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Abstract: This study describes the design of a resonant tunneling diode (RTD) oscillator (RTD
oscillator) with a RTD-gated-graphene-2DEF (two dimensional electron fluid) and demonstrates the
functioning of this RTD oscillator through a transmission line simulation model. Impedance of the
RTD oscillator changes periodically when physical dimension of the device is of considerable fraction
of the electrical wavelength. As long as impedance matching is achieved, the oscillation frequency is
not limited by the size of the device. An RTD oscillator with a graphene film and negative differential
resistance (NDR) will produce power amplification. The positive electrode of the DC power supply is
modified and designed as an antenna. So, the reflected power can also be radiated to increase RTD
oscillator output power. The output analysis shows that through the optimization of the antenna
structure, it is possible to increase the RTD oscillator output to 22 mW at 1.9 THz and 20 mW at
6.1 THz respectively. Furthermore, the RTD oscillator has the potential to oscillate at 50 THz with a
matching antenna.

Keywords: resonant tunneling diode (RTD), terahertz; two-dimensional electron fluid (2DEF),
RTD-gated-graphene-2DEF; graphene-plasma; resonant tunneling diode oscillator (RTD oscillator),
transmission line model

1. Introduction

Terahertz (THz) electromagnetic radiation is generally composed of electromagnetic waves with
frequencies of 100 GHz–10 THz [1]. The wavelengths of THz waves fall between those of light waves and
millimeter waves. They are characterized by strong penetration, high security, and good orientation, and
they can be used extensively in medical and exploration applications [2,3]. However, a coherent source
with high-power work at room temperature is indispensable for these applications. Terahertz wave
sources are classified into optical wave sources and electrical wave sources. Optical THz products
have been available commercially [4–7], but they are expensive and bulky. Resonant tunneling
diodes (RTDs) [8,9] are good candidates for electronic THz wave sources from the viewpoint of
fabricating resonant tunneling diode oscillator (RTD oscillators). Resonant tunneling diode oscillators
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are coherent, solid-state, and compact high-power sources with high-power work at room temperature.
H. Kanaya et al. [2] reported a 1.42 THz oscillation via a reduction in the RTD intrinsic delay. The same
team reported a 1.55 THz oscillation through optimization of the antenna length [10]. A 1.98 THz RTD
oscillator was fabricated with the optimum electrode thickness of 2 µm [3]. This is the highest RTD
oscillator frequency reported so far. In reference [4], the authors used a conventional lumped-element
equivalent circuit to analyze a RTD oscillator. A potential oscillation of 3.0 THz was shown with the
RTD and also at 2.8 THz for the integrated device with a slot antenna while the device structure was
optimized. However, the theoretical analysis showed that oscillator frequency and RTD size were
correlated negatively [4]. By contrary, the device output power and RTD size were correlated positively.
Asada, et al. [11] showed in their earlier work, the oscillation frequency increased to 345 GHz with a
slot width of 2 mm from a 330 GHz with a slot width of 4 mm. For [3], the oscillation frequency of
the RTD Oscillator is already close to 2 THz. At such high frequencies, transmission line theory is
more suitable for analyzing RTD Oscillator than the conventional lumped-element equivalent circuit
model. Transmission line theory bridges the gap between field analysis and basic circuit theory and
therefore is of significant importance in the analysis of microwave even terahertz circuits and devices.
The phenomenon of wave propagation on transmission lines can be approached from an extension of
circuit theory or from a specialization of Maxwell’s equations [12]. Moreover, the fabrication of high
frequency RTD oscillator remains challenging.

In [13], Burke et al. developed the high-frequency transmission line model to describe a
metal-gate/insulator/two-dimensional electron fluid (2DEF) structure. Then, the model was used
in THz power amplification via plasma wave excitation [14,15], high-electron-mobility transistor
(HEMT) with RTD gate [16], and photo-controlled THz amplified modulator [17]. In the previous
study, a graphene layer was employed for plasma wave excitation [18–21]. Optical graphene plasmon
resonances were realized spectroscopically with a two-dimensional graphene sheet, and propagating
plasmons in real space were resolved directly in experiments.

The study here describes the design of a resonant tunneling diode (RTD) oscillator (RTD oscillator)
with a RTD-gated-graphene-two-dimensional electron fluid (2DEF) and demonstrates the functioning
of this RTD oscillator through a transmission line model simulation. Firstly, the distributed transmission
line model analysis in this study shows that the size of the device is not an indefinite factor affecting
the oscillation frequency. The impedance of the device changes periodically when physical dimension
of the device is of considerable fraction of the electrical wavelength. As long as impedance matching is
achieved, the oscillation frequency is not limited by the size of the device. Therefore, without reducing
the frequency, the output power can be greatly increased with the increase of the device size. Secondly,
output power increase is not only due to the increase in device size, but also due to a graphene
layer which produces RTD-gated-graphene-2DEF and the negative differential resistance (NDR).
According to references [14,16,17], two-dimensional electron fluid (2DEF) is required to realize power
amplification, which is produced by RTD-gated HEMT with very complicated layered structure.
Because the films thickness of the RTD-gated HEMT are very small, only a few nanometers, so the
molecular beam epitaxy [19,22,23] or metal–organic chemical vapor deposition [24] is required [25].
They are complex and expensive processes. Due to the graphene plasma phenomenon, two-dimensional
electron fluid (2DEF) is generated by a graphene film instead of RTD-gated HEMT, reducing the
difficulty of implementing the RTD oscillator. Thirdly, transmission lines model in this study shows
that power reflection cannot be completely eliminated, both in theory and in practical applications.
This is especially when impedance matching is not satisfied, power reflection and loss would be large.
A DC bias is needed to make the device work normally. RTD requires two electrodes and oscillator
requires an antenna. Refer to [2,3,10] and [26], it is common to apply a DC bias voltage to the antenna.
In this study, the positive electrode of the DC power supply is modified and designed as an antenna.
So, the reflected power can also be radiated to increase RTD oscillator output power. In this study,
the Authors demonstrated RTD oscillator could output power of 22 mW at 1.9 THz and 20 mW at
6.1 THz respectively.
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2. Modeling

A RTD is a semiconductor that exhibits controllable negative difference resistance (NDR) regions.
The N-shaped I-V characteristics [27,28] of RTDs provide electrical gain for THz oscillator at room
temperature [14]. A RTD is realized via the creation of a double-barrier quantum well (DBQW)
structure [26] comprising a narrow-bandgap material sandwiched between two thin slabs of a
wide-bandgap material. However, the results of a theoretical analysis show that oscillator frequency
and RTD size are negatively correlated [4]. In this study, a graphene layer is fabricated before the
sandwich structure, and the graphene layer forms a RTD-gated-graphene-2DEF. The developed RTD
oscillator realizes power amplification via a graphene-plasma wave layer [17]. As shown in Figure 1a,b,
a RTD oscillator comprises a RTD, RTD-gated-graphene-2DEF and two graphene antennas. As shown
in Figure 1b, the length of a transmission line is equal to the channel length L, which includes a RTD
and a RTD-gated-graphene-2DEF.As shown in Figure 1b, a distributed circuit model is established to
represent the contributions of NDR and 2DEF to a RTD-gated-graphene-2DEF oscillator. The RTD
oscillator is biased by the application of dc voltage to the left antenna [29].

Electrical size is key difference between transmission line model and lumped-element equivalent
circuit model [12]. It assumes that circuit analysis works when physical dimension of the device is
much smaller than the electrical wavelength, while transmission lines model works when physical
dimension of the device is a considerable fraction of the electrical wavelength. Electrical wavelength is
wavelength of alternating current signals, which is defined as λ = c/f, where c is speed of light, f is
frequency of alternating current signal. Electrical size is defined as k =W/λ, where W = 10 µm is the
RTD width in this study [12]. The oscillator frequency ranges from 1 THz to 10 THz, 1/30 ≤ k ≤ 1/3.
A transmission line model is a network with distributed parameters, where currents and voltages
vary in magnitude and phase over its length. Current and voltage of conventional lumped-element
equivalent circuit do not vary appreciably over the size of the device.

As shown in Figure 1b,c, transmission line model is represented as a two-wire line since
transmission lines always have at least two conductors. The following parameters are used to describe
the distributed circuit model of a transmission line: r is series resistance per unit length, for both
conductors, in Ω/cm, c is shunt capacitance per unit length, in F/cm, g is shunt conductance per unit
length, in S/cm, l is series inductance per unit length, for both conductors, in H/cm.

These parameters are defined as [12,14,16,17]

r =
1

eµnsW
(1)

c = c0W (2)

g = g0W = W
dI
dV

(3)

l =
m∗

e2µnsW
(4)

where e is the electronic charge, in 1.6*10−19 C; µ is the electron mobility in the transmission line,
in cm2V−1s−1; W the RTD width, in cm; m* is the electron effective mass, in kg; ns is the 2DEF sheet
charge density, in cm−2; g0 is the gate conductance per unit area, in S/cm2; and c0 is the gate capacitance
per unit area, in F/cm−2. The complex propagation constant γ of the transmission line model is defined
as [12]

γ =
√
(r + jωl)(g + jωc) = α+ jβ (5)

where ω is the angular frequency. The characteristic impedance Z0 is defined as [26]

Z0 =

√
r + jωl
g + jωc

(6)
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Figure 1. (a) Top view of resonant tunneling diode (RTD) terahertz oscillator. The developed oscillator
comprises a RTD, RTD-gated-graphene-2DEF, and two graphene antennas. (b) Cross-section of RTD
terahertz oscillator. Distributed transmission line model of RTD-gated-graphene-2DEF (two dimensional
electron fluid) RTD oscillator. (c) Equivalent active transmission line oscillator model. (d) I-V
characteristic of the RTD.
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Figure 1 Equivalent active transmission line oscillator model shows a length L of a lossy
transmission line terminated in a right antenna impedance ZANT. Thus, γ = α + jβ is complex, but Z0

is approximately real when we assume the loss is small. The expressions for current and voltage wave
on the lossy line are.

I(z) =
V+

0

Z0
[e−γz

− Γeγz] (7)

V(z) = V+
0 [e−γz

− Γeγz] (8)

As shown in Equations (7) and (8), where Γ is the reflection coefficient of the load. At z = 0, V0
+ is

the incident voltage amplitude. At a distance L from the load, the reflection coefficient is

Γ(L) =
V−0 e− jβL

V+
0 e jβL

e−2αL = Γ(0)e−2αLe−2 jβL = e−2γL (9)

Γ(0) is the reflection coefficient at z = 0, as

Γ(0) =
V−0
V+

0

=
ZANT −Z0

ZANT + Z0
(10)

According to axis z1, the impedance Zin toward the right of the transmission line model of RTD
oscillator is as

Zin =
V(−L)
I(−L)

= Z0
ZANT + jZ0tanhγL
Z0 + jZANTtanhγL

(11)

The impedance of the left antenna is Z’ANT. According to axis z2, the impedance Z’in toward the
left is

Z′in =
V(−L)
I(−L)

= Z0
Z′ANT + jZ0tanhγL
Z0 + jZ′ANTtanhγL

(12)

In this study, two antennas of the same size were designed. The impedances ZANT and Z’ANT are
equal, and the impedances Zin and Z’in are equal.

ZANT = Z′ANT (13)

Zin = Z′in (14)

To ensure that the oscillator works, Equation (15) must be satisfied as following

Re(Zin) + Re(Z′ANT) = 0 (15)

Re(Zin) is the real part of Zin, and Re(Z’ANT) is the real part of Z’ANT. I-V characteristic of RTD
which was simulated by WINGREEN is shown in Figure 1d. This is a N-type NDR, and g is called
negative difference conductor (NDC) which is defined as [16]

g =
∆I
∆V

=
IP − IV

VP −VV
(16)

where IP is peak current density, IV is valley current density, VP is peak voltage, VV is valley voltage.
As shown in Figure 1d, ∆I = 29 mA/µm2 and ∆V = 0.7 V. The RTD oscillator is biased at 0.7 V at NDR
region. According to reference [14,16,17], Equation (3) can be assumed as

g = −rc/l (17)

The load achieves the maximum power transmission when the loaded impedance ZANT and
power source internal resistance Z’in for conjugate match in sine stable state electric circuit. To achieve
the maximum power transmission, stable oscillation should satisfy the following condition.
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Z′in = Z∗ANT (18)

According to Equations (14)–(18), to achieve the maximum power transmission, Re(Zin) and
Re(Z’ANT) must be equal as well. So, Re(Zin) must equals to “zero”, as shown in Figures 2 and 3.

Re(Zin) = Re(ZANT) = 0 (19)

1 

 

 

(a) (b) 

 

Figure 2. Relationship between impedance and frequency of transmission line: (a) Zin or Z’in (L = 1 µm)
and (b) Zin or Z’in (L = 2 µm).
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GT denotes transducer power gain. Because of the plasma wave in the RTD-gated-graphene-2DEF
and the negative differential conductance (NDC) of the RTD, according to the transmission line theory,
the oscillator works and amplifies THz waves in the channel [13], as

GT =
PL

Pavs
=
|S22|

2
(
1− |ΓS|

2
)(

1− |ΓL|
2
)

|1− ΓSΓin|
2
|1− S22ΓL|

2 (20)

where PL is the power transmitted to the load, and Pavs is the power available from the source, which is
the maximum power that can be supplied to the transmission line. S11 is the return loss, and S21 is the
transmission gain. ΓS and ΓL are the source reflection coefficient and the load reflection coefficient,
respectively. Assuming no reflection, ΓS = ΓL = 0, and Equation (20) can be simplified as

GT = |S21|
2 (21)

In Equations (20) and (21), [14]

S11 = S22 =
ζsinh(γL) − ζ−1sinh(γL)

2 cosh(γL) + sinh(γL)(ζ+ ζ−1)
(22)

S12 = S21 =
2

2 cosh(γL) + sinh(γL)(ζ+ ζ−1)
(23)

ζ =
ZANT

Z0
(24)

where the complex quantity ζ is defined as the ratio of the plasma-wave-transmission-line impedance
over the source impedance. The angular frequency ω and Equation (5) can be rewritten as

ω =

√
π2

4L2lc
−

r2

l2
(25)

γ =

√
−

r2c
l
−

(
π2

4L2lc
−

r2

l2

)
cl =

√
−
π2

4L2 = ± j
π
2L

(26)

Therefore, Equation (20) can be rewritten as Equation (27) [14]

GT =
4∣∣∣2 cosh(γL) + sinh(γL)(ζ+ ζ−1)

∣∣∣2 =
4∣∣∣(ζ+ ζ−1)

∣∣∣2 (27)

NDC is a fundamental factor to provide power gain under these circumstances. By inspecting (5),
(6) and (27), in order to ensure at least 6 dB of power gain, 0 < (ωl/r) < (1/3) must be satisfied.

As shown in Figures 2 and 3, Re (Zin) could be zero. However, the real part of ZANT is greater
than zero at all times, as shown in Figure 4f. Therefore, the right antenna cannot achieve the maximum
power transmission. Consequently, RTD oscillator power is reflected toward the left. The left antenna
receives the reflected power and radios it outward. As a result, the proposed RTD oscillator can achieve
significantly higher power output than a traditional RTD oscillator.
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Figure 4. (a) Structure of graphene antenna (WA is the width of the radiation patch, and LA is the length
of the patch. Wg is the width of the ground plan, Lg the length of the ground, Win the width of the slot,
Lin the length of the slot, W1 the width of the micro-strip line, and L1 the length of the micro-strip
line), (b) antenna gain of single antenna, (c) axial ratio value, (d) antenna gain of two antennas, (e) S11,
and (f) impedance of graphene antenna.
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3. Simulation and Discussion

Structural parameters in the transmission line are listed in Table 1. Figure 2 shows the relationship
between the impedance and the frequency of the RTD oscillator, as derived using the transmission line
model. Although the gate length of RTD is changed from 1 µm to 2 µm, the impedance Zin or Z’in
varies periodically with the RTD oscillator frequency. Figure 3 shows that a certain impedance Zin or
Z’in is obtained at certain RTD lengths. When the antenna impedance satisfies Equation (15), the RTD
oscillator can work at multiple frequencies. To realize higher output power, the gate length must be
increased. According to Equations (1)–(12) and Figure 3, increasing the gate width and the gate length
of the RTD do not affect its oscillation frequency in the distributed model simulation.

Table 1. Structural parameters in the transmission line [30,31].

Parameters Value

Electron Mobility µ 27,000 cm2V−1s−1

Electron Effective Mass m* 0.04m0
2DEG Sheet Electron Density ns 1012 cm−2

RTD width W 10 µm

As shown in Figure 4a, the two antennas in Figure 1a were designed with the same size. Figure 4b
shows that the antenna gain of single antenna is –13.373 dB. In Figure 1c, the axial ratio value of this
antenna is 38 dB when theta is 0, so polarization of the antenna is linear polarization. Figure 4d shows
that the antenna gain of two antennas is –10.968 dB, which is lower than that of a regular patch antenna,
because the antenna has two ultrawide bands. Antenna gain of two antennas is higher than that of
single antenna. Figure 4e shows the S11 of the graphene antenna. When S11 < 10 dB, the antenna
bands are 1.37–1.93 THz and 2.75–7.00 THz. Figure 4f shows the impedance of the graphene antenna.

In fact, the output power of the existing RTD oscillator terahertz source is very small, which is the
main reason for its limited application. The antenna used in the prior literature is slot antenna, which is
complicated in manufacturing process and is not suitable for integration with other devices and mass
production. Although the graphene antenna designed in the present study has a low gain, due to the
RTD-gated-graphene-2DEF of the RTD oscillator, its output power is very high. A DC bias is necessary
to make the device work normally. This requires an electrode and an antenna. Refer to [2,3,10] and [26],
it is common to apply a DC bias voltage to the antenna. In this study, the positive electrode of the DC
power supply is modified and designed as an antenna. So, the reflected power can also be radiated to
increase RTD oscillator output power.

Advanced Design System (ADS, Keysight Technologies) was used to simulate the fully distributed
active transmission line RTD-gated-graphene-2DEF THz oscillator in this study. As shown in Figure 5,
the oscillation consists of the first and higher harmonics. The harmonic power is defined per
Equations (28) to (31)

Γ =
ZANT −Z0

ZANT + Z0
(28)

where Г denotes the voltage reflection coefficient.
The maximum output power P of the transmission line can be rewritten as∣∣∣Γ(L)∣∣∣ = Γe−2γL (29)

α = Re
{
γ
}

(30)

P =
1
2

Re
{
V(−L)I∗(−L)

}
=

∣∣∣V+
0

∣∣∣2
2Z0

[
1−

∣∣∣Γ(L)∣∣∣2]e2αL (31)
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V0
+ is the power voltage. The generation of harmonics, including the odd harmonics, can be described

by solving Equation (32)

f =
1 + 2k

4
√

m∗c0
e2µns

L
, k = 0, 1, 2 . . . . . . , (32)

As shown in Figure 5, the power of the first harmonic is higher than that of the higher harmonics.
When the device dimensions are L = 2 µm and W = 10 µm, the power of the first harmonic is 22 mW
at 1.9 THz and that of the higher harmonics is 20 mW at 6.1 THz. When the device dimensions are
L = 1 µm and W = 10 µm, the power of the first harmonic is 11.75 mW at 1.9 THz and that of the higher
harmonics is 9.5 mW at 6.1 THz. These results show that the RTD oscillator power increases as its size
increases, but its frequency is not affected. Because of the mismatch between Z’in and the right antenna,
the RTD oscillator power is reflected toward the left antenna. The left antenna receives the reflected
power and radiates it outward. With two graphene antennas, the device radiates high harmonics to
provide high-frequency THz waves.
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4. Conclusions

The study herewith, described the design of a RTD oscillator with a RTD-gated-graphene-2DEF
and demonstrated the functioning of this RTD oscillator through a fully distributed transmission line
simulation model. This simulated work has developed the two main parts of the RTD Oscillator,
the RTD and antenna. Amplification arising from the dynamics of electron plasma waves in a
high electron mobility transistor (HEMT) channel with injection from the gate exhibiting negative
differential resistance (NDR). In this paper, HEMT is replaced by a graphene layer, which has been
proven to produce electron plasma. This study has proven that the impedance of the device changes
periodically when the RTD electrical size 1/30 ≤ k ≤ 1/3. As long as the impedance matching is achieved,
the oscillation frequency is not limited by the size of the device. Therefore, without reducing the
frequency, the output power can be greatly increased with the increase of the device size. At the same
time, the graphene antenna provides two ultra-wide bands which are 1.37–1.93 THz and 2.75–7.00 THz.
Because of the mismatch between Z’in and the right antenna, RTD oscillator power is reflected toward
and radiated outward from the left antenna. Therefore, the proposed RTD oscillator can generate
significantly higher levels of power than traditional RTD oscillators. With two graphene antennas,
the device can radio high harmonics to provide RTD oscillator output powers of 22 mW at 1.9 THz
and 20 mW at 6.1 THz. The results of this research study can serve as a fundamental principle in the
fabrication of a THz RTD oscillator.
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