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Abstract: A sparse-based refocusing methodology for multiple slow-moving targets (MTs) located
inside strong clutter regions is proposed in this paper. The defocused regions of MTs in synthetic
aperture radar (SAR) imagery were utilized here instead of the whole original radar data. A joint
radar projection operator for the static and moving objects was formulated and employed to construct
an optimization problem. The Lp norm constraint was utilized to promote the separation of MT data
and the suppression of clutter. After the joint sparse imaging processing, the energy of strong static
targets could be suppressed significantly in the reconstructed MT imagery. The static scene imagery
could be derived simultaneously without the defocused MT. Finally, numerical simulations were
used verify the validity and robustness of the proposed methodology.
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1. Introduction

Synthetic aperture radar (SAR) [1], which is an advanced remote sensing system, has been widely
used in the past few decades. Taking advantage of the two-dimensional high-resolution capability,
the SAR system can implement accurate target classification, recognition, and location finding after
imaging processing. However, when there are multiple moving targets (MTs) in the illuminated
scenery, smearing and geometry position deviation [2,3] generally emerge in the constructed imagery.
Ground moving target imaging (GMTIm) thus becomes very important and has obtained more and
more interest in recent years.

The smearing and geometry distortion of MTs result from the lack of prior knowledge of
moving velocities. Therefore, most of the papers on MT imaging focus on the estimation of the
moving parameters [4–6] and the designing of filters for motion phase terms compensation [7–10].
In these papers, the Doppler parameters were estimated using time-frequency analysis or other
methodologies. Then, one-dimensional or two-dimensional filters were developed to implement MT
imaging. The original SAR data, in which the clutter and MT radar data are mixed and are difficult to
separate, is generally needed in the above algorithms. The focal quality of the derived MT imagery
using the above algorithms will thus be affected by the existence of strong clutter.

Instead of using the original SAR data, many scholars proposed to implement MT refocusing
based on the defocused regions of interest (ROI), where most of the clutter is separated using a filtering
operation. The analytical expressions of the phase error terms of MTs in the wavenumber domain
are derived in References [11–13]. Then, refocusing operation is implemented via motion phase
error compensation and a Fourier transform. Some autofocus-based methods [14,15] have also been
discussed to realize MT refocusing by searching for moving parameters in a predefined region. The
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focal quality of the derived imagery is measured to find the best result. However, a filtering operation
generally cannot remove the energy of clutter and static targets completely, especially when MTs are
located inside a strong clutter region. These algorithms cannot be applied for multiple MTs imaging
simultaneously and the computational burden is generally severe.

When there are strong static targets located inside ROIs, the performance of the above algorithms
will degrade quickly since the defocused MTs are difficult to extract using a filtering operation. Some
residual clutter will still exist and be smeared in the reconstructed MT imagery. To solve this problem,
many papers have proposed suppression of the clutter before MT refocusing in multi-channel SAR. An
over-completed velocity dictionary and a Doppler dictionary are constructed to realize the refocusing
of multiple MTs [16–18] after the displaced phase center antenna (DPCA) processing. The norm
regularization is used to constrain the solution to be sparse. Furthermore, a range frequency reversal
transform-fractional Fourier transform (RFRT-FrFT) [19] has recently been developed for MT range
cell migration correction (RCMC) after DPCA. However, they had to consider all the possible values
of moving parameters in Rodrigo and Wang [17] and the performance of the RFRT-FrFT method
will be affected by the existence of cross-terms and strong clutter. These above algorithms were
all developed based on multi-channel data, which is not suitable for one-channel SAR where the
system freedom is reduced. The non-coherent subtraction, along-track interferometry (ATI) [20], and
space-time adaptive processing (STAP) based on virtual multiple-channels [21] have been discussed to
remove the clutter from one-channel SAR data. However, the performance of non-coherent subtraction
and ATI will degrade in low signal to clutter ratio (SCR) cases and the STAP method needs a high
pulse repetition frequency.

To implement the MTs’ refocusing processing in one-channel SAR, we propose a joint sparse-based
method in this paper. The Doppler characteristic differences between the MT signal and clutter
data, which were used for detecting moving objects [22,23], were utilized in this paper to formulate
two different projection operators. The data from MTs and the static scene, which are mixed in
the defocused ROIs, will be projected to different positions according to its relevance with system
functions. To promote the separation of data and the suppression of artifacts and side lobes, we consider
employing a sparse constraint on the solution. This has also been utilized in compressed sensing
(CS) [24,25] to realize SAR or inverse synthetic aperture radar (ISAR) imaging [26–30], tomography, and
ground moving target indication in the past few decades. The CS theory can implement the complete
recovery of the original signal with fewer measurements than the Nyquist sampling rate and thus is
very useful when the raw data is undersampling or a part is missing. In Patel et al. [26], the CS theory
is discussed to reconstruct the imagery with very few sampling data. Then, Hu et al. investigated a
series of CS-based algorithms from different aspects [27–30] to implement high-resolution imaging
based on data received from sparse apertures or random down-sampling. Moreover, the sparsity of
the solution has also been utilized and the CS method was extended to tomography processing [31–33]
and MT indication [33,34], where various iteration computation methodologies were developed.

In view of the above attractive and successful applications, we try to use the same sparse constraint
in CS to realize the reconstruction of a static scene and MT imageries and the suppression of clutter in
this paper. After the joint sparse-based refocusing, MT imagery and static scene imagery could be
derived. First, the general SAR data collection geometry and signal model are described in Section 2.
Then, the joint sparse imaging methodology is presented and discussed in Section 3. Finally, numerical
simulation verifies that the algorithm can implement multiple moving target imaging conveniently.

2. Signal Model

Figure 1 depicts a SAR data collection geometry, where the scene center is defined as the origin of
the coordinate system. The transmitter and receiver are placed on the same platform that flies with a
constant altitude ht and velocity vt. The illuminated scene of interest is static during the data collection
integration time while one MT located at (xm, ym) moves with constant velocities. The instantaneous
slant range for an MT is denoted as Rm(t) at an arbitrary azimuth sampling time t.
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Figure 1. SAR data collection geometry.

Radar back data on the receiver is a mixture of the reflected signals from all the targets in the
illuminated scene. Assuming radar transmits a linear frequency modulation (LFM) signal, SAR data
after range compression can be formulated as:

Y = C + FmPTm + n0 (1)

where, Y ∈ CNd×1 is the complex column vector derived by stacking the range compressed SAR data
CNd×1 is the complex vector space where the dimension of vector is described by the superscript,
C ∈ CNI×1 is referred to as clutter, Fm ∈ CNd×NI is the radar projection operator of MT, and the notations
Nd and NI refer to the length of radar data and imagery, respectively. In Equation (1), Tm ∈ CNI×1 is a
column vector corresponding to the radar cross-section (RCS) of MTs and n0 is the noise vector.

3. MT Refocusing Methodology

It can be seen from Equation (1) that SAR received data is a collection of the clutter and MT
signal from the illuminated scene. To derive the MT imagery with a high focal quality, we should
separate or suppress the clutter in advance. However, this is difficult to realize when the smeared MT
overlaps with the static targets in the imagery domain. The energy of the clutter cannot be suppressed
completely by the traditional suppression methods. Utilizing the different Doppler characteristics of
radar data from the static and moving objects, we describe the conversion of the MT refocusing into
a sparse optimization problem in this section. The static scene and MT imageries could be derived
simultaneously after the iteration computation, which is described in detail in the following discussion.

3.1. Clutter and MT Data Separation

The SAR imagery with defocused MTs that was derived after imaging processing could be
obtained using:

S = FI(C + FmTm + n0)

= FsT + nI
(2)

where, Fs = [FIF,FIFm]

In Equation (2), S ∈ CNI×1 is the stacked vector of SAR imagery and F ∈ CNd×NI is the radar
projection operator of the static targets in which a column vector is a stacked vector of radar data from
a static target. The notation FI ∈ CNI×Nd in Equation (2) is an inverse imaging matrix; the column
vector T = [T s, Tm]T ∈ C2NI×1 consists of a static scene imagery Ts and the defocused MT area Tm,
where the element Ti can be referred to as radar cross section (RCS) information; and nI refers to the
noise in the SAR imagery domain.
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Here, a joint imaging operator Fs that incorporates the SAR system model of static and moving
targets and the inverse imaging operator was employed. Generally speaking, FI varies with SAR
processing algorithms. Here, FI = FH, which means the back projection algorithm was utilized to
guarantee the accuracy of the system model, where the subscript H denotes the conjugate transpose of
a matrix.

Due to the lack of prior information regarding the MTs, the exact analytical expression of Fm is
generally unknown. To reconstruct the separated static scene and MT imageries with a high quality,
we built the following optimization problem using:

min
T,Fm

J(T,Fm) = min
T,Fm
‖S− FsT‖22 + λ1‖T‖

p
p (3)

where ‖ · ‖pp denotes the `p norm and λ1 is a positive scaling parameter. In Equation (3), the first term
is a data fidelity term, which incorporates the joint SAR observation model in Equation (2) and the
RCS information of the illuminated targets. The adoption of the data fidelity term aims to implement
the inversion of radar back data. In practice, the Doppler characteristics of radar back data from MTs
are very different from that of a static scene. Thus, the mix-received radar data will be projected on
the joint system operator and separated to generate the static scene imagery Tc and the MT imagery
Tm. Then, the smeared clutter and static targets exist in the MT imagery with low amplitude values,
which is the same as that in the static scene imagery. These smeared impulse response functions will
be viewed as artifacts and can generally be suppressed using the sparse constraint. Hence, though the
static scene might not be sparse in practice, the sparse constraint can still promote the separation and
suppression of clutter, artifacts, and side lobe in the reconstructed imageries, which was verified by the
simulation results in Section 4.

To constrain the solution of an optimization problem to be sparse, the `p norm with p = 0 was
usually selected. In this case, Equation (3) became an `0 regularization problem, which is NP-hard.
Greedy methodologies [23] have been developed to solve this problem approximately. However, the
accuracy of these methods will degrade when the moving parameter estimation error increases in low
SCR or long integration aperture cases. Recently, the `1 norm has been widely used instead. However,
as discussed in References [28,29], the `p norm with 0 < p < 1 will result in a more sparse solution in
comparison, and thus was used in our method.

Another factor that affects the separation of MT is the design of the radar operator Fm. In practical

data processing, the initialized
_
F

0

m could be formulated based on some prior information or the

estimation results of moving parameters. When the mismatched phase error of
_
F

0

m is not too large, a
static scene and MT imageries could be separated and derived directly. Otherwise, the residual energy
of the clutter might still exist in the reconstructed MT imagery. To avoid this problem, we tried to
update the operator Fm during the iterative computation interval until the solution converged. The
detailed iterative computation is described in next section.

3.2. Iterative Solution

The iterative computation of Equation (3) can be divided into two sub-problems. First, updating
T by fixing Fm and then updating Fm by fixing T. The two procedures were iteratively implemented
until the derived results converged.

Since the `p norm is non-differentiable around the origin, an exact solution of Equation (3) is
difficult to obtain directly. As discussed in Onhon and Cetin [28], the following approximation
expression was applied instead of the `p norm:

‖z‖pp ≈
Nz∑
i=1

(
|z(i)|2 + ε

)p/2

(4)
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where ε ≥ 0 is a small positive constant, Nz denotes the length of the vector z, and z(i) refers to the ith
element in z. By substituting Equation (4) into the cost function in Equation (3), a modified equation is
given as:

Jm(T,Fm) = ‖S− FIT‖22 + λ1

2NI∑
i=1

(
|T(i)|2 + ε

)p/2

(5)

The modified cost function Jm(T,Fm) will always be close to J(T,Fm) when ε→ 0 . There is no
closed-form solution for the minimization of Equation (5) and the quasi-Newton methods may be used
to derive the solution as discussed in Cetin and Karl [29].

Calculating the gradient of Equation (5) to the real part and imaginary part of T, we can obtain
the following iterative formula based on the Hessian matrix approximation:

_
T
(n+1)

=
_
T
(n)
− γ

[
H

(
_
T
(n))]−1

∇Jm

(
_
T
(n)

, Fm

)
(6)

where

H
(
_
T
(n))
, 2FH

s Fs + pλ1diag



∣∣∣∣∣∣_T(n)

( j)

∣∣∣∣∣∣2 + ε


p/2−1

 (7.a)

∇Jm

(
_
T
(n)

, Fm

)
= H

(
_
T
(n))_

T
(n)
− 2FH

s S (7.b)

In Equation (7), γ denotes the iteration step, ∇Jm(·) is the complex gradient of the cost function

Jm(T), T(n) is the estimation result after the nth iteration, and
[
H

(
_
T
(n))]−1

is the inversion matrix

of H
(
_
T
(n))

. Substituting the expression for the gradient into Equation (6), the iterative formula is

rewritten as: [
H

(
_
T
(n))]_

T
(n+1)

= (1− γ)
[
H

(
_
T
(n))]_

T
(n)

+ 2γFH
I S (8)

Equation (8) is a linear equation with conjugate matrix coefficients. The sparsity of H
(
_
T
(n)

i

)
is

increased by neglecting elements in FH
I FI whose magnitudes are smaller than 1% of the largest element.

Hence, the conjugate gradient method could be applied to search for the solution of Equation (8).
The second iteration computation is done by fixing T to solve for Fm. The optimization problem

then becomes:

min
Fm
‖S− FHF

_
T
(n)

s − FHFm
_
T
(n)

m ‖
2

2 + λ1‖
_
T
(n)
‖

p

p (9)

As no additional constraint is performed on Fm and the phase information is not retained after the
iteration computation, the direct solution of Equation (9) is difficult to obtain. In References [13,14],
the MT parameters are updated by searching in a predefined region based on the maximization of
imagery sharpness or entropy. However, this method is computationally expensive and cannot cope
with multiple MTs with different velocities. Herein, MT patch data was reconstructed and moving
parameters were estimated, which was expressed as:

_
Y
(n+1)

m =
_
F
(n)

m

[∣∣∣∣∣∣_T(n)

m

∣∣∣∣∣∣� exp
(
∠
_
T
(0)

m

)]
(10)

where, � denotes an elementwise product operation, | · | and ∠· indicate the computation of the

amplitude and angle of a vector, and
_
T
(n)

m and
_
T
(0)

m refer to the constructed and initialized MT imagery,
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respectively. Though the MT system operator
_
F
(n)

m might deviate from the real values, most of the clutter
energy is still suppressed in the derived sparse MT imagery. Compared with the original SAR data,

the SCR in the reconstructed MT data
_
Ym will be decreased significantly. Thus, a parameter estimation

operation could be performed on
_
Ym directly to update the system function. The time-frequency

analysis, interferometry, and sub-image subtraction methodologies have been developed for moving
parameter estimation in one-channel SAR. Herein, the fractional Fourier transform after a keystone
transform in Li et al. [35,36] combined with RCMC was utilized. Then, the next iterative processing
could be carried out continually until the solution converged. The detailed iteration processing is
listed in Algorithm 1.

Algorithm 1: Joint sparse-based MT refocusing

1. Input: Defocused imagery area of MT;

2. Initialization:
_
T
(0)

,
_
F
(0)

m , F, λ1, γ, p;
3. While not converged, do:

4. Update the reconstructed result
_
T
(n+1)

according to Equation (8);

5. Update the MT projection operator
_
F
(n+1)

m ;
6. End
7. Output: Static scene imagery and MT imagery.

3.3. Implementation Issues

SAR imagery derived using back projection can be used as the initialization
_
T
(0)

. Assuming the
estimated velocities of MTs along the x and y axes are v′x = vx + ∆vx and v′y = vy + ∆vy, respectively,

and an initial estimation of the radar MT projection operator
_
F
(0)

m could thus be constructed. The
notations vx and vy are real velocities of the MT along the x and y axes, respectively, where ∆vx and ∆vy

refer to mismatched velocity errors. In practice, if some prior information about MT is given in advance,
a larger velocity could also be selected to start for the first iteration without parameter estimation.

Furthermore, since the elements in the re-stacked vector of SAR imagery and projection operator
matrix are complex, the above iterative computation cannot be applied directly. One of the most
widely used methods for solving the complex optimization problem is decomposing the complex
matrix product into real matrix operations [28], which is also used in our paper. When the converging
condition is satisfied, the static scene imagery and MT imagery will be obtained.

Moreover, the huge dimension of the SAR real data and imagery for the illuminated scene will
increase the complexity of our method and limit the application. As the defocused area of MTs was
usually distributed in small patches of SAR imagery, we did not need to construct the radar projection
operator of the whole scene. Patch processing was introduced and employed in the proposed method
to reduce the computational burden.

The defocused MT patches in the SAR imagery was extracted first as the input of iterative

computation. Then, the SAR joint imaging operator
_
F s corresponding to the imagery patches was

formulated and utilized. The number of multiplication operations in the computation of
_
F s was

proportional to the dimension of SAR data and patch imagery. To further reduce the computational
cost, we employed an azimuth down-sampling operation when reconstructing the radar projection

operators and MT data
_
Y
(n+1)

m . In iteration processing, a preconditioned conjugate gradient algorithm
with high convergence speed is used and the computational burden is proportional to the length
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of the SAR imagery vector T. As a result of the utilization of sub-patch processing and azimuth
down-sampling, the computational cost in joint sparse MT imaging is decreased significantly.

In practical data processing, the size of one MT patch is generally very small (the patch size for one
MT might be restricted to 30× 30 in a low resolution case) and the number of iteration computations is
less than 10 when the derived solution converges. Moreover, as the dimensions of the SAR imagery
patches are very small, the computation of Fs can be implemented approximately, where the value
of the elements Fs(i, j) with |i− j| = m is the same. In this case, the total computational burden was
much lower than that of autofocus processing of SAR data. In conclusion, the detailed flow of joint
sparse imaging processing is depicted in Figure 2. After the iteration converged, the static scene and
MT imageries could be derived simultaneously.
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4. Simulation

In this section, numerical simulations are described to verify the proposed joint sparse-based
algorithm, where the parameters are given in Table 1. Radar back data from five ground MTs, which
are marked as MT1–5 in Figure 3a, and 72 static targets were simulated. The velocities and positions
of the simulated MTs are listed in Table 2. The range-compressed MTs and SAR data are given in
Figure 3b,c, respectively. It can be seen from these figures that the received radar data of MTs was
masked by the clutter, which should be suppressed in advance.

Table 1. Simulation parameters.

System Parameter Numerical Value

Carrier frequency 10 GHz
Range bandwidth 300 MHz

Resolution in the x-axis 0.41 m
Resolution in the y-axis 0.23 m

Range resolution 0.12 m
Azimuth resolution 0.31 m
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range-compressed SAR data, and (c) the range-compressed MT radar data.

Table 2. Simulation parameters of the MTs.

MT1 MT2 MT3 MT4 MT5

Azimuth position (pixel) 30 50 70 70 70
Range position (pixel) 30 30 30 15 45

vx 23 m/s 23 m/s 20 m/s 18 m/s 18 m/s
vy 0.5 m/s 0.5 m/s 0.5 m/s 0.8 m/s 0.8 m/s

SCR −1.1 dB −1.1 dB −1.1 dB −11.2 dB −9.3 dB

After back-projection processing, the SAR images could be derived as in Figure 4a,b. In Figure 4b,
the five ellipses indicate the locations of MTs that were smeared in the imagery. Actually, the smeared
MTs overlapped with the strong static scene and were masked by the clutter. The SCR values were
calculated as the ratio of the energies of MT and clutter in the SAR imagery and listed in Table 2. It
could be seen from Figure 4b and Table 2 that the energy of MT4 and MT5 was much lower than that of
the clutter. In this case, the clutter was difficult to suppress or separate to derive a result with high SCR.

Here, for comparison with our method, the matched filtering, interferometry method, and L1
norm regularization methods were performed on the defocused MT SAR imagery, and the results
are given in Figure 4c–e. It can be seen from these figures that the clutter was suppressed to some
extent but there was still residual energy for strong static targets, which affected the performance of
MT detection, parameter estimation, and the imaging process. By contrast, the images of five MTs and
72 static targets were obtained with a high quality by using our joint sparse processing and the results
are depicted in Figure 4f,g.
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The initialized velocities v′x and v′y, which were used in the first iteration, were taken to be 25 m/s
and 0 m/s, respectively. The regularization parameters employed in the simulation were defined as
λ1 = 0.3 and p = 0.5. Though the initialized MT radar projection operator is mismatched, most of
the cluttered energy was still suppressed in the derived imagery after the iteration computation, as
shown in Figure 5b. MT radar patch data was then reconstructed based on Equation (9) and is given in
Figure 5c. The Doppler parameter estimation operation was then performed after a keystone transform
and range cell migration correction. The fractional Fourier transform was used and the estimation
results of MT1 and MT5 are given in Figure 5e,f. We can find from these figures that the Doppler rate
estimation results were very close to the real values. After updating the MT system operator based on
the estimated parameters, we finally obtained the MT imagery in Figure 4f and radar patch data in
Figure 4g.
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To further verify our method, the azimuth profiles of the five MTs in the SAR images derived
using matched filtering, L1 norm regularization, and our method are depicted for comparison in
Figure 6. Moreover, point target analysis with 32 times oversampling was performed and the calculated
parameters, including the impulse response width (IRW/m), peak side-lobe ratio (PSLR/dB), and the
integrated side-lobe ratio (ISLR/dB), are listed in Table 2. Since the smearing of MTs mainly existed
along the azimuth dimension, we only gave the azimuth analysis results here. It can be seen from
Figure 6 that the amplitude values of the side lobes derived using matched filtering and L1 norm
regularization methods were still very large. Furthermore, the higher ISLR values listed in Table 3 also
indicate that there were strong residual clutter and static targets energy in the reconstructed images.
In contrast, the side-lobe energy and ISLR values of the MTs obtained using our method were decreased
significantly, which verified that our method could effectively implement the suppression of clutter.
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Table 3. Point target analysis results.

Frequency Domain
Matched Filtering L1 Norm Regularization Our Method

IRW PSLR ISLR IRW PSLR ISLR IRW PSLR ISLR

MT1 0.46 −7.949 0.262 0.31 −12.826 −8.463 0.26 −13.639 −9.772
MT2 0.36 −6.065 −1.338 0.31 −12.615 −8.287 0.27 −13.028 −10.264
MT3 0.35 −6.623 1.071 0.31 −14.200 −7.976 0.25 −13.941 −9.7463
MT4 0.31 −10.814 1.218 0.29 −13.078 −7.318 0.26 −13.221 −9.8352
MT5 0.31 −9.889 13.455 0.29 −12.901 5.4789 0.26 −13.266 −9.6123

Moreover, the radar signal illuminated from six MTs with velocities of 40 m/s and 1.8 m/s along the
azimuth and range dimensions combined with real SAR data that is provided by the Air Force Research
Laboratory (AFRL) was processed using our method. The scene imagery is given in Figure 7a, where
the white rectangular frames indicate the position of the defocused MTs. The patch decomposition
operation was employed on the original radar data, where the obtained sub-imagery and radar patch
data are given in Figure 7b,c, respectively. In these two figures, most of the energy of the MTs is masked
by the clutter. The joint sparse-based processing was then used to process the radar patch data with the
initialized velocities v′x = 45 m/s and v′x = 0 m/s. The obtained MT imagery based on the initialized
velocities is depicted in Figure 7d, in which residual clutter still existed as a result of the utilization
of a mismatched radar projection operator. After MT data reconstruction and radar system operator
updating, MT imagery and radar data could be derived, as seen in Figure 8c,d and Figure 9c,d. It could
be seen that the clutter was significantly suppressed, which further verified the validity of our method.

To assess the performance of our algorithm, we combined the AFRL real SAR data with signals
illuminated from 124 MTs and measured the number of successful reconstructions using the traditional
constant false alarm rate (CFAR) detection processing. The azimuth velocities and SCR values of the
simulated MTs are given in Table 4. Data patch decomposition operations were performed and then
sub-images were derived and combined. After joint sparse processing, the MT imagery could be
obtained and the traditional CFAR detection operation was performed to measure the performance of
the algorithm. The detection results are depicted in Figure 10b and given in Table 4, where the false
detected targets are marked by the white ellipse and the missed detected targets are denoted with the
red rectangles. Since the main purpose of our paper was to implement the refocusing processing of MTs,
the detection results were not compared with the other detection algorithms. It can be concluded from
Figure 10 and Table 4 that our algorithm could realize the refocus processing of multiple MTs effectively.
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Table 4. Detection results on the reconstructed MT imagery.

Successful Detection False Detection

19 MTs, 10 dB–20 dB, vx = 20 m/s 19 0
19 MTs, 10 dB–20 dB, vx = 25 m/s 19 0
23 MTs, 0 dB–10 dB, vx = 30 m/s 23 0
23 MTs, 0 dB–10 dB, vx = 35 m/s 24 0

20 MTs, −8 dB to 0 dB, vx = 40 m/s 19 2
20 MTs, −8 dB to 0 dB, vx = 45 m/s 20 3
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5. Conclusions

An MT refocusing method based on the joint sparse imaging is proposed in this paper.
The defocused ROI in the SAR imagery was utilized in this method and hence we did not need
to process the whole illuminated scene and original radar data. Numerical simulations verified that
the presented methodology could realize multiple moving target refocusing effectively.
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