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Abstract: Twin-KSVC (Twin Support Vector Classification for K class) is a novel and efficient
multiclass twin support vector machine. However, Twin-KSVC has the following disadvantages.
(1) Each pair of binary sub-classifiers has to calculate inverse matrices. (2) For nonlinear problems,
a pair of additional primal problems needs to be constructed in each pair of binary sub-classifiers.
For these disadvantages, a new multi-class twin hypersphere support vector machine, named Twin
Hypersphere-KSVC, is proposed in this paper. Twin Hypersphere-KSVC also evaluates each sample
into 1-vs-1-vs-rest structure, as in Twin-KSVC. However, our Twin Hypersphere-KSVC does not seek
two nonparallel hyperplanes in each pair of binary sub-classifiers as in Twin-KSVC, but a pair of
hyperspheres. Compared with Twin-KSVC, Twin Hypersphere-KSVC avoids computing inverse
matrices, and for nonlinear problems, can apply the kernel trick to linear case directly. A large number
of comparisons of Twin Hypersphere-KSVC with Twin-KSVC on a set of benchmark datasets from
the UCI repository and several real engineering applications, show that the proposed algorithm has
higher training speed and better generalization performance.

Keywords: K-SVCR; Twin-KSVC; 1-vs-1-vs-rest; twin hypersphere support vector machine

1. Introduction

Support vector machine (SVM) [1,2], as a computationally powerful tool for classification,
have already applied in wide engineering problems [3–8]. The SVM has three elements that make it
so successful, including structural risk minimization (SRM) principle, kernel trick and dual theory.
However, SVM has to solve a large-sized quadratic programming problem (QPP), which greatly
limits its applications. To improve learning complexity of SVM, Jayadeva et al. proposed twin
SVM (TSVM) [9]. Unlike SVM that seeks an optimal separating hyperplane which maximizes
the margin of two classes of samples, TSVM constructs two nonparallel proximal hyperplanes, each
of which is close to the corresponding class as possible, and keeps as far away as possibly from
the opposite class. The strategy makes TSVM only need to solve two smaller QPPs, instead of
one larger QPP as in SVM. Due to its high learning speed, TSVM has attracted interest in recent
years. Many improvements have also been proposed [10–28], where the twin hypersphere SVM
(THSVM) [25–28] is an excellent improvement of TSVM. Unlike TSVM, THSVM seeks a pair of
hyperspheres, instead of two nonparallel hyperplanes, to depict two classes of samples. Compared
with TSVM, THSVM has better classification performance.
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The SVM and TSVM can only solve the binary classification problems, however, many
practical engineering problems are often related to multi-class classification in the real world.
Currently, we usually use 1-vs-rest and 1-vs-1 strategy to resolve multi-class classification problems.
In the 1-vs-1 SVM, K(K − 1)/2 binary SVM sub-classifiers are constructed. Each sub-classifier can
be trained by using two classes of samples. Because only two classes are considered for each
sub-classifier in the 1-vs-1 SVM and the rest samples are not involved, the 1-vs-1 SVM may get
unfavorable classification results. The 1-vs-rest SVM needs to construct K binary SVM sub-classifiers.
Each sub-classifier can be trained by using all the samples; thus, the 1-vs-rest SVM may lead to class
imbalance problems. For above drawbacks of 1-vs-1 SVM and 1-vs-rest SVM, Angulo et al. proposed
a new support vector classification-regression machine for K class (K-SVCR) [29]. K(K− 1)/2 binary
SVM sub-classifiers are constructed, each of which is trained with all the samples and evaluates each
sample into 1-vs-1-vs-rest structure. K-SVCR avoids the class imbalance problems and information loss.
Compared with 1-vs-1 SVM and 1-vs-rest SVM, K-SVCR achieves better generalization performance.
Twin-KSVC [30,31], being an effective extension of K-SVCR, is based on TSVM and also evaluates each
sample into 1-vs-1-vs-rest structure. Twin-KSVC achieves higher learning speed in comparison with
K-SVCR. However, Twin-KSVC has the following disadvantages:

• Each pair of sub-classifiers has to calculate inverse matrices, which is extraordinarily
time-consuming for the large-scale engineering problems.

• For nonlinear problems, each pair of sub-classifiers needs to construct a pair of additional primal
problems, instead of directly applying the kernel trick to linear case as in SVM.

For the disadvantages of Twin-KSVC, in this paper, we propose a Twin Hypersphere-KSVC,
inspired by THSVM. The Twin Hypersphere-KSVC also evaluates each sample into 1-vs-1-vs-rest
structure, as in Twin-KSVC. However, our Twin Hypersphere-KSVC does not seek two nonparallel
hyperplanes in each pair of binary sub-classifiers as in Twin-KSVC, but a pair of hyperspheres.
Compared with Twin-KSVC, Twin Hypersphere-KSVC avoids computing inverse matrices, and for
nonlinear problems, can apply the kernel trick to linear case directly.

This paper is outlined as follows. We briefly review the related multi-class classification algorithms
in Section 2. In Section 3, the Twin Hypersphere-KSVC is proposed in detail. The experimental results
on a set of benchmark datasets and several real engineering problems are presented in Section 4
and the conclusions are drawn in last section.

2. Related Works

In this paper, we consider a multi-class classification problem with a training dataset D = {xk
p ∈

Rd|k = 1, · · · , K, p = 1, · · · , nk}, where K is the number of classes and nk is the number of the samples
of the k-th class. The size of training dataset is n = n1 + · · ·+ nK. Denote, for convenience, by Xk
the sets of samples of the k-th class, i.e., Xk = {xk

p|p = 1, · · · , nk}.

2.1. Review of K-SVCR Multi-Classifier

The K-SVCR multi-classifier [29] is based on decomposition-reconstruction strategy. K(K− 1)/2
binary SVM sub-classifiers are constructed, each of which evaluates each sample into 1-vs-1-vs-rest
structure. The classification result of K-SVCR is shown in Figure 1a intuitively.

The sub-classifier f ij(x) for two focused classes i and j in K-SVCR seeks an optimal hyperplane

wij · x + bij=0, (1)

where wij ∈ Rd is the normal vector and bij ∈ R is the bias term. The optimal hyperplane can be
obtained by resolving the following QPP:



Electronics 2019, 8, 1195 3 of 14

min 1
2

∥∥wij
∥∥2

+ c1(
ni
∑

p=1
η

ij
p +

nj

∑
p=1

η
ij∗
p ) + c2

nij

∑
p=1

(ξ
ij
p + ξ

ij∗
p ),

s.t. wij · xi
p + bij ≥ 1− η

ij
p , p = 1, · · · , ni,

wij · xj
p + bij ≤ −1 + η

ij∗
p , p = 1, · · · , nj,

−ε− ξ
ij∗
p < wij · xij

p + bij ≤ ε + ξ
ij
p , p = 1, · · · , nij,

η
ij
p ≥ 0, p = 1, · · · , ni, η

ij∗
p ≥ 0, p = 1, · · · , nj,

ξ
ij
p ≥ 0, ξ

ij∗
p ≥ 0, p = 1, · · · , nij,

(2)

where xij
p ∈ D− Xi − Xj, nij = n− ni − nj, ξ

ij
p , ξ

ij∗
p and η

ij
p , η

ij∗
p are slack variables, the parameter ε is

restricted to [0, 1).
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Figure 1. (a) K-SVCR. (b) Twin-KSVC. (c) THKSVM. (d) Twin Hypersphere-KSVC.

For a testing sample x, the sub-classifier f ij(x) = wij · x + bij determines its class by

Fij(x) =


−1, i f f ij(x) < ε,
1, i f f ij(x) > ε,
0, else.

(3)

For the testing sample x, the final label can be determined by vote rule.

2.2. Review of Twin-KSVC Multi-Classifier

Twin-KSVC [30,31] is an improvement of K-SVCR. The Twin-KSVC constructs K(K − 1)/2
pairs of binary TSVM sub-classifiers, which evaluates each sample into 1-vs-1-vs-rest structure.
The classification result is intuitively presented in Figure 1b.
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The sub-classifiers f i(x) and f j(x) for two focused classes i and j in Twin-KSVC seek a pair
of hyperplane

wi · x + bi=0 and wj · x + bj=0 (4)

where wi(j) ∈ Rd and bi(j) ∈ R are the normal vector and the bias term of the corresponding hyperplane,
respectively. The two hyperplanes can be obtained by resolving the QPPs as follows:

min 1
2

ni
∑

p=1
(wi · xi

p + bi)
2
+ c1

nj

∑
p=1

ηi
p + c2

nij

∑
p=1

ξ i
p,

s.t. − (wi · xj
p + bi) + ηi

p ≥ 1, p = 1, · · · , nj,

−(wi · xij
p + bi) + ξ i

p ≥ 1− ε, p = 1, · · · , nij,

ηi
p ≥ 0, p = 1, · · · , nj,

ξ i
p ≥ 0, p = 1, · · · , nij,

(5)

min 1
2

nj

∑
p=1

(wj · xj
p + bj)

2
+ c3

ni
∑

p=1
η

j
p + c4

nij

∑
p=1

ξ
j
p,

s.t. (wj · xi
p + bj) + η

j
p ≥ 1, p = 1, · · · , ni,

(wj · xij
p + bj) + ξ

j
p ≥ 1− ε, p = 1, · · · , nij,

η
j
p ≥ 0, p = 1, · · · , ni,

ξ
j
p ≥ 0, p = 1, · · · , nij,

(6)

where η
i(or j)
p and ξ

i(or j)
p are slack variables.

For a testing sample x, the sub-classifiers f i(x) = xTwi + bi and f j(x) = xTwj + bj assign its
class by

Fij(x) =


−1, i f f j(x) < 1− ε,
1, i f f i(x) > −1 + ε,
0, else.

(7)

For the testing sample x, the final label can be also determined by vote rule.

2.3. Review of THKSVM Multi-Classifier

THKSVM (Twin Hypersphere Multiclass Support Vector Machine) [32] integrates THSVM
and 1-vs-rest structure. THKSVM constructs K hyperspheres in the training stage, whose classification
result is intuitively shown in Figure 1c.

The sub-classifier for the focused classes i in THKSVM seeks a hypersphere

‖x− ai‖2 = R2
i (8)

where ai ∈ Rd and Ri ∈ R are the center and the radius of the corresponding hypersphere, respectively.
The hypersphere can be constructed by resolving the following QPP:

min 1
2

nī
∑

p=1

∥∥∥xī
p − ai

∥∥∥2
− v1R2

i + c1

ni
∑

p=1
ηi

p,

s.t.
∥∥∥xi

p − ai

∥∥∥2
≥ R2

i − ηi
p,

R2
i ≥ 0, ηi

p ≥ 0, p = 1, · · · , ni,

(9)

where xī
p ∈ D− Xi, nī = n− ni and ηi

p ≥ 0 are slack variables.
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The class of a testing sample x can be determined by

Class k = arg max
i=1,··· ,K

‖x− ai‖2

R2
i

. (10)

3. Twin Hypersphere-KSVC

Twin Hypersphere-KSVC, inspired by THSVM and 1-vs-1-vs-rest structure, constructs K(K− 1)/2
pairs of hyperspheres in the training stage. For two focused classes i and j, Twin Hypersphere-KSVC
seeks a pair of hypersphere (ai, Ri) and (aj, Rj), where ai (Ri) and aj (Rj) are respectively the centers
(radii) of the corresponding hyperspheres. Each hypersphere covers the corresponding class as many
as possibly, keeps as far away as possibly from another class, contains the rest of samples as little
as possibly, and the radius of the hypersphere is as small as possible. The Twin Hypersphere-KSVC
are intuitively presented in Figure 1d.

3.1. Linear Case

For the linear case, each pair of hyperspheres (ai, Ri) and (aj, Rj) for two focused classes i and j in
Twin Hypersphere-KSVC is constructed by resolving the following QPPs:

min R2
i −

v1
nj

nj

∑
p=1

∥∥∥xj
p − ai

∥∥∥2
+ c1

ni

ni
∑

p=1
ηi

p +
c2
nij

nij

∑
p=1

ξ i
p,

s.t.
∥∥∥xi

p − ai

∥∥∥2
≤ R2

i + ηi
p, p = 1, · · · , ni,∥∥∥xij

p − ai

∥∥∥2
≥ R2

i − ξ i
p, p = 1, · · · , nij,

ηi
p ≥ 0, p = 1, · · · , ni,

ξ i
p ≥ 0, p = 1, · · · , nij,

R2
i ≥ 0,

(11)

min R2
j −
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ni
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∑

p=1

∥∥∥xi
p − aj

∥∥∥2
+ c3

nj

nj

∑
p=1

η
j
p +

c4
nij

nij

∑
p=1

ξ
j
p,

s.t.
∥∥∥xj

p − aj

∥∥∥2
≤ R2

j + η
j
p, p = 1, · · · , nj,∥∥∥xij

p − aj

∥∥∥2
≥ R2

j − ξ
j
p, p = 1, · · · , nij,

η
j
p ≥ 0, p = 1, · · · , nj,

ξ
j
p ≥ 0, p = 1, · · · , nij,

R2
j ≥ 0.

(12)

where η
i(j)
p and ξ

i(j)
p are slack variables.

The Lagrangian function L for the QPP (11) is given by:

L = R2
i −

v1
nj

nj

∑
p=1

∥∥∥xj
p − ai

∥∥∥2
+ c1

ni

ni
∑

p=1
ηi

p +
c2
nij

nij

∑
p=1

ξ i
p +

ni
∑

p=1
αp(
∥∥∥xi

p − ai

∥∥∥2
− R2

i − ηi
p)

−
nij

∑
p=1

βp(
∥∥∥xij

p − ai

∥∥∥2
− R2

i + ξ i
p)−

ni
∑

p=1
spηi

p −
nij

∑
p=1

qpξ i
p − λR2

i .
(13)

The Karush-Kuhn-Tucker (KKT) conditions are satisfied as follows:

2
v1

nj

nj

∑
p=1

(xj
p − ai)− 2

ni

∑
p=1

αp(xi
p − ai) + 2

nij

∑
p=1

βp(xij
p − ai) = 0, (14)
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1−
ni

∑
p=1

αp +

nij

∑
p=1

βp − λ = 0, (15)

c1

ni
− αp − sp = 0, p = 1, · · · , ni, (16)

c2

nij
− βp − qp = 0, p = 1, · · · , nij, (17)
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∥∥∥xi
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∥∥∥2
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βp(
∥∥∥xij

p − ai

∥∥∥2
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i + ξ i
p) = 0, p = 1, · · · , nij, (19)

spηi
p = 0, p = 1, · · · , ni, (20)

qpξ i
p = 0, p = 1, · · · , nij, (21)

λR2
i = 0. (22)

From (14), (15) and (22), we can obtain

ai =
1

1− v1
(

ni

∑
p=1

αpxi
p −
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nj

nj

∑
p=1

xj
p −

nij

∑
p=1

βpxij
p ) (23)

By denoting

vi =
1

1− v1
(24)

and substituting (16)–(23) into (13), the dual optimal problem of (11) is obtained as follows:

max
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∑
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αpxi

p · xi
p −

nij

∑
p=1

βpxij
p · x

ij
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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(25)

By defining α =

 α1
...

αni

 and β =


β1
...

βnij
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T βT)

(
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i Xi −XT
i Xij

−XT
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Xi XT
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α

β

)
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Xjej
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α

β

)
,
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(
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β

)
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0ei ≤ α ≤ c1
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0eij ≤ β ≤ c2

nij
eij.

(26)
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According to the KKT conditions (16)–(21), we can obtain R2
i by the following formula:

R2
i = ‖x∗ − ai‖2, (27)

where x∗ ∈ Si1 ∪ Si2, Si1 = {xi
p|0 < αp < c1

ni
} and Si2 = {xij

p |0 < βp < c2
nij
}.

By denoting vj =
1

1−v2
, the dual optimal problem of (12) can be obtained as follows:

max
nj

∑
p=1

θpxj
p · x

j
p −

nij

∑
p=1

γpxij
p · x

ij
p + 2vj

v2
ni
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∑

p1=1

nj

∑
p2=1

θp2 xi
p1
· xj

p2 − 2vj
v2
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ni
∑

p1=1

nij

∑
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γp2 xi
p1
· xij

p2

−vj

nj

∑
p1=1

nj

∑
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θp1 θp2 xj
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j
p2 + 2vj
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∑
p1=1

nij

∑
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θp1 γp2 xj
p1 · x

ij
p2 − vj

nij

∑
p1=1

nij

∑
p2=1

γp1 γp2 xij
p1 xij

p2 ,

s.t. 1−
nj

∑
p=1

θp +
nij

∑
p=1

γp = 0,

0 ≤ θp ≤ c3
nj

, p = 1, · · · , nj,

0 ≤ γp ≤ c4
nij

, p = 1, · · · , nij.

(28)

By defining θ =


θ1
...

θnj

 and γ =


γ1
...

γnij

, the (28) can be reformulated as

max−vj(θ
T γT)

(
XT

j Xj −XT
j Xij

−XT
ij

Xj XT
ij

Xij

)(
θ

γ

)
+

(
diag(XT

j Xj) + 2vj
v2
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XT
j Xiei

−diag(XT
ij

Xij)− 2vj
v2
ni

XT
ij

Xiei

)T (
θ

γ

)
,

s.t.
(

eT
j −eT

ij

)(θ

γ

)
= 1,

0ej ≤ θ ≤ c3
nj

ej,

0eij ≤ γ ≤ c4
nij

eij.

(29)

We can compute R2
j by the following formula:

R2
j =

∥∥x∗ − aj
∥∥2, (30)

where x∗ ∈ Sj1 ∪ Sj2, Sj1 = {xj
p|0 < θp < c3

nj
} and Sj2 = {xij

p |0 < γp < c4
nij
}.

3.2. Nonlinear Case

We extend the linear Twin Hypersphere-KSVC to the nonlinear case by directly considering
the nonlinear map ϕ : Rd → H (H is a high-dimensional Hilbert space), instead of the kernel generated
surfaces in Twin-KSVC.
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min R2
i −

v1
nj

nj

∑
p=1

∥∥∥ϕ(xj
p)− ai
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+ c1
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∑

p=1
ηi

p +
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nij

nij

∑
p=1

ξ i
p,

s.t.
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p)− ai
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≤ R2

i + ηi
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min R2
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∥∥∥2
+ c3
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∑
p=1

η
j
p +

c4
nij

nij

∑
p=1

ξ
j
p,

s.t.
∥∥∥ϕ(xj

p)− aj

∥∥∥2
≤ R2

j + η
j
p, p = 1, · · · , nj,∥∥∥ϕ(xij

p )− aj

∥∥∥2
≥ R2

j − ξ
j
p, p = 1, · · · , nij,

η
j
p ≥ 0, p = 1, · · · , nj,

ξ
j
p ≥ 0, p = 1, · · · , nij,

R2
j ≥ 0.

(32)

According to the dual theory, one can get the dual optimal problems of (31) and (32) as follows:

max−vi(α
T βT)

(
K(Xi, Xi) −K(Xi, Xij)

−K(Xij, Xi) K(Xij, Xij)

)(
α

β

)

+

 diag(K(Xi, Xi)) + 2vi
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v1
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K(Xij, Xj)ej

T (
α

β

)
,

s.t.
(

eT
i −eT

ij

)(α

β

)
= 1,

0ei ≤ α ≤ c1
ni

ei,
0eij ≤ β ≤ c2

nij
eij,

(33)

max−vj(θ
T γT)

(
K(Xj, Xj) −K(Xj, Xij)

−K(Xij, Xj) K(Xij, Xij)

)(
θ

γ

)

+

(
diag(K(Xj, Xj)) + 2vj

v2
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K(Xj, Xi)ei

−diag(K(Xij, Xij))− 2vj
v2
ni

K(Xij, Xi)ei

)T (
θ

γ

)
,

s.t.
(

eT
j −eT

ij

)(θ

γ

)
= 1,

0ej ≤ θ ≤ c3
nj

ej,

0eij ≤ γ ≤ c4
nij

eij,

(34)

where K(., .) is a kernel matrix.

3.3. Decision Rule

For a testing sample x , each pair of sub-classifiers determines its label by

Fij(x) =

{
1 ‖ϕ(x)− ai‖2/R2

i ≤
∥∥ϕ(x)− aj

∥∥2/R2
j

−1 ‖ϕ(x)− ai‖2/R2
i >

∥∥ϕ(x)− aj
∥∥2/R2

j
(35)
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where

‖ϕ(x)− ai‖2 = K(x, x) + 2vi(
ni
∑

p=1
αpK(xi

p, x)− v1
nj

nj

∑
p=1

K(xj
p, x)−

nij

∑
p=1

βpK(xij
p , x))

+v2
i (

ni
∑

p1=1

ni
∑

p2=1
αp1 αp2 K(xi

p1
, xi

p2
) + ( v1

nj
)

2
nj

∑
p1=1

nj

∑
p2=1

K(xj
p1 , xj

p2) +
nij

∑
p1=1

nij

∑
p2=1

βp1 βp2 K(xij
p1 , xij

p2)

− 2v1
nj

ni
∑

p1=1

nj

∑
p2=1

αp1 K(xi
p1

, xj
p2)− 2

ni
∑

p1=1

nij

∑
p2=1

αp1 βp2 K(xi
p1

, xij
p2) +

2v1
nj

nj

∑
p1=1

nij

∑
p2=1

βp2 K(xi
p1

, xij
p2))

(36)

and

∥∥ϕ(x)− aj
∥∥2

= K(x, x) + 2vj(
nj

∑
p=1

θpK(xj
p, x)− v2

ni

ni
∑

p=1
K(xi

p, x)−
nij

∑
p=1

γpK(xij
p , x))

+v2
j (

nj

∑
p1=1

nj

∑
p2=1

θp1 θp2 K(xj
p1 , xj

p2) + ( v2
ni
)

2 ni
∑

p1=1

ni
∑

p2=1
K(xi

p1
, xi

p2
) +

nij

∑
p1=1

nij

∑
p2=1

γp1 γp2 K(xij
p1 , xij

p2)

− 2v2
ni

nj

∑
p1=1

ni
∑

p2=1
θp1 K(xj

p1 , xi
p2
) − 2

nj

∑
p1=1

nij

∑
p2=1

θp1 γp2 K(xj
p1 , xij

p2) +
2v2
ni

ni
∑

p1=1

nij

∑
p2=1

γp2 K(xi
p1

, xij
p2)).

(37)

For the testing sample x, the final label can be also determined by vote rule.

3.4. Analysis of Learning Complexity

Next, the learning complexity of the proposed Twin Hypersphere-KSVC will be discussed.
We take the 4-class classification as an example, suppose samples of 4 classes are approximately equal,
and present the learning complexity of K-SVCR, Twin-KSVC and Twin Hypersphere-KSVC in Table 1.
The main calculating burden in Twin-KSVC includes solving QPPs and calculating inverse matrices.
Therefore the learning complexities of linear and nonlinear Twin-KSVC are respectively K(K −
1)(O(d3)+O(( 3

4 n)3
)) and K(K− 1)(O(n3)+O(( 3

4 n)3
)). However, K-SVCR and Twin Hypersphere-KSVC

avoid computing inverse matrices, the learning complexities of linear and nonlinear K-SVCR are both
K(K−1)

2 O(( 3
2 n)3

) while the learning complexities of linear and nonlinear Twin Hypersphere-KSVC

are both K(K− 1)O(( 3
4 n)3

). From the above analysis, we can see that our Twin Hypersphere-KSVC

requires less learning time.

Table 1. The learning complexities of Twin-KSVC, K-SVCR and Twin Hypersphere-KSVC.

Kernel Twin-KSVC K-SVCR Twin Hypersphere-KSVC

linear kernel K(K− 1)O(d3) + O(( 3
4 n)

3
)) K(K−1)

2 O(( 3
2 n)

3
) K(K− 1)O(( 3

4 n)
3
)

nonlinear kernel K(K− 1)(O(n3) + O(( 3
4 n)

3
)) K(K−1)

2 O(( 3
2 n)

3
) K(K− 1)O(( 3

4 n)
3
)

4. Experiments

In this section, we investigate classification performance of our Twin Hypersphere-KSVC,
ITKSVC [31], THKSVM, Twin-KSVC and K-SVCR on a set of benchmark datasets from the UCI
repository and several real engineering problems. The above algorithms are implemented in Matlab
R2012a, and we use the “quadprog.m” function to solve the QPP and the “inv.m” function to calculate
matrix inversion.

The parameter selection directly affects the classification performance of the above algorithms.
We use the most popular exhaustive search to determine the parameters in this section. The K-SVCR
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includes two penalty parameters ci(i = 1, 2) and bandwidth parameter ε. The Twin-KSVC has
five parameters, including four penalty parameters ci(i = 1, 2, 3, 4) and bandwidth parameter ε.
The THKSVM holds the penalty parameters c1 and v1. The ITKSVC contains seven parameters
which are six penalty parameters ci(i = 1, 2, 3, 4, 5, 6) and bandwidth parameter ε. There exist six
penalty parameters ci(i = 1, 2, 3, 4) and vi(i = 1, 2) in our Twin Hypersphere-KSVC. The optimal
values of penalty parameters ci are searched from set {2−7, · · · , 27}, penalty parameters vi from
{0.1, · · · , 0.9} and bandwidth parameter ε from set {0, · · · , 0.5}.

4.1. Benchmark Datasets

We compare Twin Hypersphere-KSVC with ITKSVC, THKSVM, Twin-KSVC and K-SVCR on
a set of benchmark datasets from the UCI repository in this subsection. The benchmark datasets are
presented in Table 2. The 5-fold cross validation is used to estimate the testing accuracy and we use
radial basis function K(x, y) = e−‖x−y‖2/σ2

in this subsection, where the parameter σ are selected from
{2−7, · · · , 27}.

Table 2. The statistics of benchmark datasets.

Dataset #Attributes #Samples #Classes

Wine 13 178 3
Iris 4 150 3

Ecoli 7 327 5
Soybean 35 47 4

Hayes-roth 5 132 3
Teaching-evaluation 5 151 3

Dermatology 34 358 6
Balance 4 625 3

The predicting accuracy and learning time of five algorithms on UCI benchmark data sets
are respectively shown in Tables 3 and 4. By observing Tables 3 and 4, one can come to
the following conclusions.

(1) The Twin Hypersphere-KSVC, ITKSVC, Twin-KSVC and K-SVCR obtain better test accuracy
than THKSVM. This is mainly because the sub-classifiers in Twin Hypersphere-KSVC, ITKSVC,
Twin-KSVC and K-SVCR avoid the class imbalance problem appearing in THKSVM.

(2) The Twin Hypersphere-KSVC works faster than Twin-KSVC, K-SVCR and ITKSVC. It is
mainly because, compared with Twin-KSVC, the sub-classifiers in Twin Hypersphere-KSVC
avoid calculating inverse matrices which appear in Twin-KSVC, while compared with K-SVCR
and ITKSVC, each pair of sub-classifiers of our Twin Hypersphere-KSVC only needs to resolve
two smaller QPPs.

(3) For predicting accuracy of Twin-KSVC, K-SVCR, ITKSVC and Twin Hypersphere-KSVC, we can
observe that not any method is superior to others for all data sets. We can apply Friedman test to
analyze the test accuracy of these classifiers statistically [33,34]. The ranks of five algorithms for
all data set in the light of test accuracy are presented in Table 5. The Friedman statistic χ2

F can be
calculated by

χ2
F =

12m2

m1(m1 + 1)
[

m1

∑
k1=1

rank2
k1
− m1(m1 + 1)2

4
], (38)

where rankk1 = 1
m2

m2
∑

k2=1
rk2

k1
, rk2

k1
denotes the rank of the k1-th of m1 classifiers on the k2-th of m2

data sets. Because χ2
F is undesirably conservative, we can use the other statistic

FF =
(m2 − 1)χ2

F
m2(m1 − 1)− χ2

F
, (39)
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which is distributed by the F(m1 − 1, (m1 − 1)(m2 − 1)).

We can calculate the statistic FF = 10.41, where FF ∼ F(4, 28). For the level of significance
α = 0.05, F(4, 28) = 2.95 is smaller than FF, which means there are significant differences among
these classifiers. We can see from Table 5 that the average rank of Twin Hypersphere-KSVC is lower
than ITKSVC, and is higher than Twin-KSVC and K-SVCR. It implies that classification accuracy of
Twin Hypersphere-KSVC is slightly lower than ITKSVC, however, is much higher than Twin-KSVC
and K-SVCR.

Table 3. Classification accuracy of THKSVM, ITKSVC, Twin-KSVC, K-SVCR and Twin Hypersphere-KSVC
on UCI benchmark datasets.

Dataset Twin-KSVC(%) THKSVM(%) K-SVCR(%) ITKSVC(%) Twin Hypersphere-KSVC(%)

Wine 97.29 ± 2.28 92.24 ± 10.22 97.96 ± 2.47 97.53 ± 2.20 98.30 ± 2.55
Iris 93.47 ± 3.67 91.20 ± 4.52 95.47 ± 3.07 95.53 ± 4.03 96.00 ± 3.06

Ecoli 84.33 ± 4.60 77.75 ± 2.80 87.34 ± 3.07 85.63 ± 3.70 83.04 ± 4.21
Soybean 98.00 ± 4.47 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Hayes-roth 61.07 ± 7.90 39.40 ± 2.05 54.02 ± 8.31 71.28 ± 9.92 52.50 ± 8.21
Teaching-evaluation 56.43 ± 8.23 50.28 ± 11.71 51.91 ± 8.34 52.02 ± 6.27 59.44 ± 7.52

Dermatology 95.43 ± 2.19 70.18 ± 3.16 97.66 ± 1.82 94.19 ± 2.74 96.64 ± 2.39
Balance 96.92 ± 1.29 90.05 ± 2.94 94.37 ± 1.96 97.73 ± 1.19 90.91 ± 1.34

The bolded classification accuracy is the highest one in all multi-classifiers.

Table 4. Learning time of THKSVM, ITKSVC, Twin-KSVC, K-SVCR and Twin Hypersphere-KSVC on
UCI benchmark datasets.

Dataset Twin-KSVC(s) THKSVM(s) K-SVCR(s) ITKSVC(s) Twin Hypersphere-KSVC(s)

Wine 2.1985 0.2749 2.5362 1.8673 1.1457
Iris 1.7260 0.2533 2.0569 1.5347 0.7429

Ecoli 38.7993 1.0329 62.2968 27.2987 15.1017
Soybean 1.1527 0.1787 0.4666 0.6355 0.5374

Hayes-roth 2.4358 0.1848 1.7696 1.1364 0.5671
Teaching-evaluation 3.6512 0.1849 1.7180 1.2330 1.0899

Dermatology 114.424 1.0811 89.2057 41.0467 19.6405
Balance 45.2907 3.7804 68.7381 43.7113 13.5046

Table 5. The rank of five algorithms on UCI benchmark datasets in the light of classification accuracy.

Dataset Twin-KSVC THKSVM K-SVCR ITKSVC Twin Hypersphere-KSVC

Wine 4 5 2 3 1
Iris 4 5 3 2 1

Ecoli 3 5 1 2 4
Soybean 5 2.5 2.5 2.5 2.5

Hayes-roth 2 5 3 1 4
Teaching-evaluation 2 5 4 3 1

Dermatology 3 5 1 4 2
Balance 2 5 3 1 4
Average 3.13 4.69 2.81 2.31 2.44

4.2. Handwritten Digits Recognition

We use Twin Hypersphere-KSVC to recognize handwritten digits. The USPS database is used to
compare our Twin Hypersphere-KSVC with Twin-KSVC, THKSVM, ITKSVC and K-SVCR. The USPS
dataset consists of 8-bit grayscale images of handwritten digits from 0 to 9, as presented in Figure 2.
We choose 55 images for each handwritten digit in the USPS database, 550 images in total. We only
consider linear kernel function K(x, y) = xTy, and also use 5-fold cross validation to estimate the
testing accuracy.
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Figure 2. Illustration of 10 digits in the USPS dataset.

The handwritten digits recognition results of five algorithms are presented in Table 6. From Table 6,
we can observe that, the proposed Twin Hypersphere-KSVC obtains better accuracy among all
algorithms. In terms of learning time, our Twin Hypersphere-KSVC costs shorter learning time,
compared with ITKSVC, Twin-KSVC and K-SVCR.

Table 6. Classification results of Twin Hypersphere-KSVC, Twin-KSVC, THKSVM, K-SVCR
and ITKSVC for handwritten digits recognition on the USPS dataset.

Algorithms Twin-KSVC THKSVM K-SVCR ITKSVC Twin Hypersphere-KSVC

Accuracy (%) 53.13 ± 5.38 72.55 ± 3.55 85.09 ± 2.99 77.18 ± 4.24 85.75 ± 2.15
Learning time (s) 377.5463 2.1101 641.946 348.6982 342.983

4.3. Text Classification

We evaluate our Twin Hypersphere-KSVC to text classification in this subsection and compare
it with the other algorithms on the Reuters21578 dataset. We choose 6 classes from the Reuters21578
dataset, 708 documents in total, which are presented in Table 7. We also consider linear kernel function
in this subsection.

Table 7. The statistics of text classification dataset.

Label Cocoa Coffee Corn Cice Cubber Soybean

Training dataset 52 101 176 46 35 83
Test dataset 23 44 76 21 15 36

The experimental results of five algorithms for text classification are presented in Table 8.
By observing Table 8, we can notice that, our Twin Hypersphere-KSVC can get better accuracy
among all multi-classifiers. The proposed Twin Hypersphere-KSVC runs faster in comparison with
ITKSVC, Twin-KSVC and K-SVCR.

Table 8. Classification results of Twin Hypersphere-KSVC, Twin-KSVC, THKSVM, K-SVCR and ITKSVC
for text classification on the Reuters21578 dataset.

Algorithms Twin-KSVC THKSVM K-SVCR ITKSVC Twin Hypersphere-KSVC

F1 0.4474 0.5932 0.7076 0.7078 0.7414
Learning time (s) 36.9486 0.4758 68.7947 26.4216 11.9575

5. Conclusions

In this paper, we propose a novel multi-class classification algorithm, named Twin
Hypersphere-KSVC. The Twin Hypersphere-KSVC evaluates each training sample into 1-vs-1-vs-rest
structure, as in Twin-KSVC and K-SVCR, and constructs two hyperspheres in each pair of
sub-classifiers, instead of two nonparallel hyperplanes as in Twin-KSVC. Compared with Twin-KSVC,
the sub-classifiers in Twin Hypersphere-KSVC avoid computing inverse matrices, and for nonlinear
problems, can apply the kernel trick to linear case directly. The classification results on a set of
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benchmark datasets from UCI repository, handwritten digits recognition and text classification,
show that the Twin Hypersphere-KSVC gets better classification performance in comparison with
the other classical multi-classifiers.
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