper.

2. Principle of Brid Swarm Intelligence

2.1. Bird Swarm Intelligence

Bird swarm foraging is easier to collect more information than individual foraging. It has survival
advantages and good foraging efficiency. BSA is inspired by foraging behavior, defense behavior and
flight behavior in the foraging process of birds. It is based on information sharing mechanism and
search strategy in the foraging process of birds. The core of social behaviors and interactions in the
bird swarm put forward a novel optimization algorithm BSA. Ideally, the basic principles of BSA can
be elaborated as the following five rules [17].

(1) Each bird freely converts between defense and foraging behavior, which is a random behavior.
(2) In the process of foraging, each bird can record and update its own optimal information and

global optimal information about the food. This information is used to find new sources of food.
At the same time, the whole population share the social information.

(3) During the defense, each bird tries to move toward the center, but this behavior is influenced by
competition among populations. Birds with high alertness are more likely to approach the center
than low-alert birds.

(4) The swarm flies to another place each time. The identity of a bird converts between a producer
and a beggar. That is, the most alert bird becomes a producer, while the lowest alert birds become
a beggar. Birds with alertness between the two birds randomly become producers or beggars.

(5) Producers actively seek food, and beggars follow the producers at random.

The above five rules are described in mathematical terms as follows:
We suppose the size of the swarm is M, the number of dimensions is N. Foraging behavior in rule

(1) is formulated;
xt+1

i = xt
i + c1r1(pi − xt

i) + c2r2(g− xt
i) (1)

where, xt
i is the position of each bird, t represents the current number of iterations, i =1, 2 . . . M.

c1 and c2 are non-negative constants which represent cognitive and social acceleration coefficients
independently. r1 and r2 are the random numbers with uniform distribution in [0,1]. pi and g record
the historical optimal location of the ith bird and the historical optimal location of the whole swarm
respectively.

According to the Rule (3), birds in the swarm are trying to get close to the central area, but there is
a competitive relationship between birds. These behaviors can be expressed as follows;

xt+1
i, j = xt

i, j + A1r3(mean j − xt
i, j) + A2r4(pk, j − xt

i, j) (2)

A1 = a1 × e(−
pFiti

sumFit+ε×M) (3)

A2 = a2 × e
(−

pFiti−pFitk
|pFitk−pFiti |+ε

×
M×pFitk
sumFit+ε ) (4)

Among them, a1 and a2 are the constants of [0,2], pFiti represents the optimal value of the ith bird,
sumFit represents the sum of the optimal value of the whole swarm. ε is the smallest real number
in a computer. meanj is average value of positions in the jth dimension. r3 is the random number
between (0, 1), r4 is the random number between (−1, 1). k , i. A1 controls a bird approaching to center
position of the whole swarm and A1r3∈(0,1). A2 represents the competitiveness of ith bird versus
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kth bird. The greater A2 means compared with ith bird, the kth bird is more likely to move to the center
of the swarm.

According to the Rule (4), every once in a while FQ, birds may fly to another place for seeking
food, some birds may become producers, others will become beggars, behavior of producers and
beggars are regulated their new position according to;

xt+1
i, j = xt

i, j + r5xt
i, j (5)

xt+1
i, j = xt

i, j + FLr6(xt
k, j − xt

i, j) (6)

r5 is a Gaussian random number that satisfies the variance of 0 and the mean of 1. r6 is the random
number between (0, 1), and FL stands for the beggars getting food information from producers, FL∈[0,2].
The workflow of BSA for solving optimization problem is illustrated as Figure 2.

Electronics 2019, 8, 1223 4 of 20 

 

According to the Rule (4), every once in a while FQ, birds may fly to another place for seeking 
food, some birds may become producers, others will become beggars, behavior of producers and 
beggars are regulated their new position according to; 𝑥 , = 𝑥 , + 𝑟 𝑥 ,  (5)𝑥 , = 𝑥 , + 𝐹𝐿𝑟 (𝑥 , − 𝑥 , ) (6)

r5 is a Gaussian random number that satisfies the variance of 0 and the mean of 1. r6 is the random 
number between (0, 1), and FL stands for the beggars getting food information from producers, 
FL∈[0,2]. The workflow of BSA for solving optimization problem is illustrated as Figure 2. 

Figure 2. Workflow of bird swarm algorithm (BSA). 

2.2. Related Improvement Methods 

As a relatively new optimization algorithm, there is not much research on improvement of BSA. 
The algorithm is improved by defining inertia weight, with linear differential decline strategy, and 
linearly adjusting cognitive coefficient and social coefficient. Then different models are optimized 

If the swarm fly 
to other site?  

 

Beggar, update new 
position using Equation (6) 

 

Forage, update 
new position 

using Equation (1) 

Producer, update 
new position using 

Equation (5) 

Evaluation fitness values for all birds, find 
the global and local optima 

 

End  

No 

Yes 

No 

Yes  

Yes 

Defense, update 
new position 

using Equation (2) 

start 

No 

Yes 

No 

Evaluate fitness values 

Initialize parameters, and generate 

random positions of the birds 

If a bird is a producer? 
Distinguish by Rule (4) 

If rand < probability ? 

Get optimal results 

If t> maximum 
number of iterations? 

Figure 2. Workflow of bird swarm algorithm (BSA).



Electronics 2019, 8, 1223 5 of 19

2.2. Related Improvement Methods

As a relatively new optimization algorithm, there is not much research on improvement of BSA. The
algorithm is improved by defining inertia weight, with linear differential decline strategy, and linearly
adjusting cognitive coefficient and social coefficient. Then different models are optimized [18]. Levy
flight strategy is applied to position initialization or iteration of BSA [19–21]. In [20], the random
walk mode of Levy flight strategy increased the diversity of population and conduced to jumping
out of local optimum. Inertia weight modified by random uniform distribution improved the search
ability of BSA, besides, linear adjustment of cognitive and social coefficients was used to improve the
solution accuracy. Boundary constraints were adopted to modify candidate solutions outside or on
the boundary in the iteration process, which improves the diversity of groups and avoids premature
problems. On the other hand, accelerated foraging behavior by adjusting the sine-cosine coefficients of
cognitive and social components was achieved in [22].

2.3. BSAII

In the defensive state, a bird should not only move to the center as far as possible, but also compete
with other neighbors. The parameters A1 and A2 are two factors that reflect ability of a bird moving
to the center and competition with its neighbor bird respectively. In the traditional version of BSA,
the fitness function was used to evaluate the weight coefficients of birds flying towards the center and
affected by other birds. The function is one-dimensional, based on which the central position of the
bird swarm is not accurate.

In this paper, we use spatial coordinates of birds to formulate A1 and A2. Based on the position of
the bird group’s center coordinate, the European distance between a bird’s position and the center
is calculated separately, and the traction and competitiveness of a bird flying toward the center are
judged. We used other representations as;

A1 = a1 × epdi (7)

A2 = a2 × e
−

pdk−pdi
|pdk−pdi | (8)

where pdi is the normalized Euclidean distance between coordinates of a bird pi and the center of the
swarm meanp.

pdi = norm(
∣∣∣pi −meanp

∣∣∣) (9)

An example of normalized Euclidean distance is shown in Figure 3. The red points are the four
coordinate positions distributed in two-dimensional space, and the blue pentagonal star represents the
central position determined by the average coordinate values of the four points, which is considered as
the center point of the swarm. Pd1-pd4 in the figure mean the normalized Euclidean distance between
four points and the center one, which range from 0 to 1.

Foraging and flying behaviour are formulized as Equations (1), (5) and (6), the same as in the
previous version of BSA.

Initially, we set parameters, i.e., maximum number of iterations T, size of population M, flying
interval FQ, c1, c2, a1 and a2, and created populations x randomly.

For each cycle, within each time interval, we only need to consider two behaviours of birds,
foraging and defence. A bird behaviour is determined randomly, if the bird is looking for food, it would
update position using Equation (1). Otherwise, the bird is on the defensive, and tries to move to the
centre of the swarm. As each bird wants to fly to the centre, it is inevitable to compete with others.
We used A1 and A2 related to normalized European distance to evaluate centralized flight of the bird,
shown as Equations (7) and (8). Meanwhile the new position is regulated via Equation (2). If the
swarm stays at one site for FQ, it needs to move to the next location as a whole. In the flying process,
each bird plays a different role, i.e., beggar or producer. Birds move to new positions according to
Equations (5) and (6) respectively. The outline of BSAII can be written as Algorithm 1.
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Initially, we set parameters, i.e., maximum number of iterations T, size of population M, flying 
interval FQ, c1, c2, a1 and a2, and created populations x randomly. 

For each cycle, within each time interval, we only need to consider two behaviours of birds, 
foraging and defence. A bird behaviour is determined randomly, if the bird is looking for food, it 
would update position using Equation (1). Otherwise, the bird is on the defensive, and tries to move 
to the centre of the swarm. As each bird wants to fly to the centre, it is inevitable to compete with 
others. We used A1 and A2 related to normalized European distance to evaluate centralized flight of 
the bird, shown as Equations (7) and (8). Meanwhile the new position is regulated via Equation (2). 
If the swarm stays at one site for FQ, it needs to move to the next location as a whole. In the flying 
process, each bird plays a different role, i.e., beggar or producer. Birds move to new positions 
according to Equations (5) and (6) respectively. The outline of BSAII can be written as Algorithm 1. 

Algorithm 1 BSAII 
Step 1: Set parameters: 

Population and Dimension of bird swarm [M, N]. 
Iteration T, flying interval FQ, a1, a2, FL, Foraging probability P, etc. 

Step 2: Initialize the original positions of birds, ],,,[ 21 iNiii xxxx = , i=1,2,…M.
Step 3: Calculate the fitness function f(xi), find local and global optimal solutions. 
Step 4: For r = 1:T 
1    While r is not an exact multiple of FQ do 

   If (Pi<P)  
Bird forages for food according to Equation (1). 
Otherwise 
Bird conducts defensive action based on Equations (2), (7), and (8). 

End if 
End while 

2   Bird swarm is divided as producers and beggars, and flying to other site. The producers 
fly to new position of Equation (5), and the beggars follow the producers moving to 
Equation (6).    

3   Calculate the fitness function f(xi), update the local and global optimal solutions. 
Step 5: Output the optimal results. 

3. Energy Management of E-REV

Energy management of E-REV in this paper mainly refers to optimize the on-off timing of RE in 
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3. Energy Management of E-REV

Energy management of E-REV in this paper mainly refers to optimize the on-off timing of RE in
E-REV so as to reduce the running time of engine. This problem can be mathematically summed up as
a constrained objective optimization problem. In this paper, the penalty function method is used to
solve this optimization problem.

3.1. Constrained Optimization Problem

Optimization problem with constraints is formulized as,

min f (x), x ∈ Rn

s.t. hi(x) = 0, i = {1, 2, · · · , l}
g j(x) ≥ 0, j = {1, 2, · · · , m}

(10)
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hi and g j are equality and inequality constraints respectively. The feasible region Ω of the problem
is defined as Ω =

{
x ∈ Rn

∣∣∣hi(x) = 0, g j(x) ≥ 0
}
. A popular method to solve constrained optimization

problems is penalty function method. The penalty function [23] is constructed as;

P(x) =
l∑

i=1

h2
i (x) +

m∑
j=1

[
min

{
0, g j(x)

}]2
(11)

Therefore, the objective function is transformed to;

P(x, δ) = f (x) + δP(x) (12)

where δ > 0 is penalty factor. The bigger δ is, the heavier the punishment will be. When x∈Ω, x
is a feasible point, P(x,δ) = f (x), the objective function is not subject to additional penalties. While
x<Ω, x is an infeasible point, P(x,δ) > f (x), the objective function is subject to additional penalties.
When the penalty exists in the objective function, the penalty function should be sufficiently small to
make P(x,δ) reach the minimum value, so that the minimum point of P(x,δ) approximates the feasible
region Ω sufficiently, and its minimum value naturally approximates the minimum value of f (x) on Ω
sufficiently. The constrained optimization problem converts to unconstrained optimization problem,
which is expressed as;

min P(x, δk) (13)

here δk is positive sequence, and δk → +∞ .

3.2. Problem Formulation

A certain type of electric vehicle is selected as research object, and basic parameters of vehicle are
the same with that in [24]. Assuming that the SOC of battery power in electric vehicle should be kept
between 20% and 80%. In order to reduce the uptime of engine in E-REV, and make full use of the
power in the battery, this paper optimizes the uptime of the engine with constraint of distance. The
objective function of the optimization problem is engine running time t, defined as Equation (14);

min t =
Lo f f − Lon

L
Tcycle (14)

Tcycle is the time period, and L is the driving distance under one test condition, e.g., the NEDC cycle.
We choose an E-REV as research object, whose main parameters are listed in Table 1.

Table 1. The main parameters for E-REV.

Parameters Value

Curb weight (m/kg) 1700
Full mass (m/kg) 2100

Wheel radius (r/m) 0.334
Windward area (A/m2) 1.97
Drag coefficients (CD) 0.32

Maximum speed (km/h) >140
Total distance (km) 400

Climbing gradient (%) >20%
Transmission efficiency 0.95

State of charge (SOC) range (%) 20–80
Maximum pure electric driving range (km) >50

The vehicle parameters and component matching parameters (motor, battery, and RE) of the
E-REV were entered into the advanced vehicle simulator (ADVISOR 2002) simulator, then the NEDC
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cycle condition was selected. The simulation results including SOC change curve under the NEDC
cycle were obtained. The results showed an approximate linear relationship between the driving
distance of electric vehicles and the SOC of battery.

y = kx + b (15)

x is SOC, %. y is driving distance of E-REV, km. k and b are constant coefficients, in relation to battery
working mode. When driving distance can be accomplished with one charge and discharge cycle, the
distance when engine starts and shuts down are calculated based on Equations (16) and (17).

Lon = k1(100− ton) (16)

Lo f f = k1(100− ton) + k2(to f f − ton) (17)

ton and toff are timing of engine start-up and shutdown independently, which are represented as SOC.
The equality constraint is the requirement of trip range distance D,

D = k1(100− ton) + k2(to f f − ton) + k3(to f f − 20) (18)

ki, i = 1,2,3, are driving distance per unit charge under different conditions, the specific values are
shown in Table 2.

Table 2. Driving distance per unit charge.

Distance of Unit Charge Driving State Value [km/%]

k1 Initial pure electric 0.7310
k2 Charging 0.3667
k3 Pure electric after charging 0.7210

Inequality constraints satisfy,

to f f − ton > 0
20 < ton, to f f < 80

When the target distance exceeds one charge and discharge cycle, the engine repeatedly starts
and closes. If there are n charge and discharge cycles in the whole trip. Evaluation is processed based
on total uptime of the engine.

min t =
k2

[
60(n− 1) + (Lo f f − Lon)

]
L

Tcycle (19)

The target trip distance is calculated as Equation (20).

D = k1(100− ton) + 60(n− 1)(k2 + k3) + k2(to f f − ton) + k3(to f f − 20) (20)

4. Computational Experiment

In order to verify the effectiveness of BSAII algorithm, 20 benchmark functions were used in
computational experiments, including unimodal and multimodal examples [25,26]. BSA, particle
swarm optimization (PSO), artificial bee colony (ABC) and differential evolution (DE) were used as
algorithms for comparison. In general, two aspects were taken into account to evaluate performance
of algorithms: (1) proximity to the real optima in single operation, and (2) stability and accuracy of
optimal results using different algorithms in multiple operations. Tables 3 and 4 illustrate concrete
content of benchmark functions. In all cases, the population size was 50. The dimensions had two
different types, dimension of population in f 4, f 6–f 8, f 11–f 13, f 15, f 16 f 18–f 20 were set to two, and in
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other cases were 20. The number of iterations was set to 1000. Other parameters used in simulation
were tuned according to Table 5. FQ is the flying interval, and this was set to three. FL is the following
coefficient, and this value was a random number between 0.5 and 0.9. c3 and c4 are acceleration
constants. w is inertia weight linearly decreasing from 0.9 to 0.5 [27]. CR is crossover probability, and F
is the mutation rate [28]. f oodnumber is the number of the food sources which is equal to the number
of employed bees. limit is a predetermined number of cycles [29]. All algorithms were programmed
with MATLAB 2018a. The simulation environment was on a computer with Intel ® core™ i5-8400
CPU @ 2.80 GHz.

Table 3. Benchmark functions.

Id. Name Dimension Boundary Optima

f 1 Sphere 20 [−100,100] 0
f 2 Sum of Different Powers 20 [−1,1] 0
f 3 Sum Squares 20 [−5.12,5.12] 0
f 4 Trid 2 [−4,4] –2
f 5 Rotated Hyper-Ellipsoid 20 [−65.536,65.536] 0
f 6 Easom 2 [−100,100] –1
f 7 Matyas 2 [−10,10] 0
f 8 Booth 2 [−10,10] 0
f 9 Griewank 20 [−600,600]
f 10 Rastrigin 20 [−5.12,5.12] 0
f 11 Schwefel 2 [−500,500] 0
f 12 Shubert 2 [−5.12,5.12] −186.7309
f 13 Schaffer Function No. 2 2 [−100,100] 0
f 14 Rosenbrock 20 [−2.048,2.048] 0
f 15 Beale 2 [−4.5,4.5] 0
f 16 Needle in a Haystack 2 [−5.12,5.12] –3600
f 17 Zakharov 20 [−5,10] 0
f 18 Drop-Wave 2 [−5.12,5.12] –1
f 19 Bukin Function No. 6 2 x1∈ [−15,5], x2∈ [−3,3] 0
f 20 Three-Hump Camel 2 [−5,5] 0

Table 4. Benchmark functions.

Id. Function

f 1 f1(x) =
N∑

i=1
x2

i

f 2 f2(x) =
N∑

i=1
|x|

i+1

f 3 f3(x) =
N∑

i=1
ix2

i

f 4 f4(x) =
N∑

i=1
(xi − 1)2

−

N∑
i=2

xixi−1

f 5 f5(x) =
N∑

i=1

i∑
j=1

x2
j

f 6 f6(x) = − cos(x1) cos(x2) exp(−(x1 −π)
2
− (x2 −π)2)

f 7 f7(x) = 0.26(x2
1 + x2

2) − 0.48x1x2
f 8 f8(x) = (x1 + 2x2−7)2 + (2x1 + x2 − 5)2

f 9 f9(x) =
N∑

i=1

x2
i

4000 −
N
Π

i=1
cos( xi√

i
) + 1

f 10 f10(x) = 10N +
N∑

i=1
[x2

i − 10 cos(2πxi)]

f 11 f11(x) = 418.9829N −
N∑

i=1
xi sin(

√
xi)

f 12 f12(x) = (
5∑

i=1
i cos((i + 1)x1 + i))(

5∑
i=1

i cos((i + 1)x2 + i))

f 13 f13(x) = 0.5 +
sin2(x2

1−x2
2)−0.5

[1+0.001(x2
1+x2

2)]
2

f 14 f14(x) =
N−1∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2]

f 15 f15(x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x2

2)
2
+ (2.625− x1 + x1x3

2)
2

f 16 f16(x) = −( 3
0.05+(x2

1+x2
2)
)

2
− (x2

1 + x2
2)

2

f 17 f17(x) =
N∑

i=1
x2

i + (
N∑

i=1
0.5ixi)

2

+ (
N∑

i=1
0.5ixi)

4

f 18 f18(x) = −
1+cos(12

√
x2

1+x2
2)

0.5(x2
1+x2

2)+2

f 19 f19(x) = 100
√∣∣∣x2 − 0.01x2

1

∣∣∣+ 0.01|x1 + 10|

f 20 f20(x) = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2
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Table 5. Parameter setting.

Algorithm Parameters

BSAII, BSA a1 = a2 = 1, c1 = c2 = 1.5, P ∈ [0.8, 1], FL ∈ [0.5, 0.9], FQ = 3

PSO c3 = c4 = 2.0, w ∈ [0.5, 0.9]

DE CR = 0.9, F = 0.5

ABC f oodnumber = M
2 , limit = 10

First of all, each algorithm ran once with 1000 iteration independently. Convergence performance
on 20 benchmark functions is shown in Figure 4. Based on the graphical results, except for f 11, f 14, and
f 19, BSAII could reach the real optima in other 17 functions. In addition, better results can be obtained
by BSAII, compared with other four algorithms. Therefore, it can be shown that the performance of
BSAII algorithm outperforms other algorithms.

Additionally, each algorithm was independently performed for 50 times on 20 test instances. Due
to randomness of initial solutions for all algorithms, multiple performance indexes were used for
comparing the performance of BSAII with different algorithms. Table 6 gives the minimum (MIN),
maximum (MAX), mean (MEAN) and standard variation (SD) of 50 trials on each case. We can make
the following remarks from results of Table 6:

1. On instances of f 1~f 7, f 12, f 17, and f 20, BSAII performed better than other algorithms, in terms
of convergence rate and accuracy of optimal solution. Since the four indexes had the smallest
values compared with these obtained by other algorithms.

2. On instances of f 8, it was evident that both BSAII and DE could get the real optima (0 in Table 3),
better than the other algorithms.

3. On instances of f 9 and f 10, BSAII and BSA were better than PSO, ABC, and DE in terms of
performance indexes.

4. On instances of f 13, f 15 and f 18, BSAII, BSA and DE converged to the real optimal value, with the
same accuracy. But the convergence rate of BSAII and BSA in the early stage was faster than DE.

5. Only on instance of f 11, DE acquired the best performance over other algorithms. Solutions found
by BSAII and BSA occasionally fell into local optimum.

6. Only on instance of f 16, BSA converged to the real optimal value (–3600) every time. It was
obvious that BSA was better than the other algorithm on this example. While BSAII fell into local
optimum at times and was not convergent to –3600. But the average value of 50 trials was closer
to the optimum than that obtained by other algorithms.

7. The statistical results of f 14 and f 19 were somewhat complicated. The minimum of optimal fitness
on f 19 was found by BSAII, but the other three performance indexes of MAX, MEAN, and SD
were slightly worse than in DE. BSAII would fall into local optimum when solving benchmark
function of f 14.

Overall, we claimed that BSAII produced better convergence and more stable performance than
BSA, PSO, ABC, and DE, in most cases.
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Figure 4. Convergence of benchmark functions using BSAII, BSA, particle swarm optimization (PSO),
artificial bee colony (ABC) and differential evolution (DE).

Table 6. Statistical results obtained by BSAII, BSA, PSO, ABC, and DE in 50 trails (the best results are
in bold).

Id. Algorithm MIN MAX MEAN SD

f 1

BSAII 0 0 0 0
BSA 6.15 × 10−266 9.98 × 10−176 2.40 × 10−177 0
PSO 3150.775 11924.62 7944.131 1938.963
ABC 0.1627 12.08388 3.873986 2.878341
DE 5.88 × 10−09 8.31 × 10−07 9.04 × 10−08 1.23 × 10−07

f 2

BSAII 0 0 0 0
BSA 5.43 × 10−256 2.53 × 10−63 5.07 × 10−65 3.55 × 10−64

PSO 0.000443 0.032429 0.006521 0.00539
ABC 1.35 × 10−08 1.64 × 10−05 2.37 × 10−06 3.26 × 10−06

DE 2.17 × 10−32 1.02 × 10−20 2.05 × 10−22 1.43 × 10−21

f 3

BSAII 0 0 0 0
BSA 1.13 × 10−242 1.06 × 10−184 3.27 × 10−186 0
PSO 69.29799 315.1082 196.9478 56.54325
ABC 0.001651 0.036862 0.016376 0.008962
DE 2.98 × 10−10 6.99 × 10−09 1.51 × 10−09 1.27 × 10−09

f 4

BSAII −7 −7 −7 2.66 ×10−15

BSA −7 −7 −7 2.29 × 10−14

PSO −6.99272 −6.45886 −6.90539 0.104025
ABC −7 −6.99997 −6.99999 6.26 × 10−06

DE −7 −7 −7 2.66 × 10−15

f 5

BSAII 0 0 0 0
BSA 1.32 × 10−237 1.62 × 10−177 3.27 × 10−179 0
PSO 8375.27 48805.58 30703.65 7607.746
ABC 1.394579 48.57402 14.07298 9.398897
DE 2.91 × 10−08 5.71 × 10−07 1.59 × 10−07 1.12 × 10−07

f 6

BSAII −1 −1 −1 0
BSA −1 −1 −1 3.94 × 10−14

PSO −0.99599 −1.18 × 10−69 −0.29917 0.334968
ABC −1 −8.11 × 10−05 −0.9555 0.197304
DE −1 −1 −1 0

f 7

BSAII 0 0 0 0
BSA 3.79 × 10−251 2.53 × 10−179 5.07 × 10−181 0
PSO 1.75 × 10−05 0.002047 0.000348 0.000447
ABC 2.20 × 10−07 0.000157 3.22 × 10−05 3.99 × 10−05

DE 1.42 × 10−178 2.10 × 10−170 6.36 × 10−172 0
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Table 6. Cont.

Id. Algorithm MIN MAX MEAN SD

f 8

BSAII 0 0 0 0
BSA 0 1.36 × 10−14 2.72 × 10−16 1.90 × 10−15

PSO 0.000117 0.054104 0.011096 0.012605
ABC 2.91 × 10−08 0.000174 3.09 × 10−05 3.93 × 10−05

DE 0 0 0 0

f 9

BSAII 0 0 0 0
BSA 0 0 0 0
PSO 36.51811 113.051 77.5095 17.99438
ABC 0.669883 1.17361 1.027435 0.086522
DE 5.34 × 10−08 0.027025 0.003197 0.006494

f 10

BSAII 0 0 0 0
BSA 0 0 0 0
PSO 118.5101 174.2391 150.3891 13.19794
ABC 16.57457 41.5169 28.29116 5.126784
DE 83.19845 134.5668 110.4572 12.10043

f 11

BSAII 2.55 × 10−05 118.4384 40.26906 56.10528
BSA 2.55 × 10−05 118.4384 30.79399 51.95111
PSO 0.004037 21.11573 2.520817 4.011557
ABC 2.55 × 10−05 6.29 × 10−05 2.97 × 10−05 6.14 × 10−06

DE 2.55 × 10−05 2.55 × 10−05 2.55 × 10−05 0

f 12

BSAII −186.731 −186.731 −186.731 9.59 ×10−14

BSA −186.731 −186.731 −186.731 9.80 × 10−07

PSO −186.717 −184.601 −186.243 0.436279
ABC −186.731 −186.731 −186.731 3.28 × 10−06

DE −186.731 −186.731 −186.731 9.99 × 10−14

f 13

BSAII 0 0 0 0
BSA 0 0 0 0
PSO 2.70 × 10−06 0.017705 0.005071 0.004228
ABC 8.24 × 10−10 1.85 × 10−05 2.82 × 10−06 3.96 × 10−06

DE 0 0 0 0

f 14

BSAII 18.83609 18.97269 18.90242 0.029108
BSA 9.70 ×10−13 18.80166 1.304165 4.264392
PSO 151.1679 709.0956 455.849 117.039
ABC 19.55623 51.37853 28.38958 7.592035
DE 12.17635 16.29873 14.56445 0.859034

f 15

BSAII 0 0 0 0
BSA 0 0 0 0
PSO 2.86 × 10−05 0.012789 0.001782 0.002403
ABC 2.63 × 10−08 0.000207 5.00 × 10−05 5.51 × 10−05

DE 0 0 0 0

f 16

BSAII −3600 −2748.78 -3565.95 166.8039
BSA −3600 −3600 −3600 0
PSO −3599.74 −3024.95 −3504.13 103.0209
ABC −3598.49 −2748.78 −3307.88 297.6948
DE −3600 −2748.78 −2919.03 340.4871

f 17

BSAII 0 0 0 0
BSA 1.21 × 10−240 3.65 × 10−54 7.34 × 10−56 5.11 × 10−55

PSO 60.66649 438.8272 203.5698 81.22512
ABC 101.2244 178.586 140.5003 16.80537
DE 0.003087 0.190539 0.042672 0.037769

f 18

BSAII −1 −1 −1 0
BSA −1 −1 −1 0
PSO −0.99988 −0.93622 −0.97521 0.020419
ABC −1 −0.99996 −0.99999 7.72 × 10−06

DE −1 −1 −1 0

f 19

BSAII 7.97 ×10−05 0.14995 0.066484 0.041502
BSA 0.002607 0.147479 0.070706 0.039185
PSO 0.169037 1.416421 0.729224 0.272299
ABC 0.041325 0.298631 0.166209 0.043545
DE 0.00036 0.126775 0.063711 0.038273

f 20

BSAII 0 0 0 0
BSA 8.88 × 10−249 6.76 × 10−170 1.35 × 10−171 0
PSO 1.16×10−05 0.003825 0.000797 0.000874
ABC 1.00 × 10−16 3.08 × 10−11 1.96 × 10-12 5.64 × 10−12

DE 2.31 × 10−187 1.66 × 10−178 3.68 × 10−180 0
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5. Optimization of On-Off Control Mode

This paper selects NEDC condition for research. The NEDC working condition test consists of two
parts: the urban operation cycles and the suburban operation cycle (Figure 5). The urban operation
cycle consisted of four urban operation cycle units. The test time of each cycle unit was 195 s, including
idling, starting, accelerating and decelerating parking stages. The driving distance of the whole NEDC
was 10.93 km and the testing time was 1184 s. The maximum velocity was 120 km/h, and average
velocity was 33 km/h.
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In this paper, two instances with different target distances for E-REV are analyzed. One is
short-distance driving, in which the battery can complete the trip with one charge-discharge cycle.
Another case is long-distance driving, and the battery needs multiple charge-discharge processes.

5.1. Traditional On-Off Control Mode

5.1.1. Distance = 100 km

The control strategy was to start the engine and recharge the battery when the power reduced to
20%, and shut down the engine when the battery was charged to 80%. According to the established
model, the driving distance of the vehicle at engine start-up was 58 km. The driving distance of
the vehicle was 80km when engine was shut down (Table 7). The engine was working in a full
charge–discharge cycle, the uptime of the engine in E-REV was 2383 s. Figure 6 shows the variation
of SOC. It can be observed from the figure, that when the battery dropped to 52% after charging,
the vehicle’s distance reached 100 km.

Table 7. On-off control mode.

Mode Time [%] Distance [km] Working time [s]

ton 20 58
2383 stoff 80 80
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Figure 6. Battery volume of the electric vehicle, distance = 100 km.

5.1.2. Distance = 200 km

The distance exceeded 124 km, so more than one charge and discharge cycles would be repeated in
the process of driving motion. According to Equation (20), there were three incomplete charge-discharge
cycles. Working time of engine during vehicle in motion was 5959 s (Table 8). The SOC curve is shown
as Figure 7. From the figure, it is evident that vehicle completed the target distance in the charging
mode, while the battery SOC reached 50%.

Table 8. On-off control mode in the last cycle.

Mode Time [%] Distance [km] Working time [s]

ton 20 189
5959 stoff 50 200

Electronics 2019, 8, x FOR PEER REVIEW 17 of 21 

 

 

Figure 7. Battery volume of the electric vehicle, distance = 200 km. 

5.2. On-Off Control Mode After Optimization 

5.2.1. Distance = 100 km 

BSAII was adopted to minimize the working time of engine so as to reduce fuel consumption 

and gas pollution. The trip distance was set to 100 km. The optimization problem and the constraints 

satisfied Equations (14)–(17). The number of iterations was set to 1000. Start-up and shut-down time 

of engine can be obtained by simulation, which are shown in Table 9. According to Table 9, it was 

obviously found that the early shutdown of the engine could help reduce fuel consumption and 

exhaust emissions of engine. The trade-off relation between the working time t with iterations is 

shown in Figure 8. The variation of SOC in the battery can be observed in Figure 9. The working time 

reduced to 36.4%, compared with the traditional control strategy. 

Table 9. Optimal on-off control mode. 

Mode Time [%] Distance [km] Working time [s] 

ton 20 58 
1515 s 

toff 58 80 

 

Figure 8. Convergence curve of engine uptime optimized via BSAII. 

Figure 7. Battery volume of the electric vehicle, distance = 200 km.



Electronics 2019, 8, 1223 16 of 19

5.2. On-Off Control Mode After Optimization

5.2.1. Distance = 100 km

BSAII was adopted to minimize the working time of engine so as to reduce fuel consumption
and gas pollution. The trip distance was set to 100 km. The optimization problem and the constraints
satisfied Equations (14)–(17). The number of iterations was set to 1000. Start-up and shut-down
time of engine can be obtained by simulation, which are shown in Table 9. According to Table 9, it
was obviously found that the early shutdown of the engine could help reduce fuel consumption and
exhaust emissions of engine. The trade-off relation between the working time t with iterations is shown
in Figure 8. The variation of SOC in the battery can be observed in Figure 9. The working time reduced
to 36.4%, compared with the traditional control strategy.

Table 9. Optimal on-off control mode.

Mode Time [%] Distance [km] Working time [s]

ton 20 58
1515 stoff 58 80
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5.2.2. Distance = 200 km

When the target distance was set to 200 km, it meant that the engine needed to be turned on and
off repeatedly. The working hours of engine was calculated using Equation (19), and the distance
constraint was formulized as Equation (20). The optimal on-off mode found by BSAII is illustrated in
Table 10. According to the results, there were three charge–discharge cycles during driving process.
In the last cycle, the engine turned off when SOC in battery reached 30%, and the electric power which
was just enough to complete the entire distance (200 km). The convergence curve in the optimization
problem is shown as Figure 10. After optimization, the total running time of engine was 5168 s, a 13%
reduction in contrast to 5959 s under the traditional control strategy. The SOC of the battery power for
electric vehicles while the car was in motion is shown in Figure 11.

Table 10. Optimal on-off control mode in the last cycle.

Mode Time [%] Distance [km] Working time [s]

ton 20 189
5168 stoff 30 193
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6. Conclusions

This paper proposed another version of BSA, named as BSAII. In the version of BSAII algorithm,
the spatial coordinates of birds in solution-space instead of the fitness function were used to determine
the distance from the center of the whole bird group. Based on this method, the coefficients A1 and A2
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were more accurate than that in BSA. We examined the performance of two different representations of
defense behavior for BSA algorithms, and compared their experimental results with other bio-inspired
algorithms, including PSO, ABC, and DE. It was evident from the statistical and graphical results
highlighted that the BSAII outperformed other algorithms on most of the instances, in terms of
convergence rate and accuracy of the optimal solution. Besides this, it was the first time that BSAII
has been applied to the energy management of electric vehicles, which helps to reduce engine fuel
consumption and exhaust emissions. Based on the analysis in the previous section, it is clear that:

• The BSAII performed statistically superior to or equal to the BSA on 16 benchmark problems. On
these problems, it obtained the real optimal solution. However, in the case of Rosenbrock function
(f 14), it was prone to falling into local optimum.

• The energy management of electric vehicles in this paper referred to minimization uptime of RE.
The uptime was determined by the time interval between engine on and off. Two instances with
different target driving distances were optimized with BSAII. Results indicated that the uptime of
engine could be reduced by 36.4% with a target distance of 100 km, and 13% with a target distance
of 200 km, respectively, in the NEDC condition. Hence we can draw a conclusion that based on
the optimization strategy of BSAII, the on/off timing of the engine can be accurately controlled,
which can effectively shorten the uptime of the engine, reduce fuel consumption and exhaust
emissions, and also facilitate the next external charging.

It is hoped that in future work, more approaches will be designed to avoid the problem of local
optimum, without sacrificing the convergence rate in BSA.
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