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Abstract: This paper introduces a new chaotic system with two circles of equilibrium points. The 
dynamical properties of the proposed dynamical system are investigated through evaluating 
Lyapunov exponents, bifurcation diagram and multistability. The qualitative study shows that the 
new system exhibits coexisting periodic and chaotic attractors for different values of parameters. 
The new chaotic system is implemented in both analog and digital electronics. In the former case, 
we introduce the analog circuit of the proposed chaotic system with two circles of equilibrium 
points using amplifiers, which is simulated in MultiSIM software, version 13.0 and the results of 
which are in good agreement with the numerical simulations using MATLAB. In addition, we 
perform the digital implementation of the new chaotic system using field-programmable gate 
arrays (FPGA), the experimental observations of the attractors of which confirm its suitability to 
generate chaotic behavior. 
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1. Introduction 

A nonlinear, aperiodic and continuous-time dynamical system is said to be chaotic if it exhibits 
sensitive dependence on initial conditions [1]. Thus, an autonomous continuous-time system with 
dimension 𝑛 ൒ 3 is chaotic if there is a positive element in its Lyapunov exponents spectrum. A 3D 
dissipative autonomous chaotic system is characterized by the existence of positive, zero and 
negative Lyapunov exponents with a negative sum of the Lyapunov exponents [2]. Dissipative 
systems have a state space volume that contracts on average along the trajectory so that the orbit 
approaches an attractor of measure zero in the state space. If the dissipative system is chaotic, the 
attractor is strange with a non-integer dimension and fractal structure [2]. 

Recently, chaotic systems with a closed curve of equilibrium points have attracted much 
attention in the chaos literature. Gotthans and Petrzela proposed a chaotic system with circular 
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equilibrium by using search irregular behavior of nonlinear models [3]. Pham et al. proposed a new 
chaotic system with different shapes of equilibria such as ellipse equilibrium, square-shaped 
equilibrium and rectangle-shaped equilibrium [4]. Pham et al. constructed a novel chaotic system 
with heart-shaped curve equilibrium curve, which can exhibit hidden attractors [5]. Pham et al. 
proposed a new chaotic system with equilibria located on the rounded square loop and discussed its 
circuit implementation [6]. In addition, Mobayen et al., presented a new chaotic system with a 
three-leaved clover equilibrium and its application in image encryption [7]. Sambas et al. proposed a 
new chaotic system with pear-shaped equilibrium and discussed its electronic circuit simulation [8]. 
Vaidyanathan et al. proposed a new chaotic system with axe-shaped equilibrium and discussed its 
control applications [9]. Vaidyanathan et al. proposed a new chaotic system with a cloud-shaped 
curve of equilibrium and discussed its application to sound encryption [10]. Mobayen et al. 
announced a new chaotic system with a boomerang-shaped equilibrium and discussed its 
application to sound encryption [11]. Some recent 3D chaotic systems with a closed curve of 
equilibrium points [3–11] are presented in Table 1. 

Table 1. Chaotic systems with a closed curve of equilibrium points. 

Chaotic Systems Closed Curve of Equilibrium Points 
Gotthans and Petrzela [3] Circle 

Pham et al. [4] Ellipse, Square and Rectangle 
Pham et al. [5] Heart 
Pham et al. [6] Rounded Square 

Mobayen et al. [7] Three-Leaved Clover 
Sambas et al. [8] Pear 

Vaidyanathan et al. [9] Axe 
Vaidyanathan et al. [10] Cloud 

Mobayen et al. [11] Boomerang 
This Work Two Circles 

In this work, we propose a new chaotic system with two circles of equilibrium points. The 
closed curve of equilibrium points in this work consists of two circles that intersect at the origin and 
a chaotic system with such a closed curve is a new contribution in the chaos literature. The phase 
portraits of the new chaotic system are illustrated using numerical simulations with MATLAB. The 
qualitative properties of the new chaotic system are analyzed by calculating Lyapunov exponents, 
bifurcation diagram and multistability. The dynamical analysis shows that the new system exhibits 
coexisting periodic and chaotic attractors for different values of parameters.  

Chaos in electrical circuits is an active research area and many seminal papers have been 
published on chaotic circuits in the literature [12–16]. Matsumoto observed a chaotic attractor from 
Chua’s circuit [12]. Chua et al. announced a chaotic circuit with double-scroll attractor and analyzed 
its properties [13]. Chua and Lin discussed canonical realization of Chua’s circuit family [14]. Chua 
et al. discussed a universal circuit for studying and generating chaos [15]. Sprott made a detailed 
study of simple chaotic systems and circuits [16]. 

Furthermore, the electronic circuit of the proposed chaotic system with two circles of 
equilibrium points is implemented in MultiSIM software, version 13.0. The oscilloscope results of 
the electronic circuit design of the new chaotic system are consistent with the numerical MATLAB 
simulations of the new chaotic system. Finally, we implement the new chaotic system using the 
field-programmable gate array (FPGA) circuit. FPGA circuit design has several applications in 
engineering [17].  

2. Dynamical Model of the New Chaotic System 

A general model of chaotic systems with a curve of equilibrium points ( , ) 0h x y = has been 
proposed by Pham et al. [6] as follows: 
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Motivated by the research work on chaotic systems with closed curves of equilibrium points 
(see Table 1) and the general System (1), we report a new chaotic system with two circles of 
equilibrium points given by: 
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where 𝑋 = ሺ𝑥,𝑦, 𝑧ሻ is the state and a, b, c are positive parameters. System (1) can generate chaos for a 
= 4, b = 4.5, c = 1 and initial conditions X (0) = (0.01, 0.02, 0.01). 

The equilibrium points of the new System (2) are tracked by solving the following system of 
equations: 
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Simplifying System (3), we see that the equilibrium points of the System (2) are characterized: 
by  

z = 0    and      x2 + y2 -|x| = 0 (4)

Equation (4) represents two circles of equilibrium points (x2 + y2 + x= 0 and x2 + y2 −x = 0) 
touching at the origin in the x-y plane as shown in Figure 1. 

 

Figure 1. Two circles of equilibrium points of the new System (2) in the x-y plane. 

By fixing (a, b, c) = (4, 4.5, 1) and X(0) = (0.01, 0.02, 0.01), we numerically solve System (2) via the 
fourth order Runge-Kutta method. MATLAB plots depicting the chaotic attractor of the new System 
(2) are shown in Figure 2a–c. 
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(a) 

  
(b) (c) 

Figure 2. MATLAB plots of the new chaotic System (2) (a) x-y plane, (b) y-z plane and (c) x-z plane. 

The bifurcation analysis of a nonlinear dynamical system is useful for knowing the behavior of 
the system both chaotic or periodic behavior for certain values of the system parameters [18–23]. 
Lyapunov exponent spectrum and bifurcation diagram are obtained for b = 4.5, c = 1 as a varies 
between 4 to 15 and initial condition X(0) = (0.01, 0.02, 0.01). Lyapunov exponent spectrum and 
bifurcation diagram of System (2) are given in Figure 3a,b, respectively. Obviously, from the 
bifurcation diagram and Lyapunov exponent spectrum, we conclude that System (2) exhibits robust 
chaos in the whole region. We note that the famous Wolf’s algorithm [24] is used for calculating the 
Lyapunov exponents. 
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(a) (b) 

Figure 3. (a) Bifurcation diagram of System (2) with respect to parameter a and (b) Lyapunov 
exponent spectrum of the system with respect to parameter a. 

3. Multistability Analysis 

Multistability is an interesting phenomenon and usually exists in many chaotic systems. As can 
be seen from the bifurcation diagram in Figure 4, there exist coexisting attractors in the region of [5.3, 
10] (see the right side of the black solid line in the Figure 4). When the parameters b = 4.5, c = 1 and 
vary a in the region of [4,15]. A set of initial states with blue color (0.3, 0.02, 0.01) and another set of 
initial states with red color (–0.3, 0.02, 0.01) are fixed. Some sample coexisting attractors are 
presented. For example, when a = 6, the system produces the coexisting periodic attractor and 
chaotic attractor as shown in Figure 5a,b. Moreover, the coexisting periodic attractors are found in 
the new System (2) with a = 10 as shown in Figure 5c,d. 

 

Figure 4. Coexisting bifurcation diagram of the state variable x with respect to the control parameter 
a. 
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(a) (b) 

 
(c) (d) 

Figure 5. (a) The coexisting periodic attractor and chaotic attractor in x-y plane (b) The coexisting 
periodic attractor and chaotic attractor in y-z plane (c) The coexisting periodic attractors in x-y plane 
and (d) The coexisting periodic attractors in y-z plane. 

4. The Electronic Circuit Implementation: 

The main purpose of electronic implementation using MultiSim version 13.0 is to confirm the 
suitability of system behavior with numerical simulations. The schematic diagram of new chaotic 
System (2) is shown in Figure 6. In this section, we set X = 4x, Y = 4y and Z = 4z. We obtain the 
following dimensionless system: 
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By applying Kirchhoff’s circuit laws, we get its circuital equations: 



Electronics 2019, 8, 1211 7 of 14 















−+=

−−−=

=

||111

111

1

72

2

63

2

53

2

42

2

3222

11

X
RC

Y
RC

X
RC

Z

XZ
RC

ZY
RC

YZ
RC

Y

Z
RC

X







 
(6)

The values of circuit components have been chosen as: R1 =R5 = R6 = 400 kΩ, R3 = 355.56 kΩ, R4 = 
1600 kΩ, R2 = R7 = R8 = R9 = R10 = R11 = R12 = R13 = R14 = R15 = R16 = R17 = R18 = 100 kΩ and C1 = C2 = C3 = 3.2 
nF. The phase portraits of the circuit are represented in Figure 7a–c. A very good similarity between 
MATLAB simulation results (shown in Figure 2a–c) and MultiSim version 13.0 simulation results 
(shown in Figure 7a–c) can be observed. Figure 8 shows spectral distribution for chaotic signals in 
the three coordinates: X, Y and Z. The power spectra of the produced signals are broadband, typical 
of chaotic signals. They span to a frequency range that goes beyond 5 kHz. The peak of the frequency 
spectrum was measured to be at 0.4 kHz and it corresponds to a prevailing frequency of the 
implementing oscillating loop. The frequency is quite low. Thus, the new chaotic system can only be 
used for low frequency applications. 

 

Figure 6. The circuit schematic diagram of the new chaotic system. 
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(a) 

 
(b) 

 
(c) 

 

Figure 7. Phase portraits of the new chaotic system in Multisim (a) X-Y plane, (b) Y-Z plane and (c) 
X-Z plane. 
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(a) 

 
(b) 

 
(c) 

Figure 8. The spectral distribution of the new chaotic system: (a) X-signal, (b) Y-signal and (c) 
Z-signal. 
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5. FPGA Realization 

The digital implementation of chaotic systems using field-programmable gate arrays (FPGA) 
has advantages, such as verification and fast prototyping, exploitation of the processing speed, high 
computational power and programming flexibility. Implementing chaotic systems like this new one 
described by System (2) using FPGAs, requires choosing the appropriate numerical method to 
discretize the equations and then describe the building blocks for synthesis purposes. The 
FPGA-based implementation is then suitable to develop several applications in data encryption and 
secure communications, as shown in [25]. 

Applying one-step methods to solve System (1) is quite enough to perform the FPGA-based 
implementation. In this manner, the mathematical model described in System (1) is discretized 
applying Forward-Euler and the fourth-order Runge-Kutta methods. Forward-Euler leads us to the 
discretized equations given in System (2). 
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Figure 9 shows the block description of the chaotic system and by applying the Forward Euler 
method. Applying the fourth-order Runge-Kutta method leads us to much bigger equations, which 
require more digital blocks for its implementation in the FPGA, but this method provides higher 
precision than Forward Euler. The choose of the step-size is also different in each numerical method. 
For instance, however in this work we set it to h = 0.001 for both numerical methods. The digital 
implementation can be done using computer arithmetic of 32 bits, with a fixed-point notation in the 
format 7.25, which means that one bit is associated to the sign, six bits to the integer part and 25 bits 
to the fractional part of a number. From System (7), one can identify the use of adders, subtractors, 
multipliers and a special block to implement the absolute value of the state variable |x|. The 
multipliers with two state variables as inputs are taken from the FPGA resources and the multipliers 
having one number as input (a, b, c, h), are designed as single-constant multiplier (SCM) blocks, 
which reduce the use of digital resources. To increase the processing speed, all blocks include a clock 
(clk) pin, as shown in Figure 9, in which one can change the numerical method labeled as Integrator 
Forward Euler. Details on FPGA design issues can be found in [26]. 

Table 2 shows the hardware resources used to implement the new chaotic system given in 
System (2) and using the FPGA Cyclone IV EP4CGX150DF31C7. The VHDL descriptions were 
performed using the synthesizer of software \Quartus II 13.0. The last two rows represent the 
number of clock cycles to obtain a new iteration from the initial iteration values Xn, Yn, Zn to the next 
values Xn+1, Yn+1, Zn+1 shown in Figure 8. The data at each iteration requires a latency in nanoseconds 
and they are calculated using a 50 MHz clock signal. 

 



Electronics 2019, 8, 1211 11 of 14 

 
Figure 9. Block description of the new chaotic system given in System (1), discretized with 
Forward-Euler. 

Table 2. Resources using the FPGA Cyclone IV EP4CGX150DF31C7 for implementing System (2) 
applying Forward-Euler and fourth-order Runge-Kutta methods. 

 
Resources 

Numerical Method 
Available 

Forward Euler 
Runge-Kutta fourth 

Order 
Logics Elements 1,440 6,420 149,760 

Registers 1,793 2,887 149,760 
9*9 bits multipliers 32 128 720 

Maximum Frequency (MHz) 89.96 70.09 50 
Clock Cycles by Iteration 10 34 - 
Latency by Iteration (ns) 200 680 - 

Figures 10–12 show the 2D views of the new chaotic attractors associated to the FPGA-based 
implementation of System (2) and using the FPGA Cyclone IV EP4CGX150DF31C7. The 
experimental chaotic time series of each state variable were truncated to observe the data on the 
oscilloscope when using a 16-bits digital to analog (DAC) converter of 1 megasample/second. From 
these chaotic attractors one can conclude on the good agreement between the simulated and 
experimental results for the new chaotic oscillator with two circles of equilibrium points. 
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(a) (b) 

Figure 10. Oscilloscope views in the x-y plane (2v/div) of the new chaotic System (2) implemented in 
field-programmable gate array (FPGA) and with: (a) Forward-Euler with h = 0.001 and (b) 
fourth-order Runge-Kutta with h = 0.01. 

  

(a) (b) 

Figure 11. Oscilloscope views in the y-z plane (2v/div) of the new chaotic System (2) implemented in 
FPGA and with: (a) Forward-Euler with h = 0.001 and (b) fourth-order Runge-Kutta with h = 0.01. 
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(a) (b) 

Figure 12. Oscilloscope views in the x-z plane (2v/div) of the new chaotic System (2) implemented in 
FPGA and with: (a) Forward-Euler with h = 0.001 and (b) fourth-order Runge-Kutta with h = 0.01. 

6. Conclusions 

This paper introduced a new chaotic system with two circles of equilibrium points, which is a 
new contribution to the literature of chaotic systems with closed curves of equilibrium points. 
Lyapunov exponents, bifurcation diagrams and coexisting attractors have been used to investigate 
the complex behaviors of the system. We showed that the chaotic system exhibits multistability with 
coexisting attractors. For practical implementation, an electronic circuit of the new chaotic system 
has been designed using both MultiSIM version 13.0 and FPGA. MultiSIM based simulation results 
of System (1) are in good agreement with the FPGA realization. Chaotic systems with realizations in 
circuits and FPGA have good engineering applications such as pseudo-random number generator 
(PRNG), encryption, steganography, secure communication devices, etc. 
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