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Abstract: To reduce the noise created by a power delivery network, the number, the value of 
decoupling capacitors and their arrangement on the board are critical to reaching this goal. This 
work deals with specific improvements, implemented on a genetic algorithm, which used for the 
optimization of the decoupling capacitors in order to obtain the frequency spectrum of the input 
impedance in different positions on the network, below previously defined values. Measurements 
are performed on a specifically manufactured board in order to validate the effectiveness of the 
proposed algorithm and the optimization results obtained for a specific example board. 

Keywords: decoupling capacitors; power delivery network; binary genetic algorithm; twin removal; 
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1. Introduction 

The miniaturization of the devices is nowadays a consolidated trend in the industry 
development of the electronic products that are also boosted by the spread of the Internet of Thing 
(IoT) paradigm [1], as well as by other new technologies, such as 5G [2] and high-speed digital 
transmission [3]. This reduction of the overall geometrical dimensions is greatly implemented at the 
printed circuit board (PCB) level and, with the proper scaling factor, at package and chip level 
respectively. At the clear advantages of device (or part of them) miniaturization are associated a good 
number of engineering challenges such an increased design and manufacturing complexity, 
increasing of power density with the related heat dissipation problems [4]. The electromagnetic 
interferences (EMI) among signals (digital, analog, at radio frequency) [5] in the same device and the 
susceptibility of the electronic circuits to EMI, due to other systems and/or devices placed nearby [6,7]. 

In this scenario of miniaturized devices, the integrity of the digital signals (Signal Integrity, SI) 
is impaired by the quality (or even, in this case, integrity) of the electric power (Power Integrity, PI) 
associated with/given by the power/ground supply voltage at board level [8]. Modern approaches 
cannot disregard or ignore a correct and efficient design of the power delivery network (PDN) in 
order to decrease the transient noise caused by voltage droops, due to switching currents [8,9]. 
Several techniques have been proposed to improve the PI, based on Electromagnetic Band-gap (EBG) 
structures [10], among other techniques [11]. However, the use of decoupling capacitances (decaps) [12] 
is still one of the more effective and currently investigated. The current trend in the PDN decoupling for 
voltage noise reduction is the optimized placement of decoupling capacitors, with the key task aimed 
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at minimizing their number (and thus, the inherent costs) and at achieving the most effective PDN 
impedance design [13–22]. The goal of the PDN design is to achieve the input impedance seen by the 
power pins of the active devices (integrated circuits, IC, such as FPGA, DSP etc.) below the target 
impedance; with the latter being the ratio between the maximum noise on the DC supply voltage that 
can be tolerated by the active circuits, ΔVn, and the current Iin drawn from the PDN by the transmitting 
devices [8]. Usually, the target impedance is flat over a wide range of frequency [6,15,17], leading to 
overdesign the PDN by adding more decaps than needed. Other alternatives help to relax the PDN 
impedance constraints with a constant impedance up to a frequency when the inductance toward the 
package guides the impedance profile [13,23]. Moreover, the low frequency portion can also be relaxed 
by ignoring the impact of the VRM impedance and taking into account the low frequency capacitive trend 
as the sum of the required total PDN capacitance [14]. Recent studies also suggest further alternatives 
aimed at jitter minimization [24] and focus on specific bands [25]. 

The use of optimization algorithms [26,27], and, specifically, of genetic algorithm (GA) is widely 
spread for electromagnetic problems [28–31]. The GA represents a good candidate for successfully 
optimize the decap placement of the PDN in PCBs, due to the randomness of its core algorithm that 
is able to effectively take into account the full range of possible combination of decap type and 
locations. Moreover, since the goal is represented by a frequency-dependent impedance to be moved 
below the target impedance, the GA is particularly suitable for this problem where the target 
impedance may be defined at most, even frequency-by-frequency or, more practically, based on a 
hybrid profile [25]. 

A preliminary work by the authors in Reference [14] where the GA has been adopted for finding 
the optimum number and values of decaps to be mounted on a PDN of a printed circuit board. The 
presents work is carried out to solve several limitations in Reference [14] by achieving a more efficient 
and practical optimization process. Aim of this work is to add some features to the GA and to the 
decoupling strategy in order to improve their global performances, with the main advantage of the 
proposed placement strategy that relies on the iterative application of the optimization starting from 
1 single decap. At each new iteration a new decap is added whose value and location comes from the 
GA-based optimization. This allows an efficient decap placement by gradually improving the input 
impedance until the stopping criteria are met; the actual decap configuration is the one that fulfill the 
requirement with a minimum number of components. Together to this change in the optimization 
architecture, the GA developed in Reference [14] has been improved for a more effective and reliable 
process by adding the twin removal [32,33], and the binary coding of all inputs to increase the 
randomness of the configuration selection. Moreover, the new algorithm is developed based on 
multiple-input impedances to be optimized, as a more realistic scenario in modern electronics where 
multiple ICs may share the same voltage supply rail. 

The present work has the following structure: In Section 2. It is, firstly, recalled the basic 
structure of the used GA and then discussed, in detail, the significant implemented changes and 
improvements. Section 3 is devoted to illustrating the physical structure and the electrical properties 
of the PDN. In the same section are also presented the results of the optimization processes run on 
the PDN itself. The experimental validation of the results, along with some discussion on the 
measurement techniques is reported in Section 4. Section 5 draws the final conclusions. 

2. The Iterative Optimization Algorithm 

2.1. Review of the Current GA Optimization 

The general architecture of the genetic algorithm used in this work is the same as that used in 
Reference [14]. The GA allows a population, composed by Np chromosomes (chrom), to evolve 
according to specific laws toward a state able to minimize a cost function. The cost function fcost is a 
mathematical function whose input is each chromosome of the population, and the output is 
generally a value used for creating a rank among the Np chromosomes. In Reference [14, Equation 
(2)] fcost was a function of the difference between the magnitude of the input impedance Zin evaluated 
in a single given position on the PDN and the magnitude of a specific impedance profile or mask, 
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Zmask, that is defined by the PDN designer. In this work, fcost is different: It depends on the difference 
between the Zin evaluated in multiple positions (ports) on the PDN, and the same user-defined Zmask, 
as will be detailed later. 

The high-level optimization flowchart of the initial GA is illustrated in Figure 1a. The GA is used 
in conjunction with a PI/EMI commercial PCB layout tool [34] (it is identified as ‘Design Force’ (DF) 
throughout the paper) that includes the simulation capability for the multilayer power distribution 
network design.  

 

 
(a) (b) 

Figure 1. High-level genetic algorithm (GA) optimization flow: (a) Algorithm from Reference [14] and 
(b) the proposed improved iterative algorithm. 

In Figure 1b, it is shown the flowchart of the improved GA, the object of this work, in which the 
new blocks of the binary coding/decoding, of the removal of the twin chromosomes, and of the 
iterative strategy are visible; they are discussed, in detail, in Section 2.2. 

2.2. Iterative Approach based on an Improved Genetic Algorithm 

Although the GA developed in Reference [14] gave acceptable results, there were margins of 
improvements aiming to a more robust and stable algorithm capable of dealing with more complex 
PDN designs. Therefore, some critical features have been modified or added. 

The first of them was the change of fcost. The new fcost takes into consideration, simultaneously, 
the values of the frequency spectrum of the Zin computed at multiple ports, since this may be a more 
general case when the same PDN acts as power supply rail for multiple active devices. Alternatively, 
the use of a multiple-input impedance profiles may be required when a more rigorous design is 
necessary for a single large chip where, for example, the hundreds input power balls of the ball grid 
array (BGA) are spread on the IC footprint. In this work, the number of ports considered is Nports = 4. 
This extension of fcost to four (or in general Nports) ports allows the algorithm to choose the value and 
positioning of the decaps that minimize the input impedance only where is necessary, thus, 
improving the resilience of the PDN to the simultaneous switching noise (SSN) [8]. The new cost 
function is defined according to Equations (1–2): 
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where fcost_i and �Zin_i are the cost function and differential input impedance associated with the i-th 
port, respectively. Basically, given a frequency spectrum fj of a total of Nfreq points, N1 is the number 
of them, in which Zin_i(fj) is larger than a specific mask value Zmask(fj) at the same frequency, defined 
by the user. Zin_i is defined in Equation (3), and it is graphically illustrated in Figure 2. In this work, 
the number of ports considered is Nports = 4, 
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Figure 2. Graphical interpretation of Equation (3). 

A further improvement of the original algorithm is accomplished in order to decrease its 
execution time when the handled decoupling problems become complex. To this aim, the GA, that is 
designed to be also implemented on programmable hardware, is directly based on a binary 
representation for the capacitor type and location, as shown in Figure 1b. All the genes into the 
chromosomes are represented as encoded binary strings with Ngene bits per gene. Quantization and 
encoding are performed according to the classic procedures used for the analog-to-digital conversion 
as in Reference ([35], Equation (2.5), (2.6)). It is worthy to mention that after encoding the current 
population, all the typical GA components, such as selection, crossover and mutation, are performed 
in the binary domain offering a higher randomness of configuration even using the random selected 
single point cross over for mating [29]. In the proposed algorithm, the decoding from binary to analog 
variables is only needed before computing the cost function, since the inputs to DF PI should be 
continuous variables. The decoding is implemented as in Reference ([35], Equation (2.7), (2.8)). 

From the study carried out in Reference [14], it was evident that, due to the combination of the 
effects of the old cost function and the population size (the number of chromosomes at each 
generation) after mutation (the GA function that alters a given percentage of the bits in the list of 
chromosomes), a certain number of chromosomes were identical. This is a serious threat for the 
efficiency of the GA because limits its capability to explore the entire cost domain surface, and it can 
induce the convergence of the results toward a local minima. To avoid this trap, a twin removal 
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routine introduced in References [32,33] has been introduced as a further improvement. Figure 3 
shows the principle of the twin removal by considering, as an example, a population of Npop = 7 
chromosomes. In particular, in each chromosome chrom = <gene1, gene2>, gene1 indicates the label of 
the position of the decaps (from 1 to 52) and gene2 represents the coded type (value) of the capacitor 
(from 1 to 3). Figure 3a shows an instance of the population after the last mutation during one of the 
GA iterations. 

< 32, 2 > 

< 45, 1 > 
< 18, 3 > 
< 45, 1 > 
< 45, 1 > 
< 1, 3 > 
< 47, 3 > 

(a) 

< 32, 2 > 

< 45, 1 > 
< 18, 3 > 
< 51, 2 > 
< 9, 1 > 
< 1, 3 > 
< 47, 3 > 

(b) 
Figure 3. Population: (a) With twins and (b) after twin removal. 

The presence of three identical chromosomes inhibits the algorithm to widely explore the cost 
domain surface and very likely it leads, at the next generation, more twins. The new algorithm 
removes the identical chromosomes in the populations keeping only the first one. The removed 
elements are substituted with newly random generated chromosomes. Such new chromosomes are 
also crosschecked for a further presence of unwanted twins. Figure 3b shows the population without 
twins now ready for computing the cost function. 

In the previous implementation of the GA [14], given the total (or maximum) number of 
positions of the decaps Npos_max on the test PDN board that the designer intends to use, the optimal 
solution for Zin is found considering all the positions at once, generation after generation. This 
approach has shown to be correct, but very inefficient because, at each generation, it explores the cost 
function associated with all the possible Npos_max decap locations. The problem at hand lends itself to 
an iterative solution that at the n-th iteration takes advantages of the optimal solution at the previous 
(n-1)-th. In particular, the new algorithm starts looking at the optimal solution (in terms of decap 
position on the PDN board and their type) for one single capacitor. When the solution has been found, 
the algorithm looks at the solution (location and decap type) associated with a second capacitor. At 
the next iteration the optimal solution is sought for three decaps, but with two of them already fixed 
by the previous iterations. This loop is repeated up to up to Npos_max decaps, when the algorithm stops. 
At each iteration, at each increment of the number of decaps the GA looks at the optimal solution 
starting with an initial population that contains the last best choice. This iterative process is more 
efficient than the previous one in Reference [14] since the solution found involve inherently the 
minimum number of decaps. When the cost function reaches, or get lower than, the target value (it 
may be set to zero or to a particular value), the algorithm stops; the found solution is the one that 
employs the minimum decap number, and thus, it minimizes the component and manufacturing 
costs. Alternatively, the algorithm can be run until the placement of a maximum number of decap 
(Npos_max) is reached. Then the designer, by looking at the monotonically decreasing trend of the cost 
function, selects the number of decap to be applied to the PDN. This can be done, for instance, when 
the slope of the cost function reduces too much, thus, when adding more decaps has only a limited 
beneficial impact to the cost function. 

3. The PDN and Optimization Results 

3.1. The PDN Structure 

The test structure considered in this investigation, as shown in Figure 4, is similar to the one 
described in Reference [14] having the same planar dimensions. It is a four layer board built by 2 
inner copper planes (electrical conductivity σCu = 5.7·× 108 S/m, thickness tcu = 0.0175 mm) representing 
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a PDN with power (PWR) and ground (GND) nets; the places are separated by an FR4 dielectric 
(nominal relative dielectric permittivity εr = 4.3, nominal loss tangent tgδ = 0.02, thickness 0.97 mm). 

 

 

(a) (b) 

Figure 4. (a) The test power delivery network (PDN) boards and (b) its stack-up. 

The red circles represent the four input ports Pi from which the input impedance Zin is evaluated 
by the computational engine, since the generalized fcost considers simultaneously multiple Zin from 
different port locations. The cross symbol identifies all the possible locations where the decoupling 
capacitors (decaps) can be placed. The 52 total decap locations are spread uniformly all over the PCB 
surface with a distance among adjacent locations between 30mm and 40 mm. This strategy is of 
general use and suitable for an initial PDN design; once the decap placement is optimized, the 
location of each decap may be slightly adjusted according to other mechanical and routing constraints 
of the specific PCB design. 

The present contribution targets a realistic scenario for the PDN optimization; thus, suitable 
values of capacitors are considered identified by C1, C2, C3, as summarized in Table 1. The three 
decoupling capacitors represent commercially available components [36]; their capacitance value, as 
well as the parasitic resistance and inductance, are different among them, thus, leading to different 
self-resonant frequencies. The use of such different components helps the wide band optimization, 
since smaller capacitance (to which usually corresponds a smaller parasitic inductance) is more 
effective at a higher frequency, and viceversa. These choices make the optimization more challenging, 
but, at the same time, the approach more realistic because, in the real world design of a PDN, usually 
the capacitors are selected by the on-the-shelf availability. 

It is worth to note that the decaps selected for this study are characterized by a very low 
inductance, being specifically manufactured for power decoupling. The three capacitors are made by 
the same package, whose geometry and placement overview are reported in Figure 5. In particular, 
Figure 5b shows the layout of the decap pads and the vias for connection to the PWR and GND 
planes. The vias type and their location right at the pads are chosen for lowering the additional 
parasitic inductance that would be added to the decap equivalent straight inductance (ESL), thus, to 
minimize their impact on the overall decap effectiveness. 

Table 1. Electrical properties of the three TDK Multilayer Ceramic Chip decoupling capacitors (C1, 
C2, C3). 

Parameter Product number C (nF) ESL (pH) ESR (m) 

P1 

P3 
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C1 C0510X5R1C104M030AC 100 222 8.9 
C2 C0816X5R1C473M050AC 47 154 21.4 
C3 C0816X5R1C223M050AC 22 142 25.2 

   
(a) (b) (c) 

Figure 5. (a) Overview of the decap package with nominal dimensions B = 0.1 mm, T = 0.5 mm, W = 
1.6 mm, L = 0.8 mm. (b) Layout for the decap with the pad on the top layer and the vias; (c) Placement 
of decap at location C8; the decap type C3 is placed at the 7th iteration. 

3.2. Optimization Results 

The developed optimization algorithm is applied to the board defined in Figure four and whose 
input impedances at ports Pi are computed by DF PI. Two different optimization runs are launched 
based on different maximum iteration numbers; the first case is run for six iterations, thus, the GA-
based algorithm runs, at most, six times, until six decaps are placed. The second case can reach up to 
20 decaps, unless the cost function reaches zero. 

The layout results are shown in Figure 6a for the case of six iterations and in Figure 6b for the 
case of 20 iterations. Specifically, the red circled numbers identify the location of the four ports; the 
squares represent the defined decap location, and the numbers inside identify the chronological order 
with which they have been placed by the GA, iteration after iteration, on the test PDN board. The Ci 
next to each square identifies the decap type according to Table 1. In both cases the cost function does 
not reach zero, thus, the optimization stops when the maximum iteration number is reached, as 
shown in Figure 6c. The trend of the two curves up to six iterations is very similar, although the 
randomness of the GA-based optimization provides a different layout for the first six decaps. Adding 
more capacitances makes the cost function still decreasing, but with a more gradual reduction. The 
initial steeper cost function trend mainly depends on the low frequency capacitive portion of the 
impedance; as soon as the impedance goes below the mask after the six decaps, the improvement 
given by any additional decap is reduced since the higher frequency impedance resonant peaks are 
only slightly decreased and moved to a higher frequency. This behavior is confirmed by the 
comparisons in Figure 7, where the four impedances are shown, and by the iterative evolution of the 
impedances at Port 1, shown in Figure 8. 
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(c) 

Figure 6. Optimal placement and design of decoupling capacitors for (a) 6 and (b) 20 iterations 
(number of decaps); (c) comparison between the cost functions for 6 and 20 iterations. 

 
Figure 7. Frequency spectra of the optimized input impedances at the four ports for six and 20 
iterations (number of decaps). The input impedances are compared to the case of the PDN with no 
decaps and to the user-defined mask. 
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(a) 

 
(b) 

Figure 8. Iterative evolution of the input impedances at Port P1 for the case of (a) maximum six 
iterations, and (b) maximum 20 iterations (number of decaps). 

One interesting consideration stemming from the above results is that, independently by the 
maximum number of available decaps for the optimization (also indicated as a number of iterations), 
the first positions on the PDN are always filled by C1 type. In particular, this occurs for the first 5 for 
the six iteration case and the first six for the 20 iteration case, as shown in Figure 6. This is a 
consequence of the optimization architecture for quickly bringing down the capacitive (or low 
frequency) portion of the frequency spectrum of the input impedance. As soon as this task is 
accomplished, the GA-based optimizer starts to place the other type of decaps (mainly the C3 type); 
they have less parasitic inductance, and thus, they are more effective at a higher frequency for moving 
the magnitude of the resonance peaks to lower values and to upper frequencies. Moreover, the 
resulting optimization offers a distribution of the decap close to the four ports, due to the shorter 
distance and, as a consequence, the corresponding lower “mounting” inductance associated with the 
loop between the integrated circuit (IC) power port and the decap. Although this distribution could 
be expected by the well-known impact of “local” decoupling strategies [16,22], the developed tool, 
together to the DF simulator, is able to obey to the physics of this problem, thus, relieving the designer 
from a trial-based PDN decoupling. 

This demonstrates the effectiveness of the proposed iterative algorithm and its associated cost 
function definition for appropriately selecting the decap location and type according to the on-shelf 
availability. 

4. Experimental Validation 

The proposed improved iterative GA optimization is validated by experimental measurements. 
As preliminary validation check, the input impedance at the left top port P2 of the PDN test board 
(see Figure 4a or Figure 11) without any decouplig capacitor (also indicated next as the “no decap” 
or “bare” board) has been measured by a Vector Network Analyzer (VNA) and computed by DF PI. 
A relevant aspect to be taken into account when performing such measurement, is the impact of the 
SMA connector that cannot be taken into account by the simulator. Although the board layout 
considers the SMA vias, the portion of the SMA connector above the board surface needs to be de-
embedded for an accurate comparison. The calibration of the VNA is performed using the standard 
SOLT coaxial kit, and it sets the calibration reference at the cable ends. Therefore, an additional 
inductive (LSMA) contribution is given by the SMA connector between the cable and the board surface, 
as sketched in Figure 9a. 

The evaluation of LSMA is carried out by measuring the single SMA connector after removing its 
pins and electrically shorting the four GND contacts to the PWR (central) contact, as shown in Figure 
9b. The measured scattering parameter S11 is converted to its corresponding impedance parameter, 



Electronics 2019, 8, 1219 10 of 16 

 

and then the inductance is extracted, as reported in Figure 9c. The inductance values at low frequency 
may be affected by the measurement error, due to the reduced VNA sensitivity when performing 
phase measurements at low frequency. Above 40 MHz the impedance profile is quite flat and stable: 
It allows to extract an equivalent value LSMA = 1.78 nH, as identified by the horizontal line in the 
figure. 

Once known its value, the LSMA inductance is de-embedded from the measured input impedance 
at port P2 using the Keysight ADS circuit simulator [37], now allowing a meaningful comparison 
between measured and simulated results. The comparison between the measured and simulated 
input impedances are shown in Figure 10. The impact of LSMA is evident from the measured curves; the 
de-embedding of LSMA leads to a good agreement between the measured and simulated impedances. 
According to the IEEE Standard P1597 [38], the Feature Selective Validation technique [39,40] is used to 
quantify the matching of the two curves in Figure 3. The matching is classified as “excellent” [38] being 
the FSV figure of merits GRADE = 1 and SPREAD = 1. 

 

(a) (b) 

 
(c) 

Figure 9. (a) Identification of the LSMA additional inductance; (b) measurement setup to extract LSMA; 
(c) measured LSMA. 
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Figure 10. Comparison between measured and simulated input impedance at Port 2 for the case of 
the bare board. 

The decap positions and values in Figure 6b obtained after the optimization based on the 20 
iterations are reproduced on the manufactured board. The board PDN with the four ports (P1 to P4) 
– each one with its SMA connectors mounted-and 10 of the 20 decoupling capacitors soldered are 
shown in Figure 11. The labels next to each decap identify the iteration number (from 1 to 10) at which 
each decap has been placed by the GA, and the capacitor type (C1, C2, or C3) assigned to it. In the 
experimental tests, the first 10 decaps are mounted, and the input impedances at the four ports are 
measured after the placement of each new capacitor. All impedance curves at port P2 are reported in 
Figure 12. The impedance trend when adding more and more decaps is similar to the one from 
simulations, shown in Figure 8. Further validation is given by comparing some sample curves from 
measured and simulated data. The measured input impedances are de-embedded according to the 
procedure described above and, for the cases of 1, 3, 5, 7, and 9 decaps, they are compared to the 
corresponding impedances evaluated by DF PI. The results are shown in Figure 13. It is worthy to 
note that the number of frequency points of the measured data is smaller and based on a linear scale, 
compared to the larger number of points based on a logarithmic scale generated by the simulation 
tool. This difference leads to a lack of resolution of the measured curves around the first resonance 
notch at around 80 MHz. Nevertheless, a good agreement is found, especially when C1 type of decap 
is added, as for the cases of 1, 3, and 5 decaps, shown in Figure 13a–c. Some discrepancies between 
measured and simulated results occur in the intermediate frequency range when the C3 type of decap 
(lowest value) is added, at iteration 7 and 9, as from Figure 13d,e. This not perfect matching is due to 
the inherent small difference between the nominal values, used in the simulations, of the ESL of 
capacitors type C3 and the corresponding values of the actually-mounted components. 
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Figure 11. Manufactured board with mounted SMA connectors at the ports and decoupling 
capacitors. 

 
Figure 12. Measured input impedances (after de-embedding) at port P2 for iteration 1 (1 mounted 
decap) to iteration 10 (10 mounted decaps). 
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(b) 

 
(c) 

 
(d) 
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Figure 13. Comparisons between measured and simulated impedances at port P2 for different 
numbers of mounted capacitors—(a) 1 C1, (b) 3 C1, (c) 5 C1, (d) 6 C1 plus 1 C3 and (e) 6 C1 plus 3 C3. 

5. Conclusions 

An efficient procedure is developed for the optimum placement of decoupling capacitors for the 
PDN design at PCB level. The procedure is based on an improved GA modified with respect to the 
previously developed version. The new optimization is based on an iterative approach, thus, the GA 
identifies the best location for each new single decap that needs to be placed. The developed 
algorithm is of general use; thus, no restrictions are set in terms of target impedance to be used as a 
reference. The effectiveness of the developed optimization is confirmed by the simulated test cases, 
for which the cost function always decreases at each iteration, and for which the decaps are 
accordingly placed around the input ports achieving an effective minimization of the parasitic 
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mounting inductance. The simulated cases are carefully tested experimentally on the corresponding 
manufactured test board. The good agreement between measured and simulated input impedances, 
and the trend of the measured impedances at each iteration, confirm the validity of the proposed 
optimization approach. The next step, whose conceptualization is already in an advanced phase, of 
this research project, aims to exploit machine learning (ML) algorithms for performance 
improvement of the optimization process. In particular, more engineering-wise initial configurations 
for the decaps (i.e., their as close as a possible connection to the IC power ports or pins, their parallel 
connection) are learned by the algorithms and then presented to the optimizer. The results are ranked 
and dynamically added to the knowledge (or training set) of the ML algorithms. 
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