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Abstract: Visual fatigue evaluation plays an important role in applications such as virtual reality
since the visual fatigue symptoms always affect the user experience seriously. Existing visual
evaluation methods require hand-crafted features for classification, and conduct feature extraction
and classification in a separated manner. In this paper, we conduct a designed experiment to
collect electroencephalogram (EEG) signals of various visual fatigue levels, and present a multi-scale
convolutional neural network (CNN) architecture named MorletInceptionNet to detect visual
fatigue using EEG as input, which exploits the spatial-temporal structure of multichannel EEG
signals. Our MorletInceptionNet adopts a joint space-time-frequency features extraction scheme in
which Morlet wavelet-like kernels are used for time-frequency raw feature extraction and inception
architecture are further used to extract multi-scale temporal features. Then, the multi-scale temporal
features are concatenated and fed to the fully connected layer for visual fatigue evaluation using
classification. In experiment evaluation, we compare our method with five state-of-the-art methods,
and the results demonstrate that our model achieve overally the best performance better performance
for two widely used evaluation metrics, i.e., classification accuracy and kappa value. Furthermore,
we use input-perturbation network-prediction correlation maps to conduct in-depth analysis into the
reason why the proposed method outperforms other methods. The results suggest that our model
is sensitive to the perturbation of β (14–30 Hz) and γ (30–40 Hz) bands. Furthermore, their spatial
patterns are of high correlation with that of the corresponding power spectral densities which are used
as evaluation features traditionally. This finding provides evidence of the hypothesis that the proposed
model can learn the joint time-frequency-space features to distinguish fatigue levels automatically.

Keywords: EEG; visual fatigue; CNN

1. Introduction

Compared with 2D content, 3D content can provide users with highly realistic sensations and a
sense of presence, which can improve their experience significantly. However, periods of extended
viewing 3D content often cause symptoms such as headache and nausea, thus causing negative effects
on user experience. These undesirable effects, which have been labeled the 3D visual fatigue, seriously
hinder the development of 3D industry [1]. Therefore, the evaluation of 3D visual fatigue has received
considerable attention.

Vast studies have been conducted to explore reasonable indicators for visual fatigue evaluation
using optometric devices on visual system [2–4]. However, in most cases these measurements are
generally costly, time-consuming, and are usually conducted with only small numbers of participants,
making the results less reliable [1]. Subsequently, features extracted from physiological signals such as
electrooculogram (EOG) and electrocardiogram (ECG) are adopted for evaluating visual fatigue [5,6].
Although these features are found to be statistically associated with visual fatigue, they are still not
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ideally indicators. Since mental fatigue is supposed as one aspect of 3D visual fatigue, these features
can hardly represent psychological changes [7].

Recently, researches have opened up the possibility for visual fatigue assessment with noninvasive
approaches based on electroencephalography (EEG) [1]. EEG signals record integration of spontaneous
electrical activities of a large number of brain cells from the scalp, which is closely related with mental
and physical states [8]. All event-related potentials in EEG are limited in duration and in frequency.
The majority of events activate distinct brain regions [9]. This means researchers can extract features
from space, time, and frequency dimensions of the EEG data to build efficient classification models for
visual fatigue evaluation. Traditionally, the most popular features for visual fatigue evaluation are
time-frequency features (e.g., power spectral), which can be obtained by time-frequency transformation
(e.g., wavelet transformation). Power spectral of various frequency bands are proven to be related
with visual fatigue levels statistically, even their combinations can also be indicators of visual fatigue
classification [10]. These extracted features are then passed as input of classifiers (e.g., support vector
machine (SVM)) to perform the final decoding. However, these traditional methods have a main
drawback that the performance of classification is heavily reliant upon the designed features extracted
from original EEG signals. On the other hand, the performance of classification relies on the prior
knowledge of experts who design these features and the process of manually selected usefully features
is always time-consuming. Moreover, even though the statistically significant features are obtained,
traditional methods are still hard to achieve desirable results.

Recently, deep learning (DL) techniques have shown distinctive capabilities in detection [11],
speech recognition [12], and time series classification [13]. Instead of separated feature extraction from
classification, DL methods learn subject-specific features guided by classification tasks automatically
and can be trained as an end-to-end measure [13–17]. This means feeding raw EEG signals into
the network can obtain the predicted label corresponding to the input in the end. Although these
approaches achieve competitive performances in EEG classification compared with traditional methods
like FBCSP-SVM, there is still substantial room for in-depth research and improvement regarding
accuracy, interpretability, and robustness. Previous methods only capture temporal and spatial
information contained within EEG signals, however, the multi-scale frequency domain information,
which is supposed as one of the most important features in EEG-based classification, is not extracted.

In this paper, we introduce deep learning techniques into EEG-based 3D fatigue assessment for
the first time. We conduct a designed experiment to collect EEG signals being various fatigue levels
and then apply the proposed MorletInceptionNet to perform automatic visual fatigue evaluation.
Compared with state-of-the-art methods, characteristics of three scales are considered simultaneously
in this paper by concatenating outputs of three inception modules in depth. The inception modules
are of different kernel size and implement a joint space-time-frequency feature extracting with various
time-scales. In addition, a 1× 1 convolutional layer is inserted to transform the sparse matrix into
a relatively dense submatrix with the purpose of boosting performance. The proposed model is
evaluated on our own visual fatigue evaluation dataset compared with other deep learning models.
Our MorletInceptionNet has significant improvement over other deep learning methods.

The rest of this paper is organized as follows. Related work is introduced in Section 2.
The motivations, network architecture, and configurations are described in Section 3. Systematic
introduction of visual fatigue experiment and the acquisition and preprocessing of EEG signal are
then introduced in Section 4. Then the evaluation of the proposed network and related analysis are
described in Section 5. The conclusion and main findings are provided in Section 6.

2. Related Work

There are several studies managing to develop methods for 3D visual fatigue evaluation. Recently,
many researchers started to use features extracted from EEG, such as power spectral density (PSD),
in various frequency bands (delta (δ) 1–3 Hz, theta (θ) 4–7 Hz, alpha (α) 8–13 Hz, beta (β) 14–30 Hz,
and gamma (γ) 30–40 Hz). Vast literatures have investigated the statistical relationship between PSD
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of various frequency band and visual fatigue levels. Kim et al. found the PSD of β and θ increased
significantly when subjects viewing uncomfortable 3D pictures, while PSD of α decreased [18]. Yin et al.
found the PSD in occipital and frontal areas increase significantly as 3D visual fatigue becomes
severe [19]. Guo et al. induced 3D visual fatigue using random-dot stereograms (RDS) to investigate
the relationship between PSD of EEG and visual fatigue, and they found a significant increase for PSD
in α bands [20]. Hsu et al. points out that the power ratio of β and α bands in EEG were the most
effective power indexes for the visual fatigue evaluation [21]. Chen et al. characterize the EEG signals
using the gravity frequency and the power spectral entropy, which served as indicators to evaluate
the level of visual fatigue [10]. However, these methods only take advantage of temporal spectral
information in EEG, ignoring the spatial information.

Inspired by the spatial property of EEG, researchers have proposed some classification methods
based on the common spatial patterns (CSPs) algorithm [22]. The CSP algorithm finds a set of linear
transformations (i.e., spatial filters) that maximize the distance of multiple classes (i.e., different visual
fatigue levels). Then power spectrals of estimated filtered channels are calculated as the representation
of the EEG and are fed into a linear classifier, such as SVM, leading to good performance. However,
this representation does not take frequency characteristics of EEG into account, thus leading to inferior
performance. This is because features of various frequencies, as well as their combinations, are proved
to be related to visual fatigue level statistically [10]. After that, in the paper by Yang et al. building
upon the success of FBCSP [23], an augmented-CSP algorithm was proposed by using overlapping
frequency bands. The log-energy features are extracted for each frequency band and arranged on a 2D
matrix. The step of performing CSP on each filtered input (frequency bands) improves the classifier
performance and shows the benefits of joint space-frequency features. Until now, the FBCSP algorithm
is still considered as the traditional baseline method of EEG-based classification tasks.

The above methods consist of two independent steps for EEG-based classification: feature
extraction and classification. They manually design subject-specific features first and then classify the
EEG data based on the extracted features by linear classifiers such as SVM. However, these traditional
methods have a main drawback that the performance of classification heavily relies on the designed
features extracted from original EEG signals. On the other hand, the performance of classification
relies on the prior knowledge of experts who design these features. Besides, the process of manually
selected usefully features is much more complicated and always time-consuming.

Over the last decade, deep learning has become very popular in various research areas
and applications such as computer vision [11], speech recognition [12], and bioinformatics [13].
Convolutional Neural Nets (CNNs) are neural networks that can learn local patterns in data.
In particular, deep convolutional models are well suited for end-to-end learning, which might be
especially attractive in EEG analysis. Features can be learned from the raw EEG signals directly
without manual feature selection, and the feature extraction and classification part could be optimized
simultaneously. Vast DL literature on EEG-based classification suggests that the related methods can
be divided into two categories: recurrent-convolutional neural network (R-CNN) and convolutional
neural network (CNN). The difference between these two categories is the way of tackling temporal
information in EEG. For RCNN-based models, spatial information is first extracted by convolutional
layers and then the feature maps are passed to recurrent layers such as Long Short Term Memory
(LSTM) or Gated Recurrent Unit (GRU) to extract temporal information. Pouya et al. proposed a deep
Recurrent-Convolutional Network and introduced presenting the EEG data as natural images [17].
Maddula et al. designed a RCNN model to classify P300 signals automatically [16]. Zhang et al.
proposed two frameworks which consisted of both convolutional and recurrent neural networks,
effectively exploring the preserved spatial and temporal information in either a cascade or a parallel
manner [14]. While for CNN-based models, both temporal and spatial features are extracted by
convolutional layers. Croce et al. investigated the capabilities of CNNs for off-line, automatic artifact
identification without feature selection [24]. Chiarelli et al. proposed a hybrid CNN net which combines
EEG and fNIRS recordings for motor imagery classification [25]. Emami et al. explored image-based
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seizure detection by applying CNN net to long-term EEG that included epileptic seizures [26].
Vernon et al. proposed EEGNet for BCI classification tasks which employed the Depthwise and
Separable convolutions [15]. Robin et al. showed how to design and train ConvNets based on raw
EEG [13]. They utilized two convolutional layers across time and space to better handle the input.

3. Method

3.1. Motivation and High-Level Considerations

The most straightforward way of improving the performance of CNN on EEG-based classification
tasks is increasing the model complexity, which means building a deeper network. This has been
proved as an effective way of training higher quality models in the field of computer vision tasks.
However, it is not suitable for EEG-based classification tasks. Except for the dramatic increasing of
computational resources, the main problem is overfitting.

As the depth of models increases, a larger number of parameters makes the trained models more
prone to overfitting. To fix this problem, more training samples are required, which is impractical in
EEG-based classification tasks. Since recording EEG data is quite time consuming, the number of trials
in an EEG data set is always small. Take the well-known public dataset BCI IV 2a as example [13],
there only about 1000 trials per subject, which means we have to train and evaluate our model on a
dataset with less than 800 trials (4:1 for training set vs. test set).

There are several ways proposed in previous literatures to solve this overfitting problem in limited
datasets, such as transfer learning [27], data augment [13], reducing the parameters number [28], and
so on. In this paper, we only focus on the method concerning model structure optimization. Szegedy
et. al. proposed using two stacked m× 1 and 1× n convolutional kernels instead of using a m× n
kernel for the purpose of reducing number of parameters [29]. Their proposed architecture achieved
state-of-the-art performance on the ILSVRC2012 classification task. Similarly, classic EEG-based CNN
models, such as Shallow ConvNet [13] and EEGNet [15], for EEG-based classification tasks involve
similar design. Most of these models are of compact structure, in which 1D convolutional kernels are
adopted to extracted time and spatial features respectively. However, the depth of these models is
always small to limit the number of parameters and avoid overfitting. Therefore, their performance is
not satisfactory yet.

This raises the question of whether there is any hope for building a deeper network without
increasing the number of parameters. Motivated by the wavelet-spatial filters ConvNet (WaSF
ConvNet) proposed by Zhao [28], we adopt morlet wavelet as our convolutional kernel to extract
time-frequency features of EEG. The wavelet kernel is formulated as follows:

w(t) = e−
a2t2

2 cos(2πbt) (1)

where t denotes the sampling time steps. a and b are two free parameters controlling the bandwidth of
the activated time window and the frequency of wavelet central respectively. The wavelet kernel shown
in Figure 1. There are two benefits using morlet kernel. Firstly, there are only two parameters a and b
controlling the kernel shape, which is quite small comparing with traditional CNN kernels. Moreover,
the number of parameters does not change along with increasing kernel size, which allows us to use
a large sized kernel without increasing the number of parameters. This means that the adoption of
wavelet kernel may allow us to build a deeper Net to improve the classification performance. Secondly
and most importantly, since all event-related potentials are limited in duration and in frequency, classic
classification of EEG signals exploits features, incorporating the time and frequency dimensions of
the EEG data. Morlet wavelet is supposed to be more suitable than traditional kernel for the reason
that it is widely used in time-frequency analysis for EEG and is proven to be a more effective way for
feature extraction.
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Except for the overfitting problem brought by the limited dataset, the difference between EEG
and image data also has to be taken into account. EEG signal is a dynamic time series from electrode
measurements obtained on the three-dimensional scalp surface. Various events activate distinct brain
regions in different timings and frequencies with different order [9]. Therefore, efficient classification
of EEG signals exploits features, incorporating the space, time, and frequency dimensions of the
EEG data and achieving state-of-the-art performance [28]. However, these models do not take the
scaling effect of features into consideration. Motivated by InceptionModule in GooLeNet proposed by
Szegedy et al. [30], the inception module is integrated to capture characteristics of different scales in
EEG signals. In addition, we also use 1× 1 convolutional kernel to find the optimal combination of the
features extracted by different inception modules.

Figure 1. Kernels of time-frequency convolutional units with the same parameters for different sample
rate (250 Hz for left and 100 Hz for right), respectively.

3.2. Architectural Details
Convolutional layers in the proposed model contains two convolutional layers, performing time

convolution and spatial convolution respectively. Time-frequency convolutional layers extract the
time-frequency features from input signals, while spatial convolutional layers explore the optimal
spatial pattern of the extracted features. Both of them are 1D convolutional kernel.

We adopt morlet function as our convolutional kernel of time-frequency layers. As mentioned
above, two parameters a and b are involved in this function, in which a controls the active time window
of the wavelet kernel and b represents the central frequency (see Figure 1). Intuitively, a corresponds
to the information of time domain and b corresponds to the information of frequency domain. Thus,
the wavelet kernel is formulated as follows:

wi
η = cos

(
2πbη

2i− kernel_size
2 ∗ srate

)
e−

1
2 ∗a

2
η( 2i−kernel_size

2∗srate )
2

(2)

where wi
η denotes the i-th (iε {1, . . . , kernel−size}) element of the η-th convolutional kernel unit. aη

and bη are the parameters controlling the pattern of η-th convolutional kernel. Since all convolutional
kernels in the proposed model are 1D, scalar kernel_size denotes the convolutional kernel size. Scalar
srate denotes the sampling rate of the input EEG. It is important to note that a higher sampling rate
means a shorter time window, which leads the model preferring the high-frequency components of
the input. Figure 1 demonstrates the difference between morlet wave with the same parameters except
for the sampling rate.

To capture multi-scale information in EEG signals, we apply inception module in the proposed
network. Compared with stacked convolutional layer directly, inception architecture allows us keep
information of each scale and find their optimal combinations. This is very useful when tackling with
EEG data, since various events activate distinct brain regions in different timings and frequencies with
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different order. Correspondingly, their distinct features may be of various combinations of values
extracted from different domains.

Each inception module contains two convolutional layers, performing time-frequency convolution
and spatial convolution respectively. Time-frequency convolution layers extract time-frequency
features of the input EEG, while spatial convolution layers search the optimal spatial pattern.
Schirrmeister et. al. confirm the effectiveness of categories which divide the time-space features
extraction layers into two independent 1D convolutional layers [13]. The divided category is quite
similar with traditional analysis process and they believe it is the key to achieve improved performance.
In this paper, we follow this design that dividing the features extraction layers into multi 1D
convolutional layers in which joint time-frequency-space features can be extracted sequentially.
Moreover, we insert a 1× 1 convolutional layer after the concatenation of multi-scale features to
explore the optimal combinations of the extracted features [31].

Architecture of the inception module is illustrated in Figure 2. Note that all 1× 1 convolutional
layers in the proposed model do not contain non-linear transformation (such as Relu function), since
this layer is designed to search the optimal combinations of extracted features and we do not want to
increase the complexity of the net any more. In addition, compared with traditional inception-based
net in which a 1× 1 convolutional layer is always used as a compression method [30], the 1× 1 layer
in our net does not compress the feature maps. The amount of channelin and channelout is the same
for the reason that EEG for various subjects are quite different and compression may degrade the
generalization of the net.

Figure 2. Architecture of inception module in the proposed network.

3.3. Morletinceptionnet
Suppose that we were given an EEG data set (denoted by S), in which numbers of trials were

contained. Each trial was a time-course EEG record belonging to one of several classes. Then the data
set could be denoted by S = {(X1, y1) , (X2, y2) , . . . , (XN , yN)}, where N represented the number of
trials in the given data set S. Here, Xi ∈ RE×T was the input matrix with E denoting the number of
electrodes and T representing the number of sample time points in each trial, while yi was the class
label of the i-th trial. It takes values from a set of C class labels L (L = {l1, l2, . . . , lC}) corresponding
to a set of brain activities. For example, yi in BCI competition IV 2a data sets could take class l1, l2, l3
or l4, meaning that during i-th trial of EEG, subjects performed either imagined left-hand movement,
right-hand, foot movement, or tongue movement.
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Inception module is designed to extracted multi-scale features by using various convolutional
kernel size. Since information transmission process of each submodule (single column of inception
module in Figure 3) is the same, we write the first submodule (kernel size is 15) for example. Given the

η-th morlet kernel Wη =
{

wη
1 , wη

2 , . . . , wη
E

}T
,where Wη ∈ RK×E, K denotes the 1D kernel length and

wη
e is generated by formulation (2) , then we have:

X̂i = padding (Xi, 7) (3)

hη
i = biasη + Wη ⊗ X̂i (4)

where Xi ∈ RExT denotes the i-th trial of EEG. For the purposes of aligning the feature map size
for different scales, we apply a padding function before the convolutional operation. The padding
function fills seven zeros both in front of and rear of each row of Xi, and get X̂l ∈ RE×(T+14). hη

i
corresponds to the η-th time-frequency feature map of the i-th EEG data, which is then as the input of
the 1× 1 convolutional layer and the following Batch Normalization (BN) and Nonlinear Layer (Relu,
f (x) = max(x, 0)). After the processing of the two convolutional layers, the distribution of input may
change and the shift of the data distribution would affect the training of the network [32].

Figure 3. Architecture of MorletInceptionNet.

Until now, the time-frequency features have been extracted and their optimal combinations are
also calculated by a 1× 1 convolutional layer. The next step is to obtain the spatial pattern which
corresponds to certain classes. The process of this step is same as the time-frequency step except for
using CNN convolutional kernel instead of applying morlet kernel.
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Following spatial convolution, the average pooling layer is utilized to aggregate the features of
time dimension and transform the low-level features to high-level features. After that, a dropout layer
which randomly discards a portion of the features with a certain probability is adopted to reduce the
risk of overfitting.

Since three convolutional kernel sizes, which are 1× 15, 1× 25, and 1× 35, are involved in the
MorletInceptionNet, three feature maps are generated by the Inception module. The purpose of the
compression module is to integrate these feature maps together and then to transmit the integrated
bigger sparse matrix into relatively dense submatrices. Feature maps are concatenated in depth first,
and then compressed by a 1× 1 convolutional layer to generate a smaller dense matrix. Note that
all outputs of the 1× 1 convolutional layer, including Inception module, are not transformed by the
non-linear layer, since the involvement of 1× 1 convolutional layers is only for the optimization of
feature combinations. We believe that although more non-linear layers gives the network a greater
ability to represent the data, they also come with a higher overfitting risk.

The structure of the classification module is more straightforward compared with previous layers.
The input is first flattened to a vector and then passed to a dropout layer in which features are discarded
with a certain probability. After that, a dense layer is adopted to reduce the size of input vector to
3, which corresponds to the number of classes. Finally, SoftMax function is utilized to calculate the
probability of given EEG trial for each class.

The proposed MorletInceptionNet is implemented on a workstation with Intel Xeon 2.4 GHz,
32 GB random access memory (RAM), and 8 GB DDR5 graphic card (NVidia GeForce GTX 1070) with
1920 CUDA cores using Python 3.6 and PyTorch deep learning library.

We perform a 5-fold cross validation on the training set in order to validate the proposed
network and find optimal super-parameters using grid search. The convolutional layer parameters
are first selected using cross-validation and then for testing on the test set. Configurations of
MorletInceptionNet are illustrated in Figure 3 already, thus we will not give detailed descriptions
again. We chose ADAM as the optimization method and the corresponding parameters are set to
default values as [33]. The probability of the dropout layer is set to 50%. In addition, the weights of the
morlet convolution a and b are randomly initialized by uniform distribution in U(1, 10) and U(3, 30),
respectively.

4. Visual Fatigue Experiment

For the purpose of investigating the effective representations of fatigue states, we conducted a
designed visual fatigue experiment to collect EEG data. Subject information, experiment protocol,
and data recording and preprocessing were introduced as follow.

4.1. Subject

Twenty (mean age: 23 years; range: 22–25 years; 4 females; all right-handed) healthy students
from the University of Chinese Academy of Sciences were recruited. Visual acuity and stereo acuity
tests with autorefractometer and random dot stereogram (RDS) patterns were conducted to ensure
all participants had normal vision. Subjects were required to refrain from antifatigue drinks or
drowsiness-causing medications for 2 days before the experiment. Concurrently, they needed to keep
reasonable rest with sleep durations of more than 7 h per night. They should comply with these
regulations so as to join the study.

4.2. Experiment Protocol

In this study, 3D visual fatigue was induced by RDS with various disparities. The RDSs, which
consisted of left-view and right-view, were generated by Unity 3D (Unity Technologies, St. Bellevue,
WA, USA) and the dot density was 50 dots/deg2. The target area was shifted horizontally inwards
or outwards to form crossed or uncrossed disparities. The shifts formed nine angular disparities
of 0◦, 0.3◦,−0.3◦, 0.5◦,−0.5◦, 0.9◦,−0.9◦, 1.1◦, and −1.1◦ on the subject’s retina. When a subject was
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seated at a distance of 1020 mm (3 times of screen height), the target-area of RDS pattern was of
1.24◦ × 2.45◦ rectangular locating in the middle of the screen. A black point (0.1 radius) superimposed
onto the middle of the pattern helped the subjects to fixate their eyes and prevented voluntary eye
movements. The stimuli were presented via an AOC D2769Vh 3D display (27 inch, 1920× 1024 pixel
resolution, and 60 Hz refresh rate, produced by Admiral Overseas Corporation, Wuhan, China) with
subjects wearing polarized glasses sat in front of it.

Before the viewing task, subjects were asked to carry out a 2 min test to confirm all target
disparities were identified clearly. Then they had a 5 min rest to adjust their status to a comfort level.
The whole viewing task was divided into 6 blocks. Subjects were asked to finish a questionnaire to
score their current visual fatigue states once a block was completed. The fatigue score ranged from
1 to 3, of which 1 meant no fatigue, 3 indicated extreme fatigue. Each block lasted for about 4.5 min,
and RDSs of 9 disparities were presented in random order to simulate the real viewing condition.
Additionally, the present times for each disparity were the same in one block (about 15 times for each
disparity). The experimental environment was an office-like setting with an appropriate illumination
condition of 300 lux without glare, which is the major cause of fatigue from lighting.

4.3. Data Recording and Preprocessing

Whole head EEG data were recorded from 34 channels. These channels were positioned based
on the international standard 10–20 system and referenced to the left mastoids (A1). Four electrodes
were used for recording the electrooculogram (EOG) activity and Thirty electrodes for the EEG activity.
EEG data were recorded through the Compumedics NeuroScan Scan 4.5 software in tandem with the
Synamps 2 system. EEG data were bandpass filtered (1–100 Hz) and digitized with a 24-bit analog
to digital converter with a sampling rate of 1000 Hz. Electrode impedance at each electrode was
maintained below 10 kΩ.

One subject was excluded for poor signal quality, the rest raw EEG data from all six blocks
were appended to create one dataset for each subject and then resampled to 250 Hz to reduce the
computational requirements of further processing steps. After that, the EEG datasets were band-pass
filtered into 1–40 Hz with a Parks McClellan notch filter at 50 Hz, and a common average reference was
computed from all the channels. In addition, artifact subspace reconstruction (ASR) [34], implemented
as a plug-in to the EEGLAB, was applied using a threshold (σ = 20) to reduce data contamination by
high-amplitude artifacts.

Thereafter, a trial of epoch of 1500 ms (ranging from −500 to +1000 ms around zero, which
corresponded to stimulus onset) were extracted from continuous EEG data.

After this step, there were about 1200 trials for each of 19 subjects, of which the number
of each fatigue level was about 400. For each trial, we got a matrix with the shape of 30 × 375
(channels × sampling points). Finally, we get the fatigue data set with size of 19× 1200× 30× 375
(subjects× trials× channels× timing samples). We perform a five-fold cross validation in order to
select parameters. The whole shuffled set is divided into two separate sets, training set and testing set,
with the proportion of 0.8 and 0.2. Cross-validation is conducted on the training set and then the test is
run on the test set.

5. Results

To validate the performance of the proposed network, we make a comparison with the
state-of-the-art methods to prove the effectiveness of our model. In this section, we first give a
brief introduction of the baseline methods. Then the comparisons between our model and baseline
methods are made. Finally, the learned representation is visualized to understand how the model
achieves such performance.

5.1. Baseline Methods and Performance Metrics

The baseline methods are listed as follows:
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• CNNInceptionNet: Replace the morlet layer in the proposed MorletInceptionNet with regular
convolutional lay to validate the effectiveness of the morlet kernel.

• Shallow ConvNet [13]: Inspired by FBCSP algorithm, Shallow ConvNet extract features in a
similar way. But Shallow ConvNet uses a convolutional neural network to do all the computations
and all the steps are optimized in an end-to-end manner.

• Deep ConvNet [13]: It has four convolution-pooling blocks and is much deeper than
Shallow ConvNet.

• EEGNet [15]: It has two convolution-pooling blocks. The difference between EEGNet and
ConvNets introduced above is that EEGNet uses depth-wise and separable convolution.

• MorletNet: Replace the first layer of Shallow ConvNet with morlet layer. The sub-architecture of
inception module proposed in this paper is similar with Shallow ConvNet. This network is used
to validate the effectiveness of morlet kernel by comparing with Shallow ConvNet, as well as the
effectiveness of proposed inception architecture by comparing with MorletInceptionNet.

• FBCSP-SVM [23]: A traditional augmented-CSP algorithm using overlapping frequency bands.
The log-energy features are extracted for each frequency band in spatial transformed EEG signal.
The extracted features are then passed into SVM for classification. We adopt one-vs-rest strategy
for multi-class classification.

• 2DRCNN [16]: It has 3 stacked convolutional layers to extract spatial information and then the
feature maps are passed into a single LSTM layer with 32 memory cells to extract temporal
information in EEG.

In this paper, kappa value k = (pa − pc) / (1− pc) is used as one of the evaluation metrics to
assess the performance of the classifiers, where pa is the proportion of the successful classification
(identical to accuracy) and pc is the proportion of random classification [28].

5.2. Classification Performances

The proposed MorletInceptionNet is trained to detect visual fatigue status on both subject-specific
and cross-subject datasets. The network performances are obtained on each dataset by 5-fold cross
validation. For each dataset, 60% of the samples are randomly selected as training set, while 20% is
randomly selected as validation set, and the remaining 20% is reserved as testing set. We adopt the
grid search to find the optimal super-parameters for all algorithms.

First of all, parameters numbers for various models are calculated and are summarized in Table 1.
Then the performances of models on the subject-specific an cross-subject dataset in terms of k value and
accuracy are list in Tables 2 and 3 respectively. Overall, all methods achieve acceptable performances on
most subjects. The undesirable kappa values observed on s6, s9, s10, s12 originated from the severely
unbalanced class. The proposed MorletInceptionNet achieves the best performance compared with
other baseline methods for most subjects in both kappa value (p = 0.01, Wilcoxon signed-rank test)
and accuracy (p = 0.017, Wilcoxon signed-rank test). According to the average kappa value in Table 2,
the proposed MorletInceptionNet reaches 0.45, which exceeds the state-of-the-art methods by 0.03.
This suggests the effectiveness of the proposed architecture.

To validate the whether the morlet kernel and inception architecture are helpful for improving
performance, two architectural networks (CNNInceptionNet and MorletNet) are involved to
demonstrate the effectiveness of the proposed architectures. On one hand, we replace the morlet
layer with regular convolutional layer to test whether the performance is improved due to the morlet
kernel. On another hand, we replace the multi-scaling architecture with one, which can be viewed as
Shallow ConvNet with morlet layer, to test whether the improvement is caused by proposed inception
architecture. Statistical results from the comparison between kappa value of MorletInceptionNet
and CNNInceptionNet suggest a significant improvement of performance by the adoption of morlet
kernel (p = 0.049, Wilcoxon signed-rank test). Moreover, the comparison between the kappa values
of MorletInceptionNet and MorletNet also implies a significant improvement of performance by
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adoption of inception module (p = 0.007, Wilcoxon signed-rank test). These statistical results confirm
the effectiveness of the proposed architecture. Comparison between MorletNet and Shallow ConvNet
is also conducted and the insignificant statistical result (p = 0.31 Wilcoxon signed-rank test) suggests
the replacement of timing layer using morlet kernel is maybe not effective for the architecture of
Shallow ConvNet. These imply that although morlet convolution can reduce the number of parameters
(see Table 1), structural optimization of the Net is also needed.

Both Deep ConvNet and 2DRCNN achieved the worst results in most subjects, showing increasing
the depth of network may be not helpful for classification tasks. The magnitude of parameters in
these two models is much larger than the rest, especially for 2DRCNN there are over 100 million
parameters (Table 1). These provide evidence for the hypothesis mentioned above that increasing
the depth of the model may be not helpful for EEG-based classification tasks. However, a very
small amount of parameters seems to not be helpful as well. EEGNet, which only has about 2115
parameters, achieves the second worst results (Table 1). Shallow ConvNet, as we know, is a 4
layers-net consisting of one timing layer and one spatial layer which extracts timing and spatial
features consequently. This compact architecture with a smaller magnitude of parameters compared
with Deep ConvNet outperforms other baseline methods (while not for the proposed methods),
which proves its effectiveness. Compared with MorletNet, replacement of the timing layer in Shallow
ConvNet using morlet kernel without structural optimization may be not helpful for performance
improvement (p = 0.31 Wilcoxon signed-rank test), additional structural optimization is also needed.

Table 1. Numbers of parameters in various models.

Net Number of Parameters

CNNInceptionNet 67,078
Shallow ConvNet 51,403

Deep ConvNet 163,478
EEGNet 2115

MorletNet 54,703
2DRCNN over 130,000,000

MorletInceptionNet 65,278

For a traditional baseline method, FBCSP-SVM is very competitive as an universal model in
various EEG-based classification tasks. In our experiment, FBCSP-SVM achieves the second best
performance both in kappa and classification accuracy. This implies that both frequency domain
and space domain features are effective in visual fatigue classification tasks, which is consistent
with previous research [18–20]. This also proves the effectiveness of the proposed model in which
space-frequency-time features are extracted for classification.
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Table 2. Comparison of our method with baseline methods in terms of kappa value for the fatigue dataset of specific subject and cross-subject, best scores are in bold.

Subject Deep4 ConvNet EEGNet4 Shallow ConvNet MorletNet MorletInceptionNet CNNInceptionNet FBCSP-SVM 2DRCNN

s1 0.21 ± 0.03 0.20 ± 0.04 0.33 ± 0.06 0.40 ± 0.04 0.41 ± 0.05 0.39 ± 0.06 0.36 ± 0.04 0.30 ± 0.03
s2 0.15 ± 0.03 0.42 ± 0.05 0.51 ± 0.06 0.55 ± 0.08 0.54 ± 0.02 0.53 ± 0.06 0.52 ± 0.05 0.46 ± 0.04
s3 0.72 ± 0.05 0.73 ± 0.09 0.71 ± 0.03 0.72 ± 0.05 0.76 ± 0.04 0.76 ± 0.04 0.71 ± 0.03 0.68 ± 0.05
s4 0.32 ± 0.02 0.33 ± 0.08 0.46 ± 0.02 0.54 ± 0.06 0.52 ± 0.04 0.52 ± 0.03 0.48 ± 0.03 0.46 ± 0.02
s5 0.26 ± 0.08 0.37 ± 0.06 0.54 ± 0.04 0.48 ± 0.06 0.50 ± 0.04 0.52 ± 0.05 0.51 ± 0.04 0.43 ± 0.04
s6 0.07 ± 0.05 0.10 ± 0.07 0.30 ± 0.02 0.24 ± 0.08 0.32 ± 0.05 0.30 ± 0.07 0.30 ± 0.02 0.26 ± 0.05
s7 0.25 ± 0.08 0.26 ± 0.09 0.50 ± 0.05 0.42 ± 0.07 0.45 ± 0.09 0.41 ± 0.07 0.48 ± 0.03 0.39 ± 0.04
s8 0.10 ± 0.07 0.29 ± 0.05 0.43 ± 0.13 0.38 ± 0.05 0.44 ± 0.05 0.44 ± 0.07 0.41 ± 0.04 0.36 ± 0.06
s9 0.09 ± 0.02 0.18 ± 0.02 0.25 ± 0.03 0.27 ± 0.07 0.28 ± 0.07 0.27 ± 0.05 0.27 ± 0.05 0.19 ± 0.04
s10 0.20 ± 0.04 0.17 ± 0.13 0.28 ± 0.08 0.29 ± 0.10 0.31 ± 0.09 0.30 ± 0.09 0.30 ± 0.06 0.29 ± 0.07
s11 0.55 ± 0.10 0.55 ± 0.09 0.44 ± 0.14 0.44 ± 0.06 0.52 ± 0.08 0.52 ± 0.10 0.48 ± 0.03 0.45 ± 0.03
s12 0.01 ± 0.03 0.01 ± 0.06 0.04 ± 0.04 0.10 ± 0.05 0.18 ± 0.10 0.13 ± 0.08 0.15 ± 0.09 0.16 ± 0.04
s13 0.27 ± 0.03 0.41 ± 0.07 0.52 ± 0.05 0.55 ± 0.07 0.58 ± 0.04 0.52 ± 0.03 0.56 ± 0.04 0.47 ± 0.04
s14 0.17 ± 0.06 0.19 ± 0.05 0.51 ± 0.04 0.47 ± 0.05 0.52 ± 0.05 0.49 ± 0.05 0.50 ± 0.05 0.46 ± 0.05
s15 0.46 ± 0.10 0.40 ± 0.06 0.47 ± 0.05 0.49 ± 0.08 0.51 ± 0.09 0.51 ± 0.04 0.47 ± 0.04 0.44 ± 0.03
s16 0.34 ± 0.07 0.35 ± 0.08 0.45 ± 0.05 0.46 ± 0.01 0.42 ± 0.05 0.47 ± 0.02 0.41 ± 0.01 0.36 ± 0.01

AVG 0.26 ± 0.05 0.31 ± 0.07 0.42 ± 0.06 0.43 ± 0.06 0.45 ± 0.06 0.44 ± 0.06 0.43 ± 0.04 0.38 ± 0.04
Cross-subject 0.31 ± 0.04 0.35 ± 0.05 0.50 ± 0.05 0.50 ± 0.04 0.61 ± 0.06 0.57 ± 0.07 0.52 ± 0.05 0.48 ± 0.06
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Table 3. Comparison of our method with baseline methods in terms of accuracy for the fatigue dataset for each subject and cross-subject, best scores are in bold.

Subject Deep4 ConvNet EEGNet4 Shallow ConvNet MorletNet MorletInceptionNet CNNInceptionNet FBCSP-SVM 2DRCNN

s1 0.42 ± 0.02 0.45 ± 0.02 0.58 ± 0.02 0.65 ± 0.01 0.63 ± 0.03 0.62 ± 0.03 0.57 ± 0.02 0.48 ± 0.03
s2 0.39 ± 0.05 0.63 ± 0.01 0.76 ± 0.03 0.78 ± 0.01 0.77 ± 0.02 0.79 ± 0.02 0.73 ± 0.02 0.64 ± 0.01
s3 0.84 ± 0.01 0.86 ± 0.02 0.86 ± 0.02 0.85 ± 0.02 0.86 ± 0.02 0.86 ± 0.00 0.84 ± 0.01 0.84 ± 0.02
s4 0.54 ± 0.03 0.53 ± 0.02 0.66 ± 0.01 0.69 ± 0.02 0.71 ± 0.02 0.69 ± 0.02 0.54 ± 0.03 0.51 ± 0.02
s5 0.56 ± 0.04 0.57 ± 0.05 0.70 ± 0.01 0.69 ± 0.02 0.73 ± 0.02 0.71 ± 0.01 0.71 ± 0.02 0.69 ± 0.02
s6 0.51 ± 0.02 0.53 ± 0.04 0.67 ± 0.01 0.63 ± 0.03 0.63 ± 0.03 0.59 ± 0.04 0.63 ± 0.01 0.58 ± 0.01
s7 0.64 ± 0.04 0.65 ± 0.03 0.78 ± 0.01 0.74 ± 0.02 0.74 ± 0.01 0.74 ± 0.02 0.74 ± 0.02 0.65 ± 0.03
s8 0.84 ± 0.01 0.84 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.88 ± 0.02 0.87 ± 0.02 0.85 ± 0.02 0.85 ± 0.03
s9 0.52 ± 0.02 0.48 ± 0.03 0.58 ± 0.01 0.58 ± 0.02 0.62 ± 0.01 0.59 ± 0.02 0.58 ± 0.04 0.53 ± 0.04
s10 0.75 ± 0.02 0.74 ± 0.04 0.86 ± 0.01 0.85 ± 0.01 0.85 ± 0.02 0.85 ± 0.01 0.76 ± 0.02 0.82 ± 0.01
s11 0.88 ± 0.05 0.90 ± 0.01 0.89 ± 0.01 0.86 ± 0.01 0.88 ± 0.02 0.90 ± 0.02 0.84 ± 0.05 0.88 ± 0.02
s12 0.59 ± 0.02 0.58 ± 0.02 0.68 ± 0.01 0.74 ± 0.02 0.74 ± 0.01 0.74 ± 0.02 0.74 ± 0.02 0.73 ± 0.01
s13 0.50 ± 0.03 0.56 ± 0.02 0.63 ± 0.02 0.65 ± 0.01 0.69 ± 0.03 0.63 ± 0.03 0.65 ± 0.02 0.63 ± 0.02
s14 0.41 ± 0.03 0.46 ± 0.03 0.67 ± 0.03 0.67 ± 0.02 0.68 ± 0.01 0.67 ± 0.02 0.66 ± 0.01 0.64 ± 0.02
s15 0.79 ± 0.01 0.71 ± 0.03 0.77 ± 0.01 0.78 ± 0.02 0.80 ± 0.01 0.80 ± 0.02 0.77 ± 0.03 0.77 ± 0.02
s16 0.56 ± 0.03 0.59 ± 0.07 0.63 ± 0.03 0.64 ± 0.01 0.69 ± 0.01 0.65 ± 0.02 0.65 ± 0.02 0.62 ± 0.04

AVG 0.61 ± 0.03 0.63 ± 0.03 0.73 ± 0.02 0.73 ± 0.01 0.74 ± 0.02 0.73 ± 0.02 0.70 ± 0.02 0.67 ± 0.02
Cross-subject 0.67 ± 0.02 0.68 ± 0.02 0.73 ± 0.04 0.71 ± 0.02 0.74 ± 0.03 0.72 ± 0.03 0.73 ± 0.03 0.71 ± 0.02
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5.3. Visualizing the Learned Representation

To understand the reason why the proposed method outperforms baseline methods, we make use
of Input-perturbation network-prediction correlation maps, which were proposed by Schisstmeter [13],
to investigate what our model has learned. In his method, a small perturbation in a certain frequency
band is added into the input signal, then the correlations between changes of input and output
are calculated. In this paper, only the outputs of dense layer (before SoftMax unit) are utilized
as the model output to compute the correlation maps, since outputs of these can reflect the final
classification results directly and the values of this layers are continuous which is convenient for the
correlation computation.

Since all subjects have similar correlation value, in this paper we select subject 12 for example.
The results are shown in Figure 4, which suggest that most higher correlations (deep red or deep blue
in the Figure 4) exist in the frequency interval of 15–40 Hz, which corresponds to β band and γ band.
Since deep red and blue imply strong positive and negative correlation between input and dense
layer output respectively, Figure 4 implies that the trained model is more sensitive to perturbation in
frequency bands of 15–40 Hz. This is consistent with previous researches, in which the PSD in β band
has been found of a statistical relationship with 3D visual fatigue [10,18,20,21]. In addition, we can also
observe that most correlated electrodes are located in the parietal-occipital area. This is also consistent
with previous studies, in which parietal-occipital area, especially occipital, play an important role
in the 3D visual system [35] and their activity always vary significantly when subjects suffer visual
fatigue [18,36,37]. Results indicate that the proposed model indeed has learned frequency-space
representations of EEG.

Figure 4. Correlation value between input perturbation and dense output for different fatigue levels
at various electrodes (y-axis) and frequency (x-axis). According to the color bar (right), deep red
or blue indicate a stronger correlation between input and output. We can observe clearly that most
high correlation values are located at the partial-occipital area (channel number from 20 to 30) with
the frequency band of 15–40 Hz. This suggests that in our net the high-frequency activities in the
partial-occipital area are more likely to be used in classification.

Interestingly, our model is also found to be sensitive to the perturbation in the γ band, which
has been hardly mentioned in previous researches. To validate whether the corresponding PSD is
effective for visual fatigue classification in our dataset, we conduct a one-way repeated measurement
ANOVA to investigate the relationship between PSD in γ band and visual fatigue levels. Statistical
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results reveal the γ PSD in electrodes located at parietal-occipital area such as 22 (F(2, 36) = 4.237,
p = 0.022), 25 (F(2, 36) = 4.918, p = 0.013), 27 (F(2, 36) = 6.447, p = 0.004), 29 (F(2, 36) = 3.487, p = 0.041),
30 (F(2, 36) = 3.279, p = 0.049) vary significantly with the visual fatigue. This is consistent with the
results demonstrated in Figure 4.

Since we have demonstrated that our model has learned the frequency domain information in
EEG, here we further investigate the spatial relationship between learned representations and PSD
features. Each topographic map of correlation values (Figure 5, left) can be viewed as one distinct
spatial pattern of features and deeper colors in the map imply the corresponding areas are more
important for classification. For the consideration of compatibility, difference between PSDs of certain
fatigue level and the rests are calculated for comparison with correlation value. Topographic maps of
both correlation values (Figure 5, left) and PSD difference (Figure 5, right) are presented in Figure 5.
In topographic maps of correlation values, we can obviously observe the color is going deep with
frequency increasing from δ to γ, which implies components of higher frequency (β and γ band) in
EEG play more important roles in the proposed model. Interestingly, their spatial pattern is quite
similar with the pattern of PSD in the corresponding frequency band. To compare their spatial
similarities quantitatively, for each fatigue level and frequency band, we compute the cross product as
representation of similarity and the results are demonstrated in Figure 6. We can observe clearly that
the dramatic increasing in β and γ band in Figure 6, this implies it is likely that the proposed net has
learned the joint space-frequency features of the high frequency band.

Figure 5. Correlation maps between input perturbation and dense output (left), as well as spatial maps
for power spectral density (PSD) difference (right), for various frequency bands and fatigue levels.
Note that PSDs in the figure (right) are the differences between the PSD of corresponding one fatigue
level and that of the rest levels.
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Figure 6. Similarities between correlation map and PSD map for different fatigue levels and
frequency bands.

6. Conclusions

In this paper, we conduct a designed experiment to collect raw EEG signals of various
fatigue levels as the dataset, and then present a multi-scale convolutional neural network (CNN)
architecture named MorletInceptionNet to detect visual fatigue using EEG as input, which exploits the
spatial-temporal structure of multichannel EEG signals. Five competitive methods are also involved to
validate the effectiveness of the proposed MorletInceptionNet on our visual fatigue dataset. Results
demonstrate that our model achieve overall the best performance for two widely used evaluation
metrics, i.e., classification accuracy and kappa value. Through visualizing the learned representation,
we demonstrate that our model can learn the joint time-frequency-space features to distinguish
fatigue levels automatically. Though our method achieves promising results, our method can be
improved in future work. Firstly, compared to traditional convolutional kernel, morlet kernel need
more computational resources and the time cost in computation increases about 33% (from 3 h to 4 h
for 200 iterations). We believe finding alternative approximation algorithms for exp and cos operators
will be helpful for reducing the computational resources. Secondly, results from visualization suggest
that our model is not sensitive to perturbations from α bands, which is considered as one of the main
indicators of visual fatigue evaluation. This implies that although the proposed model indeed achieves
the best performance, there are still effective features that have not been learned. These issues require
more studies in future work.
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