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Abstract: As one part of the power system, high-temperature superconducting (HTS) cables may
be subject to various system faults, such as overvoltage. When overvoltage occurs, HTS cables
may quench and the resistance of HTS tapes will increase rapidly, which will result in reduction of
transmission capacity, increase of power loss and even electrical insulation breakdown. To protect
the operation safety of power system, the level of overvoltage should be investigated in the system.
This paper proposes a non-contact variable frequency sampling and hierarchical pattern recognizing
system for overvoltage. Lightning and internal overvoltage signals are captured by specially designed
non-contact voltage sensors. The sensors are installed at the grounding tap of transformer bushings
and the cross arm of transmission towers. A variable sampling technique is employed to solve the
conflict between sampling speed and storage capacity. A hierarchical pattern recognizing system
is proposed to subdivide each overvoltage into specific types. Seven common overvoltages are
discussed and analyzed. Wavelet theory and S-transform singular value decomposition (SVD) theory
are adopted to extract the feature parameters of different overvoltages. Particle swarm optimization
is employed to maintain a high classification rate and improve the initial set of the support vector
machine (SVM) used as recognition algorithm. Field-acquired overvoltage data from an 110 kV
substation validate the effectiveness of the proposed recognition system.

Keywords: high-temperature superconducting (HTS) cables; smart grid; stability and reliability;
non-contact measurement; hierarchical recognition; overvoltage; S-transform SVD theory; wavelet
theory

1. Introduction

High-temperature superconductor (HTS) power technique has achieved rapid progress in the last
decade, and is one of the most promising power techniques [1]. Weiss et al. [2] developed CORC ®

cables for helium gas cooled power transmission and fault current limiting applications. Wang et al. [3]
studied the magnetization loss of CORC ® cables. Laan et al. [4] studied the Compact GdBa 2 Cu 3 O
7–δ coated conductor cables for electric power transmission and magnet applications. McRae et al. [5]
studied the effect of monotonic and cyclic axial tensile stress on the performance of superconducting
CORC® wires. Wang et al. [6] studied the quench behavior of high-temperature superconductor
(RE) Ba2Cu3O x CORC cable. Through the research of the above experts, HTS cable shows great
advantages for high power density, large power capacity, low loss and compact space, which is very
suitable for huge power transmission and urban transmission line upgrade. Therefore, HTS cable
is a powerful candidate for the future smart grid. However, these advantages only present when
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the conductors are kept in certain low temperature range (70–77 K). The HTS cable, as well as the
conventional transmission line, always suffers from the problems of lightning and internal overvoltage,
which are crucial for the security of power grids. When overvoltage occurs, the HTS cable may quench
and the resistance of HTS tapes will increase rapidly which will result in the reduction of transmission
capacity, increase of power loss or even electrical insulation breakdown. Therefore, it is necessary to
investigate the level of overvoltage.

At present, HTS cables usually adopt a hybrid operating mode. HTS cables and conventional
transmission lines are in parallel connection. The power flow distribution of conventional transmission
lines and HTS cables can be adjusted by means of auxiliary control equipment, in order to meet the
test requirements of different operating conditions of HTS cables. However, overvoltage from parallel
connected transmission lines will easily affect the HTS cable which will reduce the stability and reliability
of the power grid. Hence research and development of an overvoltage online monitoring-recognizing
system has great significance to the safe operation of HTS cables.

Nowadays, overvoltage monitoring systems are generally used in distribution grids and are
difficult to apply in a system with 110 kV or higher because of insulation reliability and the emergence
of heating problems when the divider runs for a long time. Reported overvoltage monitoring systems
generally focus on monitoring internal overvoltage; however, lightning overvoltage cannot be detected
because of the conflict between sampling speed and storage capacity [7]. Overvoltage recognizing
systems usually contain two parts: feature extraction and recognition classifier. Yang et al. [8] used
pattern spectrum to identify shielding failure and back flashover. Sima et al. [9] used the polarity of
wavelet modulus maximum and waveform similarity to identify three different lightning overvoltage.
Although the methods mentioned above have good feature extraction fact, the research is based on
simulated signals and the parameters of overvoltage cannot be represented precisely in simulations
because of the complex field conditions of a power system. Mokryani et al. [10] used wavelet transform
(WT) to identify different ferroresonance overvoltage, WT is a well-known multi-resolution analysis
algorithm due to its adaptable scaling properties. It has the ability to analyze the signals in both the
frequency and time domains. However, it is easily influenced by the noise and the transformation results
lack intuition; sometimes, the analysis results of several scales may be inconsistent; Mokryani et al. [11]
used S-transform (ST) to identify different ferroresonance overvoltage. Yao et al. [12] used ST to identify
different lightning overvoltage. ST can be regarded as a scalable window STFT or a deformation of a
continuous wavelet transform, and has been widely used in analysis and identification of the signals of
power system. Therefore, ST shows different performance for different frequency components because
of the scalable window. For the high-frequency components of the signal, the window width of ST
is narrow, thus time resolution is good. For the low-frequency components, ST has high-frequency
resolution, which make it a good over-voltage feature extraction algorithm candidate. Previous research
focused mainly on recognizing a specific type of overvoltage and did not consider the hierarchical
structure of overvoltages and the internal relations between overvoltages. A single-layer structure is
usually used in such overvoltage recognizing system [13]. In a single-layer structure, all characteristic
parameters must be calculated regardless of the overvoltage type, and each feature parameter is useful
only for some and not all kinds of overvoltage. Meanwhile, the modification of this single-layer system
is difficult because the new modified feature parameters are hard to find.

To address such limitations, this paper proposes a smart overvoltage monitoring and hierarchical
pattern recognizing system based on non-contact sensors. Overvoltage signals are obtained by
non-contact sensors installed at the grounding tap of transformer bushings and the cross arm of
transmission towers. A variable sampling technique is employed to solve the conflict between
sampling speed and storage capacity. Considering the hierarchical subordination relationship of
different overvoltage types, different independent classifiers are used to subdivide the overvoltage
types gradually. The energy distribution characteristics of different overvoltage frequency components
observed by WT and singular feature parameters observed by S-transform SVD theory are employed
as feature parameters in the classifiers. Finally, particle swarm optimization support vector machine
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(PSO-SVM) is employed to improve the recognition rate. In this hierarchical structure, each classifier can
effectively classify overvoltage with high efficiency, and the entire hierarchical recognition algorithm is
easy to modify. Field-acquired overvoltage data test is carried out to validate the hierarchical pattern
recognizing system.

2. Non-Contact Overvoltage Monitoring System

The system applies distributive monitoring and all the overvoltage waveforms recorded by
distributed sensors can be stored and analyzed together in the database. The monitoring system is
operated in Chongqing. The wiring diagram of the monitoring system in the substation is shown in
Figure 1. This substation contains three different voltage levels. There are six feeders on the 35 kV bus
bar, and five feeders on the 10 kV bus bar. T1 and T2 are the main transformers, and the capacity of each
is 31.5 MVA. CB1–CB3 are current breakers. The voltages of 110 kV, 35 kV and 10 kV are monitored
through nine transformer bushing sensors. The sensors are connected to the monitoring workstation
through the signal cable. Non-contact transmission line sensors are used to monitor overvoltage from
transmission lines. Six sensors are connected to the monitoring workstation through the wideband
code division multiple access(WCDMA) antenna. The software of monitoring system are installed in
the same workstation. Once the amplitude of voltage exceeds the threshold, the monitoring system
records the waveforms of voltage and stores them in the database in the form of discrete data. Then the
overvoltage identification system is triggered to classify and identify this record. The workflow is
described in Figure 2.

Electronics 2019, 8, x FOR PEER REVIEW 3 of 20 

 

are employed as feature parameters in the classifiers. Finally, particle swarm optimization support 
vector machine (PSO-SVM) is employed to improve the recognition rate. In this hierarchical structure, 
each classifier can effectively classify overvoltage with high efficiency, and the entire hierarchical 
recognition algorithm is easy to modify. Field-acquired overvoltage data test is carried out to validate 
the hierarchical pattern recognizing system. 

2. Non-Contact Overvoltage Monitoring System 

The system applies distributive monitoring and all the overvoltage waveforms recorded by 
distributed sensors can be stored and analyzed together in the database. The monitoring system is 
operated in Chongqing. The wiring diagram of the monitoring system in the substation is shown in 
Figure 1. This substation contains three different voltage levels. There are six feeders on the 35 kV 
bus bar, and five feeders on the 10 kV bus bar. T1 and T2 are the main transformers, and the capacity 
of each is 31.5 MVA. CB1–CB3 are current breakers. The voltages of 110 kV, 35 kV and 10 kV are 
monitored through nine transformer bushing sensors. The sensors are connected to the monitoring 
workstation through the signal cable. Non-contact transmission line sensors are used to monitor 
overvoltage from transmission lines. Six sensors are connected to the monitoring workstation 
through the wideband code division multiple access(WCDMA) antenna. The software of monitoring 
system are installed in the same workstation. Once the amplitude of voltage exceeds the threshold, 
the monitoring system records the waveforms of voltage and stores them in the database in the form 
of discrete data. Then the overvoltage identification system is triggered to classify and identify this 
record. The workflow is described in Figure 2. 

 

Figure 1. Wiring diagram of monitoring system in the substation. 

 

Figure 2. Workflow of overvoltage monitoring-identification system. 

Figure 1. Wiring diagram of monitoring system in the substation.

Electronics 2019, 8, x FOR PEER REVIEW 3 of 20 

 

are employed as feature parameters in the classifiers. Finally, particle swarm optimization support 
vector machine (PSO-SVM) is employed to improve the recognition rate. In this hierarchical structure, 
each classifier can effectively classify overvoltage with high efficiency, and the entire hierarchical 
recognition algorithm is easy to modify. Field-acquired overvoltage data test is carried out to validate 
the hierarchical pattern recognizing system. 

2. Non-Contact Overvoltage Monitoring System 

The system applies distributive monitoring and all the overvoltage waveforms recorded by 
distributed sensors can be stored and analyzed together in the database. The monitoring system is 
operated in Chongqing. The wiring diagram of the monitoring system in the substation is shown in 
Figure 1. This substation contains three different voltage levels. There are six feeders on the 35 kV 
bus bar, and five feeders on the 10 kV bus bar. T1 and T2 are the main transformers, and the capacity 
of each is 31.5 MVA. CB1–CB3 are current breakers. The voltages of 110 kV, 35 kV and 10 kV are 
monitored through nine transformer bushing sensors. The sensors are connected to the monitoring 
workstation through the signal cable. Non-contact transmission line sensors are used to monitor 
overvoltage from transmission lines. Six sensors are connected to the monitoring workstation 
through the wideband code division multiple access(WCDMA) antenna. The software of monitoring 
system are installed in the same workstation. Once the amplitude of voltage exceeds the threshold, 
the monitoring system records the waveforms of voltage and stores them in the database in the form 
of discrete data. Then the overvoltage identification system is triggered to classify and identify this 
record. The workflow is described in Figure 2. 

 

Figure 1. Wiring diagram of monitoring system in the substation. 

 

Figure 2. Workflow of overvoltage monitoring-identification system. Figure 2. Workflow of overvoltage monitoring-identification system.



Electronics 2019, 8, 1194 4 of 20

2.1. Overvoltage Sensor

The traditional voltage divider is not appropriate for long-term overvoltage monitoring because
of insulation reliability and heat loss problems that arise after long-term operations, thereby increasing
the risk of accidents in the power grid. To ensure a secure power system while monitoring overvoltage,
two types of overvoltage sensor are designed. One is installed at the transformer bushing tap to
monitor overvoltage in substations and one is installed at the tower cross arm to monitor overvoltage
on transmission lines. The installation scheme of the voltage sensors are shown in Figure 3b,d.
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2.1.1. Non-Contact Transformer Bushing Tap Sensor

The capacitive bushing is represented as a pure capacitor because the power loss angle of the
bushing is very low (usually less than 1%), and the value of the capacitance can be obtained through
field experiment or rating plate. The circuit of the sensor is presented in Figure 3a according to this
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simplification, where C1 denotes the bushing capacitor, C2 represents the voltage divider capacitor,
R indicates the matching impedance resistor, and PS symbolizes the overvoltage protection unit.
Voltage division ratio K is shown as follows:

K =
U1 + U2

U2
=

C1 + C2

C1
(1)

2.1.2. Non-Contact Transmission Line Sensor

The non-contact overvoltage sensor uses the stray capacitance C3 between the overhead
transmission line and the sensor board as a high-voltage arm capacitor [14–16]. A capacitor is
connected as a low-voltage arm capacitor. The overvoltage signal passes through the matching resistor
and is then transmitted along the coaxial cable to the data acquisition system. The divider ratio is
expressed as

K′ =
C3 + C4

C3
(2)

where C3 is the high-voltage arm, C4 is the low-voltage arm, and k is the divider ratio. The value of C3

can be estimated by the following equation:

C3 = 1/
∫ h

0

dz
ε(2r + (h− z)(b− 2r)/h)(a + (l− a)/h)

] (3)

where r is the radius of the transmission line, l is the length of the transmission line, a is the length of
the sensor plate, b is the width of the sensor plate, and h is the maximum distance between the sensor
plate and the transmission line (Figure 3e). Figure 1d shows the installation of the overvoltage sensor.
Figure 3f shows a hybrid operating mode of power gird with HTS cables. HTS cables and conventional
transmission lines are in parallel connection to improve the stability and reliability of the power grid.

2.2. The Online Variable Sampling Frequency Monitoring System

When an overvoltage occurs, the sensor will detect the high-voltage overvoltage signals, transfer
these signals to corresponding low-voltage overvoltage signals, and send them to the signal conditioning
board through the coaxial cable. After conditioning and pre-triggering the signals using the board,
the signals are sent to the variable sampling frequency system for sampling and storage. The system
software can perform functions, such as data analysis and research.

The variable sampling speed data acquisition card employs a self-developed, three-channel data
acquisition card with a 12-bit resolution on a 3×256 k×16-bit static random access memory (SRAM)
buffer and maximum sampling frequency of 40 MHz. The acquisition card can acquire overvoltage
waveform with different sampling rates and pre-trigger lengths. This card can also record signals from
fast lightning transients to slow inner overvoltage transients. This card can record signals before the
occurrence of overvoltage accidents, and the complete waveform is obtained because of the cyclic
sampling design and pre-trigger function. When overvoltage occurs, the system carries out a fast
sampling process with a high sampling frequency F1 (5–40 MHz) for 5–10 ms to ensure that even fast
transient waveforms, such as lightning overvoltage, are recorded, and the system switches to a lower
sampling frequency of F2 (50 kHz to 1 MHz) for long-term internal overvoltage capture process until
the entire data acquisition course is completed. The principle of the card is indicated in Figure 4.

INSULAD2053 variable sampling speed data acquisition card is adopted in the system. The high
sampling rate F1 is 5 MHz for fast transient waveforms, such as lightning overvoltage and the sampling
length T1 is 15 ms. The lower sampling rate F2 is 200 kHz for long-term internal overvoltage capture
process and the sampling length T2 is 935 ms. The storage capacity constraints is F1 × T1 + F2 × T2 =

262K pts.
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Electronics 2019, 8, x FOR PEER REVIEW 6 of 20 

 

 
Figure 4. The principle of variable frequency sampling speed data acquisition card. 

INSULAD2053 variable sampling speed data acquisition card is adopted in the system. The high 
sampling rate F1 is 5 MHz for fast transient waveforms, such as lightning overvoltage and the 
sampling length T1 is 15 ms. The lower sampling rate F2 is 200 kHz for long-term internal overvoltage 
capture process and the sampling length T2 is 935 ms. The storage capacity constraints is F1 × T1 + 
F2 × T2 = 262K pts. 

2.3. Typical Field-Captured Overvoltage Waveform 

The overvoltage monitoring system has been functioning in an 110 kV substation of Chongqing, 
China. Figure 5 indicates some typical field-captured overvoltage waveforms: 

(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 5. Cont.



Electronics 2019, 8, 1194 7 of 20Electronics 2019, 8, x FOR PEER REVIEW 7 of 20 

 

(e) (f) 

 
(g) (h) 

Figure 5. Typical field-captured overvoltage waveforms. (a) Induced lightning; (b) Detail view of 
induced lightning; (c) Switching capacitors; (d) Switching-off idle transformer; (e) Asymmetric short 
circuit; (f) High-frequency ferromagnetic resonance; (g) Fundamental ferromagnetic resonance; (h) 
Arc grounding. 

3. Feature Extraction for Overvoltage Records 

Different types of overvoltage have distinct mechanisms, development rules, and waveform 
characteristics. Targeted extraction of overvoltage characteristics is needed for recognition. Lightning 
and switching overvoltage usually exhibit a short rise and duration time. The sudden injection of a 
large amount of lightning charge into a power grid will result in a steep voltage increase, which 
contributes to the energy of the high-frequency component. Temporary overvoltage and arc 
grounding overvoltage usually last for several power frequency cycles. The amplitude of the 
temporary overvoltage changes is slower than that of lightning and switching overvoltage. Thus, the 
energy of the temporary overvoltage is primarily a low-frequency band. Arc grounding overvoltage 
contains some high-frequency oscillation components during arc resignation and some low-
frequency components when the arc is extinct. Hence, the high- and low-frequency energy of arc 
grounding overvoltage will appear alternately. Thus, different overvoltage have different frequency 
components and various energy distribution features. In order to reflect the features of different 
kinds of overvoltage, Wavelet theory and S-transform SVD theory are adopted to extract the targeted 
features of overvoltage for recognition. 

3.1. Wavelet Feature Extraction 

Wavelet theory can be employed to transform the time domain signal into the linear 
superposition of the wavelet function class. Thus, wavelet transformation can localize both the time 
and frequency domains. This transformation offers a time-frequency-adjustable window to observe 

the local feature in both domains of the signal [17,18]. For finite energy signal ( )f t , the continuous 
wavelet transform is defined as 

*
,

,

1( , ) ( ) ( ) ( ), ( )

1( ) ( ), ,

a b

a b

t bWf a b f t dt f t t
aa

t bt a R b R
aa

ψ ψ

ψ ψ

+∞

−∞

+

− = =< >
 − = ∈ ∈


  
(4) 

where ( )tψ  is the mother wavelet that can be transformed to wavelet class , ( )a b tψ . Mother wavelet 

function class , ( )a b tψ  is usually compactly supported. Discrete wavelet transform of the signal
( )f t  can be obtained through discretization of parameters a and b of the wavelet function class by 

using the binary function 

Figure 5. Typical field-captured overvoltage waveforms. (a) Induced lightning; (b) Detail view
of induced lightning; (c) Switching capacitors; (d) Switching-off idle transformer; (e) Asymmetric
short circuit; (f) High-frequency ferromagnetic resonance; (g) Fundamental ferromagnetic resonance;
(h) Arc grounding.

3. Feature Extraction for Overvoltage Records

Different types of overvoltage have distinct mechanisms, development rules, and waveform
characteristics. Targeted extraction of overvoltage characteristics is needed for recognition. Lightning
and switching overvoltage usually exhibit a short rise and duration time. The sudden injection of a large
amount of lightning charge into a power grid will result in a steep voltage increase, which contributes
to the energy of the high-frequency component. Temporary overvoltage and arc grounding overvoltage
usually last for several power frequency cycles. The amplitude of the temporary overvoltage changes is
slower than that of lightning and switching overvoltage. Thus, the energy of the temporary overvoltage
is primarily a low-frequency band. Arc grounding overvoltage contains some high-frequency oscillation
components during arc resignation and some low-frequency components when the arc is extinct.
Hence, the high- and low-frequency energy of arc grounding overvoltage will appear alternately. Thus,
different overvoltage have different frequency components and various energy distribution features.
In order to reflect the features of different kinds of overvoltage, Wavelet theory and S-transform SVD
theory are adopted to extract the targeted features of overvoltage for recognition.

3.1. Wavelet Feature Extraction

Wavelet theory can be employed to transform the time domain signal into the linear superposition
of the wavelet function class. Thus, wavelet transformation can localize both the time and frequency
domains. This transformation offers a time-frequency-adjustable window to observe the local feature
in both domains of the signal [17,18]. For finite energy signal f (t), the continuous wavelet transform is
defined as  W f (a, b) = 1

√
a

∫ +∞

−∞
f (t)ψ∗( t−b

a )dt =< f (t),ψa,b(t) >

ψa,b(t) = 1
√

a
ψ( t−b

a ), a ∈ R+, b ∈ R
(4)

where ψ(t) is the mother wavelet that can be transformed to wavelet class ψa,b(t). Mother wavelet
function class ψa,b(t) is usually compactly supported. Discrete wavelet transform of the signal f (t) can
be obtained through discretization of parameters a and b of the wavelet function class by using the
binary function {

a = 2 j, j ∈ Z
b = 2 jn, n ∈ Z

(5)

After discretization, the signal f (t) is transformed into two parts: approach and detail
coefficient. The former and latter coefficients represent the low- and high-frequency portions of
the signal, respectively.
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The Symlet wavelet used in this reconstruction is biorthogonal wavelet, which is approximately
symmetric and can be applied to discrete wavelet transform. The structure of Symlet wavelet is similar
to db wavelet family. The difference between them is that Symlet wavelet has better symmetry, which
can reduce the phase distortion during signal analysis and reconstruction. The support range of symN
wavelet is 2n-1, the vanishing moment is N, and it has good regularity. In most applications of wavelet
analysis, wavelets with a support length between 5 and 9 are selected. If the support length is too
long, boundary problems will arise. If the support length is too short, the vanishing moment is too
low, which is not conducive to the concentration of signal energy. Sym4 wavelet is adopted with
a support range of 7 and vanishing moment of 4. Therefore, sym4 wavelet function is taken as the
wavelet generating function when the discrete wavelet transform is used to make a reasonable analysis
of the signal. The waveform of sym4 wavelet is shown in Figure 6.

Electronics 2019, 8, x FOR PEER REVIEW 8 of 20 

 

2 ,
2 ,

j

j

a j Z
b n n Z

 = ∈


= ∈
 (5) 

After discretization, the signal ( )f t  is transformed into two parts: approach and detail 
coefficient. The former and latter coefficients represent the low- and high-frequency portions of the 
signal, respectively. 

 

Figure 6. Typical waveform of sym4 wavelet. 

The Symlet wavelet used in this reconstruction is biorthogonal wavelet, which is approximately 
symmetric and can be applied to discrete wavelet transform. The structure of Symlet wavelet is 
similar to db wavelet family. The difference between them is that Symlet wavelet has better symmetry, 
which can reduce the phase distortion during signal analysis and reconstruction. The support range 
of symN wavelet is 2n-1, the vanishing moment is N, and it has good regularity. In most applications 
of wavelet analysis, wavelets with a support length between 5 and 9 are selected. If the support length 
is too long, boundary problems will arise. If the support length is too short, the vanishing moment is 
too low, which is not conducive to the concentration of signal energy. Sym4 wavelet is adopted with 
a support range of 7 and vanishing moment of 4. Therefore, sym4 wavelet function is taken as the 
wavelet generating function when the discrete wavelet transform is used to make a reasonable 
analysis of the signal. The waveform of sym4 wavelet is shown in Figure 6. 

The overvoltage signal is decomposed into 15 levels through the “sym4” wavelet to observe the 
different frequency energy distributions of the voltage signal. The frequency band of each level at the 
5 MHz sampling frequency is shown in Table 1. 

Table 1. Frequency band of each level at 5 MHz sampling speed. 

Level d1 d2 d3 d4 
Frequency Band 

(kHz) 
1.25–2.5k 625–1.25k 312–625 156–312 

Level d5 d6 d7 d8 
Frequency Band 

(kHz) 
78–156 39–78 19.5–39 9.75–19.5 

Level d9 d10 d11 d12 
Frequency Band 

(kHz) 
4.875–9.75 2.44–4.875 1.22–2.44 0.61–1.22 

Level d13 d14 d15 a15 
Frequency Band 

(kHz) 
0.305–0.61 0.1525–0.305 0.07625–0.1525 0–0.07625 

Figure 6. Typical waveform of sym4 wavelet.

The overvoltage signal is decomposed into 15 levels through the “sym4” wavelet to observe the
different frequency energy distributions of the voltage signal. The frequency band of each level at the
5 MHz sampling frequency is shown in Table 1.

Table 1. Frequency band of each level at 5 MHz sampling speed.

Level d1 d2 d3 d4

Frequency Band (kHz) 1.25–2.5k 625–1.25k 312–625 156–312

Level d5 d6 d7 d8

Frequency Band (kHz) 78–156 39–78 19.5–39 9.75–19.5

Level d9 d10 d11 d12

Frequency Band (kHz) 4.875–9.75 2.44–4.875 1.22–2.44 0.61–1.22

Level d13 d14 d15 a15

Frequency Band (kHz) 0.305–0.61 0.1525–0.305 0.07625–0.1525 0–0.07625

The signal is divided into several segments in the time domain at a 20 ms length to investigate the
energy distribution situation of different frequency components, which is shown in Figure 7.
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Thus, the energy distribution of different frequency components in each normal voltage (50 Hz)
period can be calculated by using the equation

E f (i) =
∑
Ti

(U2
f A(k) + U2

f B(k) + U2
f C(k)) Ti = 20ms (6)

where u f A, u f B, and u f C are the wavelet decomposition coefficients that correspond to a frequency
band f of phases A, B and C, respectively. On the basis of the frequency components of overvoltage,
the frequency band above 2 kHz is classified as a high-frequency band and that which is lower than
2 kHz is classified as a low-frequency band. The signal coefficients in Levels d1–d10 are superimposed to
form the high-frequency part of the signal. EH(i), which is the energy distribution of the high-frequency
part of the signal, is calculated. In addition, the signal coefficients in Levels d11–a15 are superimposed
to form the low-frequency part of the signal. EL(i), which is the energy distribution of the low-frequency
part of the signal, is calculated as well.

Energy distribution Et(i) of the signal coefficients in d11–a15 is also calculated to further analyze
the energy distribution of the low-frequency part of the signal. Thus, after calculating the wavelet
analysis and energy distribution series, three kinds of energy distribution series are adopted as character
parameters to recognize the aforementioned overvoltages: EH(i), EL(i), Et(i).

Figures 8 and 9 present energy distribution series EH(i), EL(i), and Ei(i) of different overvoltage
types. Figure 8 demonstrates that the energy of d11–d15 in the short circuit is low, and only the
energy of a15 increased steadily. Figure 8 also indicates that the energy of d11–d15 in the harmonic
resonance remained at a significantly higher value than that in the power frequency resonance. Figure 9
indicates that both the high- and low-frequency energies in the induced lightning, switching capacitors,
and switching-off idle transformer overvoltage types increased rapidly during the accidents and
reduced to their normal values as overvoltage disappeared. The high- and low-frequency energy of the
arc grounding overvoltage increased alternately during arc resignation. EH(i) and EL(i) are used by
Classifier 1 as input feature parameters, considering the tasks of Classifiers 1, 2.1, and 3.1. The energy
distribution series of d11–a15 Et(i) is also calculated as feature parameters for Classifier 3.1. EH(i),
Et(i), and EL(i) are employed by Classifier 2.1.
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Figure 8. Et(i) energy distribution series of different overvoltage types. (a) Asymmetrical short circuit;
(b) Power frequency resonance; (c) Harmonic resonance.
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Figure 9. (a) EH(i) energy distribution series of different overvoltage; (b) EL(i) energy distribution
series of different overvoltage.

3.2. S-Transform SVD Feature Extraction

Theoretically, switching and lighting overvoltage types are recognized easily using rise time
and tail time. However, overvoltage occurs randomly. In addition, wave refraction and reflection,
as well as attenuation, are complex. Thus, the overvoltage waveform is deformed during the
transmission process. Distinguishing the switching and lightning overvoltage types by simply using
these parameters is unreliable. A reliable algorithm should consider the random uncertainty of the
overvoltage. An algorithm based on S-transform and partial singular value are developed to reduce
the random dispersion of overvoltage signals and recognize switching and lighting overvoltage types.

S-transform is a signal processing method that aids in the inspection of signal energy distributions
in the time-frequency domain [19–22]. The principle of S-transform is based on the wavelet method.
Given a signal h (t), its S-transform can be calculated as

S(τ, f ) =
∫
∞

−∞

h(t)

∣∣∣ f ∣∣∣
√

2π
e−((t−τ)

2/2σ2)e−2 jπ f tdt = A(τ, f )eiθ(τ, f ) (7)

where σ = 1/ f is the scale factor, A(τ, f ) is the magnitude factor, and eiθ(τ, f ) is the phase factor.
The S-transform of a time discrete signal is a complex matrix where the row and column represent the
time domain and frequency domain, respectively. As a result, the absolute value of the element in the
matrix indicates the energy distribution in the time-frequency points.
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Figure 10 indicates the module value of the S-transform matrix of the zero-sequence voltage
signal of the induced lightning overvoltage, switching-off idle transformer overvoltage, and switching
capacitors overvoltage, which is different. However, using the matrix as a parameter to recognize
the overvoltage type is unnecessary and impossible considering the large dimensions of the matrix.
Thus, the partial singular value is employed to abstract the characteristic parameters from the matrix,
compress the dimensions of the feature parameters, and reduce the overvoltage signal dispersion.
Given a matrix Am×n ∈ Rm×n, two orthogonal matrices Um×n Vm×n and a diagonal matrix Λ will satisfy
the following equation: 

A = UΛV
Λ = diag(λ1 · · · λk 0 · · · 0)
k = rank(A)

(8)

where λi is the singular value of the matrix AAT, which meets the following criteria:√√√ k∑
i=1

(σi − λi)
2
≤ ‖A− B‖F (9)

|σi − λi| ≤ ‖A− B‖2, i = 1, 2 · · · k (10)

where λi and σi are the singular values of matrices A and B, respectively. Assuming that the energy
distribution matrix of a signal is A, the energy distribution would become B once some disturbances
and distortions occur in A during the transmission process. On the basis of Equation (11), the sum of
the square of the singular value difference would be smaller than the spectrum radius of the matrix
change, whereas Equation (12) indicates that the difference of the singular value would be less than the
two-norm of the matrix difference. Equations (11) and (12) demonstrate that the singular value is an
effective parameter to represent the overvoltage information when some dispersion events occur in the
overvoltage transmission process.
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Figure 10. S-transform matrix of the zero-sequence voltage signal. (a) Lightning induced overvoltage;
(b) Switching capacitor bank overvoltage; (c) Switching-off transformer overvoltage.

The whole singular value of the matrix contained some redundant information, whereas partial
singular value is more effective. Furthermore, the S-transform matrix of the overvoltage signal
is divided into nine submatrices, each of which represented a different time and frequency band,
considering the large calculation amount in obtaining singular value from high dimension matrix.
The maximum singular values of these submatrices are calculated. Figure 11 presents the submatrices
of the matrix.
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With the use of the submatrix singular values, three parameters are constructed as follows:

λ =
9∑

i=1
λimax

P1 =
3∑

i=1
λimax −

6∑
i=4

λimax

P2 =
9∑

i=7
λimax −

6∑
i=4

λimax

(11)

where λ is the sum of each submatrix, P1, P2 represent the energy differences between frequency
bands 1 and 2, respectively. Figure 12a shows the distribution of lighting and switching overvoltage
types in the space of P1 − P2. The switching and lighting overvoltage types were placed differently.
Figure 12b indicates the distribution of the switching overvoltage, including the switching capacitors
and switching-off idle transformer overvoltage types in the space of λ− P1.
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4. PSO-SVM Overvoltage Recognition Algorithm

4.1. Particle Swarm Optimization

PSO is an optimization algorithm based on the simulation of group animal behaviors [23].
PSO simulates animal behavior to acquire the best solution. In PSO, when a group of animals moves
together, each animal determines its next velocity by observing the current and previous position of
another animal.
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For group Z composed of m particles, each particle is assumed to be zi = (zi1, · · · , ziL), and the
velocity of this particle is vi = (vi1, · · · , viL). In the entire iteration process, the best solution for each
particle and for the entire group is pi = (pi1, · · · , piL) and pb = (pb1, · · · , pbL), respectively. PSO searches
for the best solution by tracing the best solution of the particle and the entire group:

vk+1
i j = wvk

i j + r1(pi j − zk
i j) + r2(pbj − zk

i j)

zk+1
id = zk

id + vk+1
i j

 (12)

where r1 and r2 are random values that are used to maintain the diversity of the group. In the iteration
process, the inertial weight coefficient w is usually set as a function, which is reduced with increasing
iteration numbers to ensure that the particle approaches the solution in the initial stage of iteration
quickly and approaches the solution steadily without overshooting in the final process of iteration.

w = wmax −
wmax −wmin

kmax
· k (13)

4.2. PSO-SVM Classifier

SVM is a supervised learning method that can be applied for classification or regression. The basic
principle of SVM to build an optimal hyperplane with the maximum distance to the sample set in feature
space. From this optimal hyperplane, different samples can be identified by using global optimality
and largest generalization capacity. In recognizing overvoltage, the lack of sufficient and suitable
training samples is a significant difficulty. However, SVM is suitable for recognizing overvoltage
because it can construct the optimal hyperplane under a finite training sample condition [23–27]

The choice of kernel function is vital in the SVM classifier. It can replace inner product computation
in a high-dimensional space and avoid complex high-dimensional computation. The performance of
SVM classifier differed significantly when a different kernel function and the initial values of SVM
parameters are used, such as penalty factor C and core function coefficient γ, which are also related to
the recognition performance.

The radial basis function (RBF) selected as the core function of this study is as follows:

K(xi, x) = exp
{
−γ

∣∣∣xi − x
∣∣∣2}, γ > 0 (14)

Improper parameter values will cause the SVM algorithm to demonstrate either lack of learning
or overlearning. The p1arameter value of SVM is the critical factor in improving the performance of
SVM. PSO has advantages. It offers the best solution without paying much attention to the initial
value settings. Additionally, the use of PSO in searching for the best value settings of SVM parameters
is reasonable. Therefore, a PSO-SVM algorithm is established to improve the value set of C, γ.
The calculation process of this algorithm is as follows:

(1) The initial value of the PSO algorithm is set, and a random set of particles is produced {C,γ}.
(2) The training samples are divided into different training groups mi.
(3) mi is used as the training sample, and other samples are used as testing sets. Then, the recognition

rate ei of the sample set mi is calculated.
(4) The suitable value f of the SVM parameters is calculated by using the following equation:

f = 1−
X∑

i=1

∣∣∣ei
∣∣∣/(X) (15)

(5) The values of velocity and the particles are renewed iteratively according to the suitable value f.
(6) Whether the current values of the particles are the best values for the SVM parameters is

determined. If not, Step (3) is repeated, or the final value set of SVM is output.
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In this hierarchical overvoltage recognition system, the PSO-SVM was used as the classifier
algorithm. A diagram of this system is shown in Figure 13. The feature parameters of each classifier
are shown in Table 2.
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Figure 13. Overvoltage hierarchical recognition system based on particle swarm optimization- support
vector machine (PSO-SVM).

Table 2. Feature parameters of each classifier.

Classifier Feature Parameters

Classifier 1 EH(i), EL(i)
Classifier 2.1 EH(i), EL(i), Et(i)
Classifier 2.2 P1, P2
Classifier 3.1 Et(i)
Classifier 3.2 λ, P1

In this structure, the overvoltage is gradually subdivided by the classifiers at different layers.
The overvoltage is divided into two groups for the first recognition layer: temporary and arc grounding
overvoltage or switching and lightning overvoltage. This grouping is based on the EH (i), EL (i) by
Classifier 1. Arc grounding overvoltage is a switching overvoltage. However, it is classified with
other long-term overvoltage types, such as resonance overvoltage and power frequency voltage rise,
considering its long duration. This recognition process of arc grounding overvoltage would not
influence the final recognition results of the overvoltage system. Classifiers 2.1 and 2.2 continued to
subdivide the overvoltage by the classification results of Classifier 1 and the same working process
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for Classifiers 3.1, 3.2, and so on. The feature parameters are not calculated simultaneously but
rather at the classifiers of different layers. Thus, this structured process can reduce the amount of
calculation significantly because once the overvoltage type is identified at the upper-grade classifiers,
the calculation of the features to recognize other overvoltage types would no longer be necessary.
Different methods can be used in any classifier during the hierarchical pattern recognizing process.
In addition, modifying a classifier with such structure is easy because each classifier is independent.

4.3. Recognition Results

More than 500 field-acquired overvoltage data captured by using the monitoring system are
used to test the performance of the hierarchical recognition system. The types of field-acquired
overvoltage data include switching-off idle transformer overvoltage, switching capacitors overvoltage,
arc grounding overvoltage, asymmetric short circuit overvoltage, high-frequency ferromagnetic
resonance overvoltage, fundamental ferromagnetic resonance overvoltage, and induced lightning
overvoltage. All these data must be normalized based on the phase voltage before abstracting the
features because these overvoltage accidents occurred at different voltage level systems. Half the
overvoltage data are used as training samples, and the other half are used as testing samples. Table 3
shows the testing rate of each classifier based on a common SVM and PSO-SVM.

Table 3. Classification rates of each classifier.

Classifier 1 2.1.1 2.1.2 2.2 3.1 3.2

SVM 95.6% 90.1% 92.8% 89.4% 87.6% 85.7%
PSO-SVM 97.4% 92.6% 96.3% 93.8% 91.5% 94.2%

Radial basis function (RBF): K(xi, x) = exp
{
−γ

∣∣∣xi − x
∣∣∣2}, γ > 0 is chosen as the kernel function of

SVM. The penalty factor C is set as 50, the core function coefficient γ is set as 0.02 and the slack variable
ξ is set as 0.001.

The fitness cure of seeking for best C and γ of SVM by PSO is shown in Figure 14. The best C and
γ values for the recognition are 22.16 and 0.01, respectively. The initial setting of PSO is 1.5 and 1.7,
the inertial weight coefficient w is 0.9, the maximum number of iteration is 200 and the population size
is 20.Electronics 2019, 8, x FOR PEER REVIEW 18 of 20 
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In the structure of BP neural network, the node number of input layer is 6, the node number of
hidden layer is 13, and the node number of output layer is 7, hence the structure of BP neural network
is 6-13-7. The transfer function of the hidden layer is logsig function and the transfer function of the
output layer is purelin function.

Table 3 indicates that the PSO-SVM performs better than the common SVM in each classifier.
A comparison between the hierarchical system (based on PSO-SVM and SVM) and the single-layer
recognition system (based on backpropagation (BP) artificial networks) is conducted to test the validity
of the hierarchical recognition system based on PSO-SVM. Table 4 presents the testing recognition rates
of different overvoltage types.

Table 4. Final classification rates of each kind of overvoltage.

Overvoltage PSO-SVM SVM BPAN

Switching-off idle transformer 96.60% 90.30% 84.50%
Switching capacitors 94.70% 89.60% 83.60%

Arc grounding 92.80% 88.50% 82.80%
Asymmetric short circuit 90.40% 87.20% 70.70%

High-frequency ferromagnetic resonance 96.20% 90.80% 84.30%
Fundamental ferromagnetic resonance 95.30% 91.40% 76.60%

Induced lightning 100% 92.70% 82.50%

The hierarchical pattern recognizing system based on PSO-SVM performs better than the common
SVM and single-layer BP artificial network system.

5. Conclusions

HTS cables usually adopt a hybrid operating mode. HTS cables and conventional transmission
lines are in parallel connection. The power flow distribution of conventional transmission lines
and HTS cables can be adjusted by means of auxiliary control equipment, in order to meet the test
requirements of different operating conditions of HTS cables. However, overvoltage from parallel
connected transmission lines will easily affect the HTS cable.

This paper proposes a complete and effective smart overvoltage monitoring-recognizing system
based on non-contact sensors. Lightning and internal overvoltage signals are obtained by specially
designed voltage sensors installed at the grounding tap of transformer bushings and the cross arm
of transmission towers. A variable sampling technique is employed to solve the conflict between
sampling speed and storage capacity. The monitoring system and the recognizing system are working
independent of each other, and exchange the records by sharing the same database.

A new hierarchical pattern recognizing structure is proposed in the research of an overvoltage
recognizing system. This structure uses different independent classifiers to subdivide different
overvoltage types gradually. Different mathematical methods can be used to abstract feature parameters,
and appropriate recognition ways are applied to each classifier. Seven kinds of field overvoltage are
discussed and analyzed. Aiming at the main feature of each kind of overvoltage, six well designed
characteristic quantities are extracted through wavelet theory and S-transform SVD theory. PSO-SVM
is employed as classifiers. This recognizing system is verified by more than 500 field records. The result
shows that wavelet theory and S-transform SVD theory are suitable for overvoltage feature extraction
and this hierarchical pattern recognizing system can recognize and classify the overvoltage effectively
and accurately.
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