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Abstract: With the rapid development of various new types of services, autonomous driving has
received extensive attention. Due to the dense traffic flow, the limited battery life and computing
power of the vehicles, intelligent vehicles are unable to support some computationally intensive
and urgent tasks. Autonomous driving imposes strict requirements on the response time of the task.
Due to the strong computing power and proximity to the terminal of mobile edge computing (MEC)
and the arrival of 5G, the task can be unloaded to MEC, and data can be exchanged in milliseconds,
which can reduce the task execution time. However, the resources of the MEC server are still very
limited. Therefore we proposed a scheduling algorithm that takes into account the special task of the
autopilot. Tasks will select the appropriate edge cloud execution and schedule the execution sequence
on the edge cloud by the scheduling algorithm. At the same time, we take the mobility of high-speed
vehicles into consideration. The position of the vehicle can be obtained by the prediction algorithm,
and the task results are returned to the vehicle by means of other edge clouds. The experimental
results show that with the increase of the task amount, the algorithm can effectively schedule more
tasks to be completed within the specified time, and in different time slots; it can also predict the
location of the vehicle and return the result to the vehicle.

Keywords: autonomous driving; mobile edge computing; task scheduling; location prediction;
autopilot task classification

1. Introduction

With the Internet of Things (IoT) and wireless technologies helping vehicles become smarter,
human society has entered a new era of “all things connected, all things intelligent” [1,2]. Autopilot
technology, which has provided us with better services, is the product of a deep integration of the
automotive industry with the new generation of information technology, such as high-performance
computing chips, artificial intelligence, and the Internet of Things. With the increase in vehicles, there
are also some safety issues that need to be addressed. And as a key technology for future cars, it
can significantly reduce traffic accidents caused by human factors and improve travel safety [3,4].
Self-driving vehicles need to obtain nearby environmental information from various sensor devices
deployed around them, and then adjust themselves to the surroundings quickly, based on the results
of the processing of the data, which poses a high demand for the time of task processing, such as
vision-based target detection, radar data processing, sensing and end-to-end decision-making [5]. Since
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the energy and computing power of vehicles are limited, they cannot meet the time requirements of
these tasks. Therefore we consider that tasks can be unloaded to edge cloud (roadside lights, signs, etc.),
which is a promising way to provide cloud computing capabilities within the radio access network in
close proximity to mobile subscribers [6]. With the development of high-speed networks on wireless
communication, especially the commercialization of 5G networks, vehicles can offload computing
tasks to the edge cloud to greatly reduce the task processing time [7].

In recent years, communication among vehicles has also become a hot topic of research. Self-driving
vehicles are about to begin, and a key milestone is coming with the introduction of short-range wireless
communications among cars [8]. The past decade has seen the development of different wireless access
technologies for vehicle-to-everything (V2X) communications, and an extensive set of related use
cases have been drafted, each with its requirements [9]. However, visible light communication can be
considered to complement other wireless communication technologies which could be overloaded in
dense scenarios [10].

Mobile edge computing (MEC) is a new type of computing model proposed in recent years.
MEC refers to an open platform that integrates network, computing, storage and application core
capabilities on the side close to the source or data source [11]. Therefore, the delay-sensitive computing
tasks can be offloaded to the edge cloud processing, enabling smart devices to obtain services from
the edge computing servers (ECSs) of nearby base stations (BS), which greatly reduces the network
delay [12]. This model is widely supported by academia and industry, and is considered to be one
of the key technologies for next-generation networks. An increasing number of vehicles get access
to nearby ECS, and ECS needs to collect and process a lot of data, thus causing network congestion.
But the arrival of the 5G network further improves the practicality of MEC. Due to the high speed
(transmission rate up to 10G/s), low latency (transmission delay is less than 1ms) of this 5G network, the
data can be exchanged between the vehicle and the ECS within a few milliseconds [13–15]. Therefore,
the combination of 5G and MEC can satisfy autonomous driving tasks owing to high-performance
computing and low network latency.

An increasing number of autonomous-driving functions have been developed in the research
related to autonomous driving, such as path planning, target detection, entertainment navigation, etc.
Different tasks have different time requirements. These applications almost have the characteristics of
the computationally intensive and delay sensitivity, while vehicle hardware is subject to limitations in
terms of its computational capabilities and energy consumption. This poses a significant challenge
for autonomous driving. In previous studies, the authors paid more attention to the processing of
each task, rather than the scheduling between multiple tasks. In addition, the previous studies also
assumed that the vehicle was stationary, without considering the impact of the vehicle’s high-speed
mobility and external environment on task processing.

When more and more time-constrained tasks are offloaded to the edge cloud for execution,
the factors affecting the task response time are not the network delay or the distance of the
offloaded transmissions of these 5G networks, but the task execution time required for processing the
computationally intensive tasks. Moreover, in order to meet the time limit of each task, the task must
be completed before the deadline, since the resources of the ECS are still very limited. The problems
are converted into how to schedule tasks execution order to meet their requirement after they are
offloaded to the edge cloud. For the car, they expect to get high-quality services; for the ECSs, they
want to provide services for as many users as possible. The simplest solution is to execute the tasks in
the order of their arrival, but this cannot fully utilize the resources of the ECS, and cannot satisfy the
needs of more tasks. As a result, how to determine the order of the execution of these tasks, in order to
make full use of the resources of the ECSs, and to make more tasks completed before the deadline,
becomes a key issue [16].

According to the characteristics of the automatic driving task, this paper divided the task into
three levels, and assigned corresponding priorities. At the same time, this paper has considered the
influence of different external conditions on the vehicle task processing and its dynamical adjustment
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of the task’s deadline by integrating other external factors. Then, based on these characteristics of the
task, we designed a new task scheduling algorithm, which enables ECSs to perform as many tasks
as possible under the constraints of time and resources. It is called the priority urgency replacement
strategy (PURS). When the task is processed, the task result needs to be returned to the vehicle. This
paper has considered the particularity of autonomous driving tasks and the mobility of vehicles at high
speeds [17]. Due to the high-speed mobility of the vehicle, the communication range of the base station
is limited (the average coverage is about 200 square meters) [18,19], which means that the vehicle may
not be within the communication range of the ECS of the task unloading.

Therefore we discussed two cases: If the vehicle is within the communication range of the current
ECS, the result is directly transmitted back to the vehicle. If not, then we apply the Kalman filter
algorithm to the next vehicle according to the historical trajectory of the vehicle. The position of the
moment is predicted and positioned, and then the mission is transmitted to the vehicle by means of
the other ECS. The main contributions of this paper are listed below:

• Due to the specificity of vehicle tasks, this paper assigns different priorities according to diverse
types of tasks, and considers the impact of the external environment on the vehicle task execution
time, and dynamically adjusts the mission’s deadline.

• This paper proposes a new task scheduling scheme, which fully considers the particularity of
vehicle tasks, and schedules the execution order of tasks by their property.

• Considering the characteristics of the high-speed mobility of vehicles, the position of the next
time slot of the vehicle is predicted by analyzing the historical trajectory through Kalman
filter algorithm.

2. Related Work

In recent years, with the rise of 5G and the Internet of Things, a number of people have shown
a strong rise in the use of mobile technology to improve the performance of autonomous driving.
There are a lot of researches on autonomous driving technologies, including detection radar, camera
hardware, and other hardware design. At the same time, edge computing also provides enormous
help for intelligent driving, like unloading, assisted driving, intelligent traffic, and so on [20,21].

2.1. Mobile Edge Computing

Edge computing has been studied as an extension of cloud computing that can provide real-time
communication performance and strong computing power at the edge of the network. MEC is a
supplement to cloud computing, not an alternative. Task scheduling is a traditional topic that involves
transferring tasks to the external platform due to the limited computational power, storage and energy
of the mobile device [20], which can improve computing efficiency, reduce task completion time, and
utilize resources efficiently from other devices in the system [22,23]. Therefore, it has been extensively
studied in wireless networks [24,25]

With the development of computing-intensive and time-sensitive applications, task scheduling is
becoming a research hotspot for MEC. Mao et al. develop a dynamic task scheduling method for an
MEC system with an energy harvest mobile device and an edge server [25]. In the context of the smart
city, Deng et al. proposed an improved DIJ-ADMM task scheduling algorithm based on the ADMM
algorithm, which effectively improved the task completion time and task unloading time [26].

Chen et al. analyze the issue of the unloading of computation intensive and data intensive tasks,
dividing this optimization problem into two sub-problems: Task placement and resource allocation [27].
However, none of these studies take into account the particularity of the task, and cannot satisfy the
needs of a particular scenario.
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2.2. Autonomous Driving

The concept of connected vehicles was proposed in 1996, and many researchers have been working
in this area to improve the safety and convenience of driving [28,29]. Then, many companies, research
institutions and auto vendors showed great interest in autonomous driving [21,30]. Furthermore,
some works have surveyed the current state-of-the-art planning and control algorithms with a
particular emphasis on the urban setting [31,32]. However, wireless network bandwidth and real-time
performance are often the bottlenecks of cloud computing for connected vehicles [28].

Integrating the IoT with mobile technology makes a variety of smart devices generate large
amounts of data every day. For example, the Boeing 787 generates 5 GB of data per second and a
self-driving car produces 4 TB of data per day [33]. As a result, data can be processed on the ECS with
shorter response times, more efficient processing, and less network pressure.

With the arrival of 5G, the network transmission delay is no longer the most critical issue of
self-driving. But how to deal with the data collected by various sensors in the shortest time is the most
important thing [17,34].

Chowdhuri et al. consider the multiple behavior of autonomous driving modalities as distinct
modes of an end-to-end autonomatic deep neural network by using the method of Multi-Modal
Multi-Task Learning [35]. Blasinski et al. explain an approach to develop image system designs that
meet the task requirements for autonomous vehicle applications [36]. Deyo et al. present an approach to
the problem of Qualitative Autonomous Driving (QAD) using risk-bounded conditional planning [35].
These applications almost have the characteristics of being computationally intensive and sensitive to
time delay, while vehicle hardware is limited in terms of their computational capabilities and energy
consumption. This poses a significant challenge for autonomous driving.

Hou et al. [37] proposes a vehicular fog computing system which aggregates the underutilized
communication and computation resources of individual vehicles to enhance the quality of services
and applications. Neto et al. [38] present a cloud-based MEC offloading framework and designed an
efficient computation offloading strategy to further reduce the latency and the transmission cost of the
computation offloading.

There are many methods for vehicle trajectory prediction. Here we use the Kalman filter algorithm.
Indeed, Simo et al. discuss connections of Gaussian process regression with Kalman filtering and present
methods for converting spatiotemporal Gaussian process regression problems into infinite-dimensional
state-space models [39]. In fact, this method is also used for crowd perception. Dardari et al. propose
a combined Gaussian Process (GP)-State space method for crowd mapping whose complexity and
memory requirements for field representation do not depend on the number of data measured [40].

3. System Model and Problem Formulation

In this section, we will introduce the system model and mathematically define the new metrics
of the network. Then we give a definition of the proposed problem and provide a formulation for
the problem.

In our system, we consider the task of autonomous driving particularity, such as the urgency
of the task, the priority of the task, etc. Thus, the system is concerned with how to deal with the
scheduling task and how to complete as many tasks as possible. Taking into account the mobility of
vehicles on the road at high speed, we can predict the vehicle’s position using the vehicle’s historical
trajectory. In the rest of this section, first, we have a preliminary analysis of the problem. Second, we
design a dynamic adjustment of the task’s deadline, and schedule the task to execute inside ECS. Third,
we use Kalman filtering to predict the position of the vehicle and return the task results to the vehicle.

3.1. System Overview

As shown in Figure 1, self-driving vehicles use a variety of sensors to obtain surrounding
environmental information. Then the result of these tasks are processed to determine the movement
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of the vehicle, including path planning, overtaking acceleration, weather forecasting, navigation,
entertainment, and so on. For these tasks’ diversity and complexity, vehicles cannot process so many
intensive tasks locally. Hence, the tasks needs to be offloaded to the edge device to meet the needs of
autonomous driving. The vehicle can only communicate with the ECSs it covers.Electronics 2019, 8, 1221 5 of 21 
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When the vehicle is ready to unload the task Ti to the surrounding ECSs, the vehicle will first send
an unloading request to the nearest ECS it currently covers. This request includes all the information
of Ti. Then ECS compares its remaining resources and requires time to complete the task so as to
determine whether it can be executed here. If not, the PURS is used to select other ECSs to perform
this task.

Due to the complexity of the road conditions, we divide the type of autopilot task into three levels:
Common tasks (CTs), referring to tasks related to the user’s entertainment, such as listening to songs,
playing games, watching movies, online calls, browsing news. They will not affect the normal driving
of the vehicle, and are only related to the user’s experience. Therefore, such tasks have the lowest
priority; important tasks (ITs), referring to tasks related to assisted driving and applications such as
navigation, real-time traffic information, which assist drivers to drive safer. Without them, it would
be inconvenient for the drivers; very important tasks (e.g., obstacle detection, lane following, path
planning, etc. Which can affect vehicle speed, direction, road choice, etc.) (VITs). The assessment of
the surrounding environment is a key part in autonomous driving and safety-related applications,
such as path selection, acceleration, cruise control, braking . . . . Incorrect or overdue execution of such
tasks will result in devastating consequences for vehicles and people. Hence VITs are given the highest
priority. Compared to VITs, ITs can accept a longer waiting time. It is very important for the latter
scheduling algorithm.

When the vehicle unloading task is initialized, the first step is to decide to which ECSs to offload
the task. The 5G network enables the data transmission between the vehicle and ECSs to be completed
in milliseconds. It is not the network transmission that affects the delay of the entire system at this
time, but the execution time in the task processing. Therefore, the unloading time and return time of
our task can be negligible. The time consumption of the whole system is only the waiting time of the
task in the ECS and the execution of the task inside the ECS. When the task is unloaded to the ECS,
and the scheduling algorithm is executed inside this ECS, we only consider the state inside the ECS
at the current time (such as the number of tasks, waiting for queues), regardless of the impact of the
subsequent time on the current task.
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We define that, at initialization, the vehicle will send an unloading request to the nearest ECS.
Then the ECS will determine whether the task can be executed in the current device according to our
PURS algorithm. If yes, then it will be executed on the current ECS. If no, the vehicle will send an
unloading request to all ECSs it covers, and select a suitable ECS to perform the task. Then the PURS
schedules the execution order of the internal tasks of the ECS. In this way, we can minimize the time
cost for the entire system while meeting our task requirements.

In our scheduling algorithm, the execution order of tasks in ECSs is the only point we focused on.
If all the ECSs beside the vehicles cannot satisfy the task, some tasks can be migrated to other ECSs. The
PURS not only satisfies the time-limited task of self-driving, but also satisfies the priority of different
tasks. Therefore, we assume that the task execution in all edge devices conforms to our scheduling
algorithm. When the task is processed, the result is returned to the vehicle. But in our model, the
vehicles are moving at high speed. At this time, the vehicle may not be in the communication range of
the ECS for task execution. Based on this, we use the Kalman filter algorithm to predict the location of
the vehicle according to its historical trajectory. If the vehicle is not within the communication range
of the ECS of the task execution, other ECSs need to be used to return the result to the vehicle. The
meanings of the main symbols in this paper are summarized as Table 1.

Table 1. Lists of major used notations.

Notation Description

S the set of the ECSs in a given area
Si the ECS i(Si ∈ S)
Ci the computation ability of Si
T the set of n tasks
Ti the task i(Ti ∈ T)
Ni the computation workload of task Ti
Oi the priority of task Ti
Di the deadline of task Ti
Si the set of external circumstances of Ti

ETe
i the execute time of task Ti

CTw
i the waiting time of task Ti

wk the weight of the external environment
Ec

1, Ec
2, Ec

3, Ec
4 current value of the external environment

En
1 , En

2 , En
3 , En

4 standard value in the standard environment
Dr

i adjusted deadline

3.2. System Model

In this section, we formulate the problem of task assignment among the ECSs. We define the
existence of n ECSs in a given region, written as S = {S1, S2, · · · Sn}. Moreover, for each Si ∈ S, its
computation ability is a constant Ci, which means that the data size it can process in unit time is Ci. We
assume that there is only one ECS in each BS for simplicity.

Here, we define a set of n tasks as T = {T1, T2, · · ·Tn}.These tasks come from self-driving vehicles,
and are performed on the ECSs in given areas. So we define the task as a four-tuple Ti = 〈Ni, Oi, Di, Si〉,
where Ni is the computation workload of Ti and Oi is the priority of Ti, indicating the importance
of the task, corresponding to the level of the task: CTs, ITs, VITs. Priority is not affected by the
external environment, which is only related to the task itself. Di is the last time that the task Ti needs
to be completed. It reflects the urgency of task t. Since the vehicle is affected by many external
environments, so Di can be adjusted according to its own and environmental factors. In general,
the deadline for VITs is earlier than that for CTs tasks. Si is the extra case of task Ti, defined as a
four-tuple Si = 〈WEi, PEi, VNi, SPi〉. It represents the weather, the number of people in the car, the
road congestion, and the speed of the vehicle. Note that we define a task Ti that can no longer be
divided. Once Ti has selected a suitable ECS, it can only be executed on the ECS at the same time. In
our model, the time cost CTi of Ti consists of two parts: Execution time ETi

e and the waiting time CTi
w.
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As mentioned above, the computation ability of S j is known to be C j, and the size of Ti is Ni.
Therefore, the calculation time ETe

i of Ti on the S j can be calculated:

ETi
e =

Ni
C j

(1)

When Ti reaches an ECS, it will be added to a waiting queue. After the tasks in front of Ti are
executed, Ti will be executed. We assume that there are n tasks in front of Ti in the waiting queue, then
the waiting time CTw

i can be calculated:

CTi
w =

n∑
k=1

Nk
C j

+ ETe
i (2)

where ETe
i is the time it takes for the current task Ti to be executed on S j.

n∑
k=1

Nk
C j

is the task execution

time in front of Ti.
In order to evaluate the performance of the PURS in the experiment, here we propose two task

completion indicators: Task completion rate (TCR) and task time completion rate (TTCR). We assume
that there are p tasks arriving at ECSs, and they are assigned to different ECSs for execution, and
we note that there are q tasks are executed successfully. Therefore the task completion rate can be
calculated through dividing the total of the tasks by the number of the successfully executed tasks.

TCR =
q
p

(3)

The task time completion rate (TTCR) equals the total duration of the successfully executed task
divided by the total task duration.

TTCR =

q∑
j=0

ETe
j

p∑
i=0

ETe
i

(4)

where
q∑

j=0
ETe

j represents the total time spent in performing successful tasks and
p∑

i=0
ETe

i represents the

total time spent performing these tasks.

4. PURS Scheduling Algorithm

Considering the characteristics of autonomous-driving tasks, the different urgency and the
environment impacts, the aims of the scheduling algorithm is to solve the task assignment problem to
make it so that more tasks can be executed before the deadline. In light of the time constraints and the
priority of tasks, the scheduling algorithm determines which ECS the task should be assigned to.

When a new task reaches the ECS, current ECS will calculate task scheduling value (we will
define this value in detail later) according to the priority and urgency of the task. Then, the scheduling
algorithm determines whether the task can be executed on the current ECS. If yes, the task will be
executed on the current ECS. If the current ECS cannot meet the constraint of the task, the vehicle
sends the task unloading request to the nearby ECS. Each ECS executes the scheduling algorithm
according to task scheduling value. The selected ECS satisfies the current task and the new task cannot
affect the execution of other tasks on the current ECS after scheduling. If there are multiple ECSs to be
chosen, we perform selection strategies based on different types of tasks: First execution strategy and
last execution strategy. If all ECSs fail to execute the task, the PURS returns a message that no ECS can
process the current task to the vehicle.
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4.1. Adjust the Deadline of the Task Dynamically

Since vehicle travel is affected by many factors, such as weather conditions, the number of
people in the car, road congestion, vehicle current speed, then the deadline of task processing is also
affected accordingly. In order to dynamically adjust the tasks’ deadline according to external factors,
we give four main factors affecting the execution time of the vehicle task. Ek

c denotes the current
external situation, k ∈ {1, 2, 3, 4} indicates the weather, number of people, number of vehicles and
speed, respectively. Di denotes the original deadline of task Ti. In order to satisfy the particularity
of an autonomous driving task, the influence of external environment on the current vehicle task is
illustrated by dynamically adjusting the deadline of the task. Here we can get the adjusted deadline:

Di
r = Di +

4∑
k=1

wk(Ek
c
− Ek

n) (5)

where wk represents the effect weight of the external environment on the task deadline. Ek
n indicates

that the vehicle is in the general situation under the situation k. Then how to determine the value of
Ek

n? Here we give the value of Ek
n according to some common sense regulations or traffic regulations.

Here are some examples. For the weather, we can divide the weather into three categories: Sunny (1),
cloudy (2), rainy (3), and E1

n = 1 denotes as sunny. For the number of people in the car, there are
many types of vehicles. Each type of vehicle has a different number of passengers. Only the minimum
value of 1 and the maximum value of 30 can be given here, so E2

c
∈ [1, 30] and E2

n is half of the
rated passenger load of the vehicle. Road congestion can also be divided into three types: Sparse (1),
normal (2), and congestion (3). E3

n = 2 denotes as normal. For the given speed, due to the different
speed limit standards given by each country, E4

n equals 60 km/h.
For the weight w, it is the factor of fine-tuning. You can adjust the size of the task deadline

according to different situations dynamically. Therefore w can be positive or negative. For example,
let us assume that the traffic of the current road is very congested, so we set E3

c = 3 and w = −0.5,
indicating that the current road condition is very poor, and the task must be executed 0.5 s ahead
of time.

4.2. The Task PAD Calculation Method

In order to schedule the execution of tasks, we must give the task a scheduling value based upon
the characteristics of the task. Therefore, we define the task’s dispatch value as the pad. The PURS
scheduling algorithm is based on the size of each task’s pad. The idea of the PURS is to judge according
to the urgency and the priority of the task. The smaller the pad, the earlier the task is executed, so here
we define the value of the Ti pad as

padi = Di
r
− ETi

e
−Oi −ATi (6)

where Di
r is the adjusted deadline of Ti, ETi

e is the execution time of Ti, Oi is the priority for the task,
ATi is the current time for the task to reach the ECS. For example, we assume task Ti needs to be
completed at 200 ms and itself must run for 100 ms and its priority is 10. Current time is 0, so the pad
of Ti is: padi = 200− 100− 0− 10 = 90 ms . Therefore, after obtaining the pad of each task, the task on
the current ECS can be scheduled.

4.3. Scheduling of Tasks in ECSs

The core of the PURS is to dynamically adjust the execution order of the tasks on the ECSs
according to the priority and urgency of the vehicle task specificity, so that the ECSs can perform more
tasks and make full use of the resources of the ECSs. The entire scheduling process is as follows: Firstly,
when Sc receives the task unloading request and Ti reaches Sc, Sc will calculate the pad of Ti, then
adding Ti to the waiting queue Qo

s of Sc. We define that there are l tasks waiting to be executed in the
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waiting queue of Sc, then scheduling the task execution sequence on the basis of the size of the pad
for each task. The smaller the pad for the task, the further forward in the waiting queue. When the
scheduling algorithm is executed, a new waiting queue Qn

s is formed. Whether Ti can be executed on
the current ECS is judged by the new waiting queue.

Whether Ti can be executed on the current ECS not only depends on whether Sc can meet the time
requirements for Ti, but also on whether Ti can affect the completion of the subsequent tasks when Ti
is inserted into the waiting queue. Supposing that after the scheduling algorithm is executed, there
is the m task in front of Ti and the n task after Ti. In other words, m + n = l. But Ti cannot affect the
execution of tasks behind Ti in the new queue. Therefore, in order to meet the time requirement for Ti,
the following equation must be satisfied.

CTi
e + CTi

w
≤ Di

r (7)

where CTi
w =

m∑
k=1

Nk
C j

+ ETe
i according to Equation (2)

Besides, as we presuppose that the scheduling of new tasks will not impact the running of previous
tasks, so those n tasks behind Ti must satisfy the following equation

CT j
prev + CT j

e + CTi
e
≤ D j

r,∀ j ≥ n (8)

where CT j
prev refers to the waiting time of the task T j before Ti is added into the waiting queue Qn

s . As
a result, task Ti can run on ECS Sc if and only if the above two formulas are met.

The PURS algorithm is a preemption algorithm. Thus we provide the PURS preemption
mechanism: When the current task is completed, the task of the pad becomes zero. We only focus
on the order of the execution of the task, while not caring about how to perform the task inside.
The advantages of the algorithm is that we do not worry about the arrival order of these tasks. The
algorithm takes into account the urgency and priority of the task.

Hypothesizing that there are currently three tasks T1, T2, T3 reaching the ECS S1, we assume that
the external environment is good, that is, it has no effect on the deadline of the task. The computing
power of the ECSs is the unit computing power. T1 = 〈100, 100, 200, 0〉, T2 = 〈150, 100, 400, 0〉,
T3 = 〈100, 50, 700, 0〉. According to padi = Di

r
− ETi

e
−Oi − ATi, we can know in the initial state:

pad1 = 0, pad2 = 150, pad3 = 550, so T1 is executed first. During T1 execution, no task pad value is
0, so there is no task preemption. T1 is completed normally. Then pad2 = 50, pad3 = 450, and now
T2 is executed. During T2 execution, no task pad value is 0, and T2 is fulfilled normally. At last
T3 is executed, which just meets the requirements. The task execution strategy algorithm shows in
Algorithm 1. The details are shown in Figure 2.
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Algorithm 1 ECS Internal Task Execution Strategy

Input: task Ti, ECS S j
Output: if Ti can be executed on S j
1: Ti denotes a newly-arrived task
2: S j denotes the ECS performing Ti
3: Qn

s denotes the task waiting queue for ECS S j
4: Begin
5: Calculate the pad of Ti according to Formula (6).
6: Insert task Ti into the wait queue of Sw

j
7: For all Tk ∈ Qn

s do
8: If (padi ≤ padk) then
9: exchange Ti and Tk location
10: End if
11: End for
12: If (whether Ti, Tk satisfied the Formulas (6) and (7)) then
13: Return S j can execute Ti
14: Else
15: Return S j cannot execute Ti
16: End if

4.4. Choice of ECSs and Task Migration

When a new task unloading a request reaches an ECS closest to the vehicle, the ECS calculates
the pad of the task and then determines whether the task can be executed on the current ECS, based
on the pad value of each task. If the task can be executed on the current ECS, that is the best choice.
If the current ECS cloud cannot be executed, the vehicle sends a task unloading request to the ECSs
around it. Based on the pad value of each task, the PURS is performed to determine whether there is
an ECS that can meet the task’s execution. We define the ECSs collection that satisfies Ti as Ss. So Ss

can be divided into two categories according to the position of Ti in the waiting queue: First execution
strategy (FES) and last execution strategy (LES). According to the position of Ti in the waiting queue,
Ss is divided into two parts: Ss

e and Ss
l . Ss

e indicates that Ti is in the first half of the waiting queue, and
Ss

l indicates that Ti is in the second half of the waiting queue. Hence, we can choose the appropriate
ECSs according to the type of Ti.

First execution strategy: Because of the particularity of the task, some tasks need to be executed as
soon as possible, such as VITs. So the strategy is to meet this kind of high priority task and to meet the
priority of short tasks, which improves the completion rate of these tasks. Prior execution of short
tasks has less impact on the wait time. It is great to improve the efficiency of the ECSs.

Last execution strategy: For some CTs tasks, the latency requirements are not particularly high, as
long as they are completed within the specified time. Therefore, we can put this part of the task behind
the waiting queue to save preempting resources for highly urgent tasks. As for some long tasks, if such
tasks are executed first, it will greatly increase the waiting time for latter tasks in the waiting queue and
reduce the system efficiency. So the final execution strategy can be preferred for both types of tasks.

If the PURS is executed, Ss cannot fulfill task execution. At this time, we need to migrate some
tasks from the current ECS to other ECSs for execution, so that each task can be finished. Considering
of the different task sizes, we assume that the task selected for migration is a short task.

When Ti reaches St, there are k tasks waiting to be executed currently. Due to insufficient resources,
some tasks need to be scheduled to other ECSs to satisfy Ti. Then, assuming that T j will be migrated to
other ECSs, it needs to satisfy the conditional Formulae (7) and (8) above. That is to ensure that the T j
can be performed normally after being scheduled to another ECS. At the same time, we presume the
migratory task is shorter than the current task: CT j

e < CTi
e. The ECS selection algorithm shows in

Algorithm 2.
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Algorithm 2 ECS Selection

Input: task Ti, ECS S
Output: Se

1: Ti denotes a newly-arrived task
2: S denotes the collection of clouds near the edge of the vehicle
3: Sc denotes the ECS closest to the Ti, and Sa denotes the collection of ECS can execute Ti
4: Begin
5: If (according to algorithm 1, judge whether Ti can be executed on Sc) then
6: Return Sc

7: Else
8: For all S j ∈ S do
9: If (according to algorithm 1, judge whether Ti can be executed on S j) then
10: Add S j to Sa

11: End if
12: End for
13: End if
14: If (Sa is empty) then
15: migrate some task to their corresponding ECS
16: If (according to algorithm 1, judge whether can Ti be executed on Sc)
17: Return Sc

18: Else
19: Return no suitable ECSs to meet the requirements of Ti
20: End if
21: Else
22: according to the size and urgency of Ti choose EES or LES to select most suitable Sm

23: Return Sm

24: End if

4.5. Predict the Location of the Vehicle and Return the Result to the Vehicle

Due to the high-speed movement of the vehicle, when the vehicle unloads the task onto the ECS
to execute, how can the finished results be returned to the vehicle? That means, how to determine
whether the current vehicle is still in the communication range of the ECSs. If the vehicle is still in
the communication range of the current ECS, the ECS can directly return the results to the vehicle.
If not, the current task processes need to return the results to the vehicle with the help of another
ECS. Then how can the position of the vehicle during the task execution be determined? Here we use
the Kalman filtering to make a dynamic trajectory prediction of the vehicle according to the vehicle’s
previous trajectory.

Each vehicle has GPS for positioning, and is moving at high speed. In order to more accurately
predict the position of the vehicle after the ECS has finished the task, we establish a coordinated
system. Assuming that the vehicle is moving in the x axis in a two-dimensional plane, the direction
perpendicular to the road is the y axis. The vehicle stores the position information at different times
during its moving motion.

The position points vector set Tra = {Tr1, Tr2, · · ·Trn}. Tri = (αi, βi) can be composed according
to the temporally-ordered form, where αi, βi are the projection vectors of Tri on the x axis and y
axis, respectively.

The equation of system state is expressed as:

X(k) = Φ(k)X(k− 1) + Γ(k)U(k) + W(k) (9)

where X(k) is an n dimensional state vector, indicating the state of system at time k. Φ(k) is the state
transition matrix of the system, describing the parameter matrix of the state of system transitioning
from time k− 1 to time k. Γ(k) is the input control model acting on the controller vector U(k). U(k) is
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the control input vector at time k. W(k) is the system process noise used to describe noise or error that
shifts from one state to others.

The dynamic system observation equation is:

Z(k) = H(k)X(k) + V(k) (10)

where Z(k) is a dimensional observation vector, indicating the state in which the system is measured at
time k. H(k) is an observation model, which is the mapping between real state space and observation
space. V(k) is an observed noise sequence that describes the noise or error of a dynamic system moving
from one state to another. H(k) is the m× n dimensional observation matrix. The observed noise V(k)
is a zero-mean white noise sequence. In general, the noise vector W(k) of the assumed system and the
noise vector V(k) of the dynamic system measurement are both Gaussian white noise with a mean
value of zero.

It is assumed that the initial values of the states are not related to X(0) of the states are not
related to W(k), V(k). That is, E(W(k)V(T)(k)) = 0 The dynamic system measurement data vector
Z(1), Z(2), Z(3), · · ·Z(k) are used to find the system state vector X(i) component for least squares
estimation. According to the different relationship between i and n, the Kalman filter can be divided
into three cases: Filtering, smoothing and prediction.

The core of the Kalman filter algorithm is to use the recursive algorithm to achieve the estimation
model of the optimal state estimation, and use the estimated value of the previous moment and the
observation value of the current moment to update the estimation of the current state variable. Based
on the previous k observations, the optimal state estimation at time k is obtained. There are two
different update processes in the process of the stochastic linear discrete Kalman filter, which are the
time update process and the observation update process. The time update process predicts the state at
the current time based on the optimal state estimation at the previous moment. At the same time, the
covariance of the current prediction state is updated, and the time update is

X(k + 1, k) = A(k)X(k, k) (11)

Z(k + 1, k) = H(k)X(k + 1, k) (12)

After predicting the trajectory point, it is necessary to use the observation value to linearly fit the
position of the optimal estimated trajectory point. That is to estimate the optimal estimation point by
observing the update equation based on the observed value and the predicted value and the update
observation equation expression:

B(k + 1) = Z(k + 1) −Z(k + 1, k) (13)

X(k + 1, k + 1) = X(k + 1, k) + K(k + 1)B(k + 1) (14)

In the prediction process, the formula of the gain matrix K can be obtained from the initial state
estimation values calculated by the above filtering process is

K(k) = A(k)P(k, k− 1)H(T)(k)[H(k)P(k, k− 1)H(T)(k) −R(k)]
(−1)

(15)

After obtaining the gain matrix K, according to the formula of the optimal predictive
estimation equation:

X(k + 1, k) = A(k)X(k, k− 1) + K(k)[Z(k) −H(k)X(k, k− 1)] (16)
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the predicted value of next time X(k + 1, k) can be calculated, and meanwhile we update the estimated
error variance matrix P(k + 1, k):

P(k + 1, k) = A(k)P(k, k− 1)A(T)(k) −A(k)P(k, k− 1)H(T)(k)[H(k)P(k, k− 1)H(T)(k)
+ R(k)](−1)H(k)P(k, k− 1)A(T)(k) + T(k)Q(k)T(T)(k)

(17)

According to the above formula, the optimal prediction value at the next moment is obtained,
and the single-step prediction process is completed. If the k step(s) is to be predicted, predicting k
times iteratively.

After the current position of the vehicle is obtained, the result can be returned to the vehicle. The
vehicle trajectory prediction algorithm shows in Algorithm 3.

Algorithm 3 Vehicle Trajectory Prediction

Input: vehicle trajectory data set Tra = {Tr1, Tr2, · · ·Trn}

Output: vehicle track point position
1. Begin
2. B = preprocess(Tra);
3. init();
4. state = currentState (B)
5. For i = 1 to k do
6. l′= KalmanPredict (B)

7. errori =

k∑
i=1

√
(x′i−xi)

(2)+(y′i−yi)
(2)

k
8. End for

9. Ei =
(

k∑
i=1

errori)

k
10. Return l′

5. Experiments and Results

In this section, we evaluate the proposed algorithms and task scheduling performance in different
situations, as well as the accuracy of vehicle location prediction in different states.

5.1. Simulation Settings

The simulations are developed by MATLAB. We build a simulation platform for multitasking
real-time systems with its own Simulink software package and the Turetime-1.5 toolbox to build a
simulation platform for multitasking real-time systems. On the basis of the system model, in order to
provide versatility, we set up a large number of automatic driving vehicles on the highway, setting the
distance between 5G base stations to 200 m.

New tasks with different degrees of urgency are constantly generated in the process of driving
vehicles, and the request for unloading tasks is first sent to the ECS in the latest BS. When the ECS
receives various tasks, it will follow the PURS scheduling algorithm proposed above. After execution,
the location of the vehicle is predicted by the Kalman filtering algorithm, and the results are transmitted
back to the vehicle.

The parameters that need to be set for the experiment are: Calculating the workload Ni of the task
Ti, task priority Oi, original deadline Di, external system factor Si, computing power C j for each ESC.
Now we can calculate the execution time CTc

i of Ti based on the previous formula. For the external
situation, we have already set the parameters above, and the specific experimental parameters on
simulation such as the error threshold and noise variance of the vehicle trajectory prediction are shown
in the following Table 2.
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Table 2. Application parameter setting in the simulation.

Parameters Default Values

Ci Constant 1
Ni Rand(0.5sec,4sec)
Oi Rand(0.5,1.5)
Di Rand(2sec,8sec)
wk Rand(−0.5,0.5)

Ec
1, Ec

2, Ec
3, Ec

4 Rand(1,3),Rand(1,30),Rand(1,3),Rand(30,120)
En

1 , En
2 , En

3 , En
4 1, half of Ec

2,2,30
Moving object trajectory data set GeoLife, T-Drive

Prediction error threshold 20 m
Observation noise covariance [10, 0; 0, 10][1, 0, 0, 0; 0, 10, 0, 0; 0, 010, 0; 0, 0, 0, 10]

System noise covariance [10, 0, 0, 0; 0, 10, 0, 0; 0, 0, 10, 0; 0, 0, 0, 10][100, 0, 0, 0; 0, 100, 0, 0; 0, 0, 100, 0; 0, 0, 0, 100]

Note that these values of tasks are arbitrarily set because they vary among different
autonomous-driving applications. Various values are investigated, and are within a reasonable range.

5.2. Simulation Results

In Figures 3 and 4, in order to verify the advantages of our PURS scheduling algorithm, we
compare the direct execution strategy (DE) in the order of reaching the ECS. In the first set of simulations,
we set 15 ECSs in the system, 50 tasks in each group, and therefore 750 tasks in total. The ratio of the
three priority tasks is CTs:ITs:VITs = 3:1:1. Above all, the two metrics CR and CWCR are compared. As
shown in the figure, when the ESCs task is less than 10, the ECSs resources are sufficient to satisfy the
task. Hence, the TCR and TTCR of the direct execution strategy and PURS are both 100%. When the
number of tasks is greater than 10, on account of the arrival of some high-priority tasks in the waiting
queue, sequential execution cannot meet the time constraint requirements of these high-priority tasks.
After being scheduled by the PURS algorithm, tasks with high priority and high urgency can be
effectively performed to satisfy most tasks. However, as the number of tasks increases, the computing
resources of ECSs tend to be exhausted, and both TCR and TTCR will decrease. Yet, the execution
order of the task scheduled by PURS is obviously better than the direct execution strategy. At this time,
individual ESCs cannot satisfactorily perform tasks through the scheduling algorithms. Therefore,
other ESCs are needed to assist in the migration of some short tasks to other ECSs.Electronics 2019, 8, 1221 16 of 21 
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In order to compare the scheduling capabilities of the PURS for different priority tasks, we reset the
task priority ratios to CTs:Its:VITs = 3:1:1, CTs:Its:VITs = 1:3:1 and CTs:Its:VITs = 1:1:3. By comparing the
size of TCR under different priority task ratios, the PURS is in line with the requirements of automatic
driving task processing and perform better when scheduling multi-tasks with higher priority. As
is shown in Figure 5, high-priority tasks are produced most by self-driving vehicles during driving.
However, as the number of tasks increases, a single ECS cannot satisfy a large number of simultaneous
tasks. Therefore, multiple ECSs need to cooperate directly.Electronics 2019, 8, 1221 17 of 21 
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When a single ECS cannot complete a growing number of tasks, we can offload some short tasks
of the current ECS to the nearby ECS, and set 10 ECSs in the system, 50 tasks in each group, and thus,
500 tasks in total. The ratio of the three priority tasks is CTs:Its:VITs = 3:1:1. We directly compare the
TCR of a single ECS and multiple ECSs under multitasking. As can be seen in Figure 6, the coordinated
scheduling between multiple ECSs significantly increases the completion rate of the task, which is
close to 90%. In practice, more ECSs can be deployed on the roads with more vehicles based on actual
conditions, further improving the task completion rate.
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In the practical applications, completing more tasks of VITs wins more gains than the losses
caused by proper extensions of deadlines of CTs and ITs. Therefore, task urgency classification and task
deadline determination make contributions to the completion of both more tasks and more urgent tasks.

Figures 7 and 8 focus on the performance of track prediction algorithms. When the task is
completed, our Kalman filter is used to predict the position of the vehicle. We obtain the prediction
accuracy and prediction time under different data sets through experiments. When the number of
predicted track segments increases, the accuracy rate also rises slowly.
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However, the prediction time increases accordingly. Because the communication range of ECSs
is very large, the impact of small prediction errors on the whole system is so tiny as to be negligible.
Therefore, fewer historical trajectories can be selected to predict the position of the vehicle, and the
extra overhead of the system is also reduced.

For different data sets, we can adjust the range of parameters appropriately, such as the weight
of external factors, depending on the characteristics of different tasks. In addition, the weights of
these factors are based on common sense, so they can be learned through machine learning based on
enough autonomous-driving data, and in this way our method can adapt to more autopilot scenes
and other tasks scheduling situations. Through the experiment, we can conclude that our scheduling
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algorithm can effectively improve the utilization of the edge cloud and reduce the processing time of
the self-driving task. This provides an effective solution for handling the self-driving tasks.
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6. Conclusions

Considering the particularity of autonomous driving tasks and the arrival of 5G networks, energy
consumption and time delay are not the biggest problems. But rather, how to schedule tasks executed
on ECSs to satisfy more tasks’ requirements becomes a key issue. Since self-driving vehicles are affected
by plenty of external environments, we propose to adjust the tasks deadline dynamically. Then on the
basis of the priority and urgency, the task execution order is scheduled to fulfill more tasks, including
the selection of ECSs and the scheduling of the internal tasks of ECSs.

The experimental results prove that, compared with the first-come first-served direct execution
strategy, PURS has a significant improvement in TCR and TTCR. The cooperation between multiple
ECSs further improves the task completion rate of the entire system. Therefore, the PURS algorithm
can solve the problem of the execution order of intelligent driving intensive tasks in the edge cloud.
On this basis, we also consider the high-speed vehicles’ movement, in the case of which the cars may
not be within the communication range of the ECS of task execution. Therefore, the vehicle position
prediction based on a Kalman filtering algorithm is proposed, and the experimental results also prove
the feasibility of the proposed algorithm, which is applicable to the actual scene. Much work is needed
in the future research. The next work is to build a real scene and improve our algorithm by simulating
more problems encountered in the actual situation.
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