
electronics

Article

Deductive Verification Method of Real-Time Safety
Properties for Embedded Assembly Programs

Satoshi Yamane

Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan;
syamane@is.t.kanazawa-u.ac.jp; Tel.: +81-76-234-4856

Received: 2 September 2019; Accepted: 11 October 2019; Published: 14 October 2019
����������
�������

Abstract: It is important to verify both the correctness and real-time properties of embedded
systems. However, as practical computer programs are represented by infinite state transition
systems, specifying and verifying a computer program is difficult. Real-time properties are also
important for embedded programs, but verifying the real-time properties of an embedded program
is difficult. In this paper, we focus on verifying an embedded assembly program, in order to verify
the real-time safety properties. We propose a deductive verification method to verify real-time
safety properties, based on discrete time, as follows: (1) First, we construct a timed computational
model including the execution time from the assembly program. We can specify an infinite state
transition system including the execution time of the timed computational model. (2) Next, we verify
whether a timed computational model satisfies RTLTL (Real-Time Linear Temporal Logic) formulas
by deductive verification. We can specify real-time properties by RTLTL. By our proposed methods,
we are able to achieve verification of the real-time safety properties of an embedded program.

Keywords: embedded assembly program; verifying real-time safety properties; timed computational
model; deductive verification

1. Introduction

Conventional formal verification is mainly applied to computer hardware and communication
protocols. The specifications of these systems are easy to describe, using finite state transition systems.
On the other hand, as a practical computer program is represented by an infinite state transition system,
specifying and verifying a computer program is difficult. As large-scale computer hardware, such as
GPUs and supercomputers, for verifying systems has recently become cheap and as the progress
of both abstraction technologies and theorem proof technologies have been remarkable, program
verification has also become feasible [1]. Conventionally, verifying embedded systems is important,
and embedded program verification is thus also important. Furthermore, real-time properties are
important in an embedded program, but verifying the real-time properties of an embedded program is
difficult. In this paper, we propose a formal verification method of the real-time safety properties of an
embedded assembly program using deductive verification, as follows:

1. First, we construct a timed computational model including the execution time from the assembly
program. We can specify an infinite state transition system including the execution time by the
timed computational model.

2. Next, we verify whether a timed computational model satisfies RTLTL (Real-Time Linear Temporal
Logic) formulas by deductive verification. We can specify real-time properties by RTLTL.

Using our proposed methods, we were able to achieve verification of the real-time safety properties
of the embedded program.

Electronics 2019, 8, 1163; doi:10.3390/electronics8101163 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/2079-9292/8/10/1163?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8101163
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 1163 2 of 16

This paper is an extension of the previous work in [2]. We emphasize the new original
contributions in this paper, as follows:

1. We have implemented our proposed axiom on the theorem prover Princess [3].
2. We have demonstrated experiments with real examples, such as the Linetrace program written

for the Wheel-type robot nuvo WHEEL controlled by a H8/3687 microcontroller [4]. This robot is
very old, but it has the important features of embedded software.

Henzinger, Manna, and Pnueli pointed out, in their famous paper, that two important classes
of real-time requirements for embedded systems are bounded response properties and bounded
invariance properties, specified using RTLTL (Real-Time Linear Temporal Logic) [5]. We can check the
correctness of systems for all input data by formal verification. On the other hand, we can only check
the correctness of systems for some input data by testing. For this reason, in this paper, our approach
is formal verification. Additionally, in order to correctly compute the execution times of systems,
we verify an assembly program [6].

1.1. Outline of This Paper

When we develop embedded software, we may first specify it using hybrid automata or timed
automata, and then verify it using model checking. Next, we implement it using C program,
and verify it using software model checking. In this paper, in order to verify the real-time properties,
including hardware-dependent information, we deductively verify the real-time safety properties of
an embedded assembly program, as shown in Figure 1.

The embedded software is described in the C language, but the hardware-dependent part is
described as an assembly program. Assembly programs are suitable for a prediction of the execution
time. Moreover, the syntax of assembly programs are simple, and their analysis is easy. Therefore,
in this paper, we verify an assembly program, instead of a C program.

Figure 1. Overview of this study.

The advantages of verification of assembly programs as pointed out by Schlich [7] are as follows:

1. The assembly code is the outcome at the end of the development process. Hence, all errors
introduced during the complete development process can possibly be found. These errors
include errors not visible in intermediate representations (e.g., re-entrance errors), compiler errors,
postcompilation errors (e.g., errors introduced by instrumentation code), and hardware-dependent
errors (e.g., stack overflows, arithmetic overflows, interrupt handling errors, and writing
reserved registers).

2. Assembly language usually has a clean and well-documented semantics. Vendors of microcontrollers
provide documentation describing the semantics of the provided assembly constructs. This makes



Electronics 2019, 8, 1163 3 of 16

assembly constructs easier to handle than certain C constructs, such as pointer arithmetic or
function calls by pointers.

3. When model checking assembly code, the model checker does not have to exploit the compiler
behavior, hardware-dependent constructs can be handled, and the source code (C code) of the
software is not required. Hence, even programs that use libraries not available in the source code
can be analyzed.

4. Programs consisting of components written in different programming languages can be verified.
When model-checking the source code, only single components can be verified and, for each
programming language used, a specific model checker has to be utilized.

As shown in Figure 2, we first encode the assembly program into our proposed timed
computational model. Secondly, we propose the deductive verification method for real-time safety
properties using SMT (Satisfiable Modulo Theories) [8]. Deductive verification method consists of
verification rules; one verification rule consists of a temporal formula derived from the premises
of first-order formulas. According to [9], we compactly explain a deductive verification method as
follows: When we verify whether an assembly program satisfies a safety property, we first encode the
assembly program into a timed computational mode. Then, we derive first-order formulas from the
timed computational mode, according to a verification rule. Finally, we check validity of the first-order
formulas using an SMT solver. If all first-order formulas are valid, the safety property is satisfied.

Figure 2. Outline of this study.

We propose a timed computational model by assigning the execution time of each instruction to
each state.

Using the timed computational model, we can verify the real-time properties of an assembly
program. To our knowledge, using a timed computational model that assigns the execution time
of each instruction to each state is the first effort in order to verify the real-time properties of an
assembly program.

This study is intended for general embedded software, and any RTOS (Real-Time Operating
System) is good. We have only adopted H8 as an example In addition, this study is not intended for
JAVA programs, as a JAVA program is not an embedded program.

In Section 4, we verify the bounded invariance properties. This example is simple, but we can not
verify it by existing methods. Verifying properties related to registers and execution time has been
enabled for the first time through our proposed method. We limit this paper to suggesting verification
techniques, and more complicated examples are entrusted to future work.

1.2. Related Work

In this section, we present related work regarding assembly program verification and
formal verification.



Electronics 2019, 8, 1163 4 of 16

1. Execution time of program

(a) As both logical correctness and real-time properties are important in embedded systems,
a large number of studies regarding the execution time, such as estimating WCET (Worst
Case Execution Time), have been explored by researchers [10]. However, in general, due to
the behavior of the components which influence the execution time (such as memory,
caches, pipelines, and branch prediction), the predicted execution time from program
analysis becomes slightly longer than the real execution time. Therefore, it is important
and meaningful to verify whether a formula always holds true within a certain time.
As the certain time becomes slightly longer than the real execution time, the formula holds
true within a real execution time if it holds true within the certain time. This fact makes
verifying liveness properties difficult. In this paper, we verify the real-time properties of
an assembly program, based on program analysis.

2. Model checking of program

(a) Model checkers of C programs using abstraction and refinement methodologies, such as
SLAM, BLAST, and MAGIC, have been explored by a large number of researchers [11–13].
However, they have not explored formal verification of the real-time properties.

(b) Schlich’s [mc]square is famous for the study of the verification of assembly programs [7,14].
The [mc]square system utilizes ELF format execution code information, related C language
implementation code, static analysis (CFG) of the target assembly code, specification
description using CTL, and a model checker. However, [mc]square cannot verify real-time
properties. On the other hand, our study can verify real-time properties using RTLTL.
We compute timing information using the execution times of assembly instructions. To the
best of our knowledge, our paper is the first study of verifying the timing properties of
programs.

(c) The importance of the verification of real-time properties has been pointed out in the model
checking of a timed automaton [15]. Campos and Clarke have explored symbolic model
checking of discrete real-time systems using RTCTL [16]. All transitions of their timed
transition graph happened in one time unit, but the times of timed automata and discrete
real-time systems are specified by virtual clocks. However, their model is quite different
from our model. A study considering the verification of program execution time has not
been carried out, so far, to our knowledge.

3. Verification of real-time properties of specification

(a) A. Emerson has explored model checking of discrete real-time systems using RTCTL [17].
On the other hand, Henzinger, Manna, and Pnueli have explored a deductive verification
methodology of discrete real-time systems using RTLTL [5]; however, they did not explore
real-time verification of real-time programs.

1.3. Theoretical Background of Program Verification Problem

In general, program verification problems are theoretically undecidable [18]. In short, no algorithms
exist for program verification. However, this problem is partially decidable. If the answer to the problem
is “yes”, the algorithm will eventually halt with a “yes” answer; if the answer is “no”, the algorithm may
supply no answer at all. In meaningful cases of real program verification problems, then, the algorithm
will eventually halt with a “yes” answer [11–13].

On the other hand, in this paper, we give a deductive temporal verification system based on a
Hoare-style axiom system for deductively verifying assembly programs. Cook proved a relatively
complete Hoare-style axiom system for program verification [19]; in other words, he proved the relative
completeness of a Hoare-style axiom system. Furthermore, Manna and Pnueli have proved a relatively
complete proof system for proving the validity of temporal properties of reactive programs [20].



Electronics 2019, 8, 1163 5 of 16

Our proof rule is the extension of Manna’s proof system. If we add SMT (Satisfiability Modulo
Theories) [8] into our proof rule, we can completely verify assembly programs.

These facts are based on Gödel’s Incompleteness Theorem [21].

2. Computational Model of Embedded Assembly Program

2.1. Embedded Hardware

We show the register set of a H8/3687 processor [22] in Figure 3.

Figure 3. Register set of a H8/3687 processor.

In a H8/3687 processor, all the general purpose registers are 32 bits wide. However, the registers
can be treated as the concatenation of two 16-bit registers, such as E0 and R0. The 16-bit registers can
also be treated as the concatenation of two 8-bit registers, such as RH0 and RL0. On the other hand,
control registers consist of a PC (Program Counter), CCR (Condition Code Register), IRR2 (Interrupt
Request Register 2), and IENR2 (Interrupt ENable Register 2). In IRR2, when timer B1 overflows,
IENTB1 is set to 1. In IENR2, when IENTB1 is set to 1, the overflow interrupt request of timer B1
is admitted.

2.2. Computational Model

We propose a timed computational model by assigning the execution time of each instruction to
each state. The timed computational model is defined as follows:

Definition 1. (Timed computational model) The timed computational model C = (V, S, T, Θ, TM, LAB, time)
intended to represent an assembly program is given by the following components:

1. V = {u0, . . . , un−1} is a finite set of variables. The set V consists of program variables, a location,
the execution time, registers, and a stack.

2. S is an infinite set of states. Each state s ∈ S assigns to each variable ui ∈ V (i = 0, . . . , n− 1) a value.
3. T is a finite set of transitions. Each transition τ ∈ T is a function τ : S → 2S, which can also be

represented by a first-order formula ρτ(V, V′). Here, the variables in V are the present state variables, and
the variables in V′ are the next state variables.

4. Θ is a satisfiable assertion characterizing all the initial states.
5. TM : S→ N is a function assigning to each state s ∈ S the execution time of the natural number. TM is

determined by the hardware manual [22], where the execution time of each instruction is described.
6. LAB : S→ Label is a function assigning to each state s ∈ S an instruction label ∈ Label, where Label is

a set of assembly instructions. If no instruction is executed in a state, label is omitted in the state.



Electronics 2019, 8, 1163 6 of 16

7. time represents the total of execution time. The total of the execution time time can be defined for a point in
the execution of the model.

Due to the behavior of the components (such as memory, caches, pipelines, and branch prediction)
influencing the execution time, the execution time in this paper becomes slightly longer than the real
execution time. However, it is meaningful, from the safety point of view, to verify whether a certain
property always holds true within a certain time.

In Section 2.3, we will explain a timed computational model with an example.

2.3. Encoding from Assembly Program to Timed Computational Model

The encoding from a program to a state transition system has a standard hand-operated
technique [23]; in particular, we refer to pages 14–16 in [23]. Let V be the set of variables. We think
of the variables in V as the present state variables and the variables in V′ as the next state variables.
We define a state s to be an interpretation of V, assigning to each variable v a value s[v]. Furthermore,
we denote a state s to be an interpretation of V as the present state variables, and a state s′ to be an
interpretation of V′ as the next state variables. We denote by S the set of all states, and by T the finite
set of transitions. Each transition τ ∈ T is a function τ : S → 2S, which is also represented by a
first-order formula ρτ(V, V′).

In this paper, we add both the function TM(s) and a variable time into the set V of variables,
where TM(s) expresses the execution time of the assembly instruction in state s, and a variable time
expresses the total execution time from the initial state.

Definition 2. (Deriving Timed computational model) We show how to derive a timed computational model
C = (V, S, T, Θ, TM, LAB, time) from the first-order formula ρτ(V, V′) that represents an assembly program:

1. The set of states S is the set of all valuations for V.
2. Let s and s′ be two states. Then, ρτ(V, V′) holds true when each v ∈ V is assigned the value s[v] and each

v′ ∈ V′ is assigned the value s′[v].
3. Θ is defined by an assertion characterizing all the initial states.
4. TM is determined by the hardware manual [22], in which the execution time of each instruction is described.
5. LAB is defined by a function assigning to each state s ∈ S an instruction label ∈ Label, where Label is a

set of assembly instructions.
6. time is defined by the total execution time from the initial state.

We show a simple example of part of a timed computational model from an assembly program,
as follows.

Example 1. (Example of a timed computational model) An example of a timed computational model generated
from assembly program is shown in Figure 4. Each state is defined by the values of variables, registers, individual
execution times, stack, and total execution time. As shown in Figure 4, according to [23] and other famous papers,
when we derive and specify a state transition system, we omit the ′ representing the next state; in particular,
we refer to pages 24–26 in [23].

Here, we define C = (V, S, T, Θ, TM, LAB, time), as in Figure 4, as follows:

1. V = {Stack, CCR.I, CCR.N, CCR.Z, IRR2 f lag,

IENR2 f lag, @_c_start, @_c_time, ER0, E1,

R1, ER5, E6, _time}.
2. S = {s0, s1, . . .}.

For example, we describe s0 and s1 as follows:

s0 = (Stack = {} ∧ CCR.I = 1∧ CCR.N = 0



Electronics 2019, 8, 1163 7 of 16

∧CCR.Z = 0 ∧ IRR2 f lag = 00111111 ∧ IENR2 f lag = 00111111 ∧ @_c_start = 00000001 ∧
@_c_time = 00000000000000000000000000000000∧ ER0 = 00000000000000000000000000000000∧
E1 = 0000000000000000
∧R1 = 0000000000000000
∧ER5 = 00000000000000000000000000000000
∧E6 = 0000000000000000

∧_timer = 11110100000010110∧ time = 0).

s1 = (Stack = {E6} ∧ CCR.I = 1∧ CCR.N = 0

∧CCR.Z = 0 ∧ IRR2 f lag = 00111111 ∧ IENR2 f lag = 00111111 ∧ @_c_start = 00000001 ∧
@_c_time = 00000000000000000000000000000000∧ ER0 = 00000000000000000000000000000000∧
E1 = 0000000000000000
∧R1 = 0000000000000000
∧ER5 = 00000000000000000000000000000000
∧E6 = 0000000000000000
∧_timer = 11110100000010110∧ time = 6).

Figure 4. Example of part of a timed computational model from an assembly program.

3. T = {τ1, τ2, . . .}.
For example, we describe τ1, from s0 to s1, as follows.

τ1 is represented by a first-order formula ρτ(V, V′):
(Stack = {} ∧ CCR.I = 1∧ CCR.N = 0

∧CCR.Z = 0 ∧ IRR2 f lag = 00111111 ∧ IENR2 f lag = 00111111 ∧ @_c_start = 00000001 ∧
@_c_time = 00000000000000000000000000000000∧ ER0 = 00000000000000000000000000000000∧
E1 = 0000000000000000
∧R1 = 0000000000000000
∧ER5 = 00000000000000000000000000000000
∧E6 = 0000000000000000
∧_timer = 11110100000010110∧ time = 0)

∧
(Stack′ = {E6} ∧ CCR.I′ = 1∧ CCR.N′ = 0



Electronics 2019, 8, 1163 8 of 16

∧CCR.Z′ = 0∧ IRR2 f lag′ = 00111111∧ IENR2 f lag′ = 00111111∧@_c_start′ = 00000001
∧@_c_time′ = 00000000000000000000000000000000 ∧ ER0′ =

00000000000000000000000000000000∧ E1′ = 0000000000000000
∧R1′ = 0000000000000000
∧ER5′ = 00000000000000000000000000000000
∧E6′ = 0000000000000000
∧_timer′ = 11110100000010110∧ time′ = 6).

4. We assume Θ = s0.
5. We define TM(s0) = 0 and TM(s1) = 6.
6. s0 has no label, and s1 has a label (such as PUSH.W E6).
7. time is equal to 6 at s1.

3. Deductive Verification Using RTLTL

3.1. Real-Time Linear Time Temporal Logic RTLTL

In 1991, Henzinger, Manna, and Pnueli explored RTLTL [5]. RTLTL formulas are constructed from
state formulas by Boolean connectives and time-bounded temporal operators.

Definition 3. (Syntax of RTLTL) We inductively define LTL formulae, as follows:

1. Each atomic proposition AP is an LTL formula. In this paper, atomic propositions are propositions such as
registers, stack, and execution time. For example, the value of a register is 6.

2. If p and q are LTL formulae, p ∧ q and ¬p are LTL formulae.
3. If p and q LTL formulae, pUq and©p are LTL formulae,

where©p holds at the current step iff p holds at the next moment, and pUq asserts that q does eventually hold
and that p will hold everywhere prior to q.

The temporal connective ♦p abbreviates trueUp and �p abbreviates ¬♦¬p.
The temporal connectives©, U, ♦, and � of LTL are extended by timing constraints, and the temporal

connectives ©≤TIME, U≤TIME, ♦≤TIME, and �≤TIME of RTLTL are defined, where TIME denotes the
constant of execution time.

Next, we define bounded invariance and bounded response properties. In this paper, we focus on
bounded invariance.

1. Bounded invariance:

�≤TIME q, �(p→ �≤TIME q),
2. Bounded response:

♦≤TIME q, �(p→ ♦≤TIME q).

3.2. Deductive Verification Using RTLTL

In this paper, we extend the deductive verification method explored by Manna and Pnueli [9].
As for the axiom of the deductive verification of temporal logic, the temporal logic formula is derived
by premises to consist of predicate logic formulas [9] . This is the most important work of Amir Pnueli,
which won the ACM A.M. Turing Award in 1996 [24]. This study expands on A. Pnueli’s study by
adding execution time, and develops the axiom of deduction verification using RTLTL.

In this paper, as shown in Figure 5, we construct a part of our verification axiom �≤TIME q as
�(q ∧ (time ≤ TIME)) over a timed computational model. In Figure 5, we introduce a variable time
to measure execution time.

In consideration of Figure 5, we define the verification axiom �≤TIME q, as shown in Figure 6.
In Figure 6, if Premises B1 and B2 are valid, �≤TIME q is obviously valid. Therefore, this axiom is

sound. Furthermore, our timed transition model is the same as Henzinger’s timed transition system [5]



Electronics 2019, 8, 1163 9 of 16

when the minimal delay is equal to the maximal delay. Therefore, we can prove that our verification
axiom is relatively complete by Henzinger’s proof technique [5].

When we verify an assembly program using our verification axiom, a set of first-order formulae
are constructed. We can verify whether each formula is valid or not using an SMT solver [3].

Figure 5. Part of the verification axiom of �≤TIME q.

Figure 6. Verification axiom of �≤TIME q.

Premise B1 requires that the time is set to TM(s0) at an initial state and the initial condition
Θ implies (q ∧ (time ≤ TIME)). Premise B2 requires that the time is set to TM(si) + time and all
transitions preserve (q ∧ (time ≤ TIME)).

4. Experiments of Deductive Verification of Real-Time Properties

We try to deductively verify embedded an assembly program. We used the Linetrace program
written, for the Wheel-type robot nuvo WHEEL controlled by a H8/3687 microcontroller [4].
The Linetrace program acquires values from a sensor, and operates a robot from the values. The robot
has three sensors and a motor: the sensors can distinguish black from white, and output either 0 or 1
by color; the motor is controlled by PID control. When a timer overflow interrupt of timer B1 occurs,
H8/3687 acquires the value from a sensor, and sets the new current targeted value from the value.
When a timer overflow interrupt of timer V occurs, H8/3687 performs PID control from the current
targeted value and the current value, and outputs the value in the motor.



Electronics 2019, 8, 1163 10 of 16

In this section, we verify a timer interrupt function _int_tim_b1. If _int_tim_b1 is executed,
it acquires the value of the sensor and decides the current targeted value. It returns to processing
before the interrupt.

An assembly program of a timer interrupt function _int_tim_b1 is shown in Figure 7.

Figure 7. Assembly program of a timer interrupt function _int_tim_b1.

We show a timed computational model of a timer interrupt function _int_tim_b1 in Figure 8.
In Figure 8, we describe only the values that have changed from the previous state in the current state.

1. First, a state is defined by the values of stacks, flags, variables, timers, and execution times.
Execution time is the number of states, and one state is 0.05 microseconds.

2. Next, we verify whether �≤75 (E1 = R1) holds true. When �≤75 (E1 = R1) holds true, we also
check whether the program has reached an error state (time = 76 and E1 = R1).

The statement �≤75 (E1 = R1) means that, within execution time 75, the registers E1 and R1 are
equal. As existing tools can not compute the execution time, we can not verify �≤75(E1 = R1)
using existing tools [7].



Electronics 2019, 8, 1163 11 of 16

Figure 8. A timed computational model of _int_tim_b1.

3. Next, we verify whether �≤75 (E1 = R1) holds true, as follows:

(a) B1. time = TM(s0), Θ→ q.

Initially, let time = 0, where time measures the total execution time.

Θ is as follows:

stack = {}
∧CCR.I = 1
∧CCR.N = 0
∧CCR.Z = 0
∧IRR2 f lag = 00111111
∧IENR2 f lag = 00111111
∧@_c_start = 00000001
∧@_c_time =
00000000000000000000000000000000
∧ER0 = 00000000000000000000000000000000
∧E1 = 0000000000000000
∧R1 = 0000000000000000
∧ER5 = 00000000000000000000000000000000
∧E6 = 0000000000000000
∧_timer = 11110100000010110
∧time = 0.

Let �≤75 (E1 = R1) = �((E1 = R1) ∧ (time ≤ 75)). As time = 0 and E1 = R1 hold true,
Θ→ q is valid. We check whether Θ→ q is valid using the SAT/SMT solver Princess [3].

(b) B2. time = TM(si) + time, {q ∧ ((time− TM(si)) ≤ TIME)}T{q ∧ (time ≤ TIME)}:
where {q ∧ ((time− TM(si)) ≤ TIME)}T{q ∧ (time ≤ TIME)} is equal to {q ∧ ((time−
TM(si)) ≤ TIME)} ∧ ρτ → {q′ ∧ (time′ ≤ TIME)}.



Electronics 2019, 8, 1163 12 of 16

• (E1 = R1) ∧ (time ≤ 75) ∧(Stack = {}
∧CCR.I′ = CCR.I
∧CCR.N′ = CCR.N
∧CCR.Z′ = CCR.Z
∧IRR2 f lag′ = IRR2 f lag
∧IENR2 f lag′ = IENR2 f lag
∧@_c_start′ = @_c_start
∧@_c_time′ = @_c_time
∧ER0′ = ER0
∧E1′ = E1
∧R1′ = R1
∧ER5′ = ER5
∧E6′ = E6
∧_timer′ = _timer
∧time = 0
∧Stack′ = {E6}
∧time′ = 6)
→
{(E1′ = R1′) ∧ time′ ≤ 75}.

We checked whether the above first-order formula is valid using the SAT/SMT solver
Princess [3], as shown in the Appendix A. The above first-order formula is valid.

• (E1 = R1) ∧ (time ≤ 75) ∧(Stack = {ER0, ER1, R5, E6}
∧CCR.I′ = CCR.I
∧CCR.N′ = CCR.N
∧CCR.Z′ = CCR.Z
∧IRR2 f lag′ = IRR2 f lag
∧IENR2 f lag′ = IENR2 f lag
∧@_c_start′ = @_c_start
∧@_c_time′ = @_c_time
∧ER0′ = ER0
∧E1′ = E1
∧R1′ = R1
∧ER5′ = ER5
∧E6′ = E6
∧_timer′ = _timer
∧time = 68
∧Stack′ = Stack
∧time′ = 72)
→
{(E1′ = R1′) ∧ time′ ≤ 75}.

We checked whether the above first-order formula is valid using SAT/SMT solver
Princess [3]. The above first-order formula is valid.

• (E1 = R1) ∧ (time ≤ 75) ∧(Stack = {ER0, ER1, R5, E6}
∧CCR.I′ = CCR.I
∧CCR.N′ = CCR.N
∧CCR.Z′ = CCR.Z
∧IRR2 f lag′ = IRR2 f lag
∧IENR2 f lag′ = IENR2 f lag



Electronics 2019, 8, 1163 13 of 16

∧@_c_start′ = @_c_start
∧@_c_time′ = @_c_time
∧ER0′ = ER0
∧E1′ = E1
∧R1′ = R1
∧ER5′ = ER5
∧E6′ = E6
∧_timer′ = _timer
∧time = 72
∧Stack′ = Stack
∧time′ = 76)
→
{(E1′ = R1′) ∧ time′ ≤ 75}.

We checked whether the above first-order formula is valid using the SAT/SMT solver
Princess [3]. The above first-order formula is valid.

Finally, when �≤75 (E1 = R1) holds true, the function does not arrive at an error state,
in which case time = 76 and E1 = R1 hold true.

Finally, �≤75 (E1 = R1) holds true.

5. Conclusions and Future Work

We have proposed a deductive verification method in order to verify the real-time safety properties
of an embedded assembly program, in the following manner:

1. First, we constructed a timed computational model including the execution time from the assembly
program. We could specify an infinite state transition system including the execution time by the
timed computational model.

2. Next, we developed a verification axiom of �≤TIME q. We verified whether a timed computational
model satisfies RTLTL (Real-Time Linear Temporal Logic) formulas by deductive verification.

3. We also implemented our proposed axiom in the theorem prover Princess [3].
4. Finally, we demonstrated experiments with real examples, such as the Linetrace program written

for the Wheel-type robot nuvo WHEEL controlled by the H8/3687 microcontroller [4]. This robot
is very old, but it has the important features of embedded software.

Using our proposed methods, we were able to achieve verification of the real-time safety properties
such as �≤TIME q of an embedded assembly program. In addition, we have demonstrated experiments
with real examples. It is worth noting that deductive verification is tedious work.

We are now working on the model-checking of real-time safety and liveness properties of assembly
program [25]. Furthermore, we are working on a CEGAR-based model checking method [26], based on
the work of Rybalchenko [27]. Our recent results [25,26] are fully automatic verification methods
without manual verifications, freeing you from tedious work. However, even if we can verify some
program by our proposed method in this paper, we can not verify the program by our recent results
[25,26]. The best way would be to combine these two approaches.

Acknowledgments: This work was supported in part by JSPS/MEXT Grant-in-Aid for Scientific Research
Numbers 15K00093.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

We show the method for checking whether the first-order formula mentioned above is valid using
the SAT/SMT solver Princess [3], as follows.



Electronics 2019, 8, 1163 14 of 16

We input the program codes shown in Figure A1 into Princess.

Figure A1. Example of program codes input into Princess.

From lines 17–30, the current state is specified. From lines 38–52, the state transition is specified.
Following this, Princess proves the formula and outputs the verification result shown in Figure A2.

Here, Sat is the output. If the quantifier-free formula, such as stack = {} ∧CCR.I = 1∧CCR.N = 0 . . .,
is satisfiable, the formula is valid. Therefore, the first-order formula is valid.

Figure A2. Princess output of the verification result.



Electronics 2019, 8, 1163 15 of 16

References

1. Jhala, R. Majumdar: Software model checking. ACM Comput. Surv. (CSUR) 2009, 41, 21. [CrossRef]
2. Yamane, S. Deductively verifying embedded software in the era of artificial intelligence = machine learning

+ software science. In Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE),
Nagoya, Japan, 24–27 October 2017; pp. 1–4.

3. Rummer, P. Available online: http://www.philipp.ruemmer.org/princess.shtml (accessed on 12 October 2019).
4. ZMP. Available online: https://robot.watch.impress.co.jp/cda/news/2006/07/12/81.html (accessed on 12

October 2019).
5. Henzinger, T.A.; Manna, Z.; Pnueli, A. Temporal Proof Methodologies for Timed Transition Systems.

Inf. Comput. 1994, 112, 273–337. [CrossRef]
6. Yamane, S.; Konoshita, R.; Kato, T. Model checking of embedded assembly program based on simulation.

IEICE Trans. Inf. Syst. 2017, E100-D, 1819–1826. [CrossRef]
7. Schlich, B. Model checking of software for microcontrollers. ACM Trans. Embedded Comput. Syst. 2010, 9, 36.

[CrossRef]
8. Bjorner, N.; McMillan, K.L.; Rybalchenko, A. Program Verification as Satisfiability Modulo Theories.

In Proceedings of the 10th International Workshop on Satisfiability Modulo Theories(SMT 2012), Manchester,
UK, 30 June–1 July 2012; pp. 3–11.

9. Manna, Z.; Pnueli, A. Temporal Verification of Reactive Systems: Safety; Springer: Berlin/Heidelberg,
Germany, 1994.

10. Wilhelm, R.; Engblom, J.; Ermedahl, A.; Holsti, N.; Thesing, S.; Whalley, D.; Bernat, G.; Ferdinand, C.;
Heckmann, R.; Mitra, T.; et al. The worst-case execution-time problem-overview of methods and survey of
tools. ACM Trans. Embed. Comput. Syst. (TECS) 2008, 7, 36. [CrossRef]

11. Ball, T.; Majumdar, R.; Millstein, T.D.; Rajamani, S.K. Automatic Predicate Abstraction of C Programs.
In Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation (PLDI ’01), Snowbird, UT, USA, 20–22 June 2001; pp. 203–213.

12. Henzinger, T.A.; Jhala, R.; Majumdar, R.; Sutre, G. Lazy abstraction. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’02), Portland, OR, USA,
16–18 January 2002; pp. 58–70.

13. Chaki, S.; Clarke, E.M.; Groce, A.; Jha, S.; Veith, H. Modular Verification of Software Components in C.
IEEE Trans. Softw. Eng. 2004, 30, 388–402. [CrossRef]

14. Noll, T.; Schlich, B. Delayed Nondeterminism in Model Checking Embedded Systems Assembly Code,
In LNCS; Springer: Berlin, Germany, 2008; Volume 4899, pp. 185–201.

15. Alur, R.; Dill, D.L. A Theory of Timed Automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
16. Campos, S.V.A.; Clarke, E.M.; Marrero, W.R.; Minea, M.; Hiraishi, H. Temporal Verification of Real-Time

Systems. IEICE Trans. 1995, 78-D, 96–801.
17. Emerson, E.A.; Mok, A.K.; Sistla, A.P.; Srinivasan, J. Quantitative Temporal Reasoning. In LNCS; Springer:

Berlin, Germany, 1990; Volume 531, pp. 136–145.
18. Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.

Math. Soc. 1937, 116–155. [CrossRef]
19. Cook, S.A. Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 1978,

7, 70–90. [CrossRef]
20. Manna, Z.; Pnueli, A. Completing the Temporal Picture. Theor. Comput. Sci. 1991, 83, 91–130. [CrossRef]
21. Gödel, K. Uber formal unentscheidbare SAtze der Principia Mathematica und verwandter Systeme, I.

Monatshefte Fur Math. Und Phys. 1931, 38, 173–198. [CrossRef]
22. Renesas: H83687 Group Hardware Manual. Available online: https://www.renesas.com/jp/ja/products/

microcontrollers-microprocessors/h8/h8300h-tiny/h83687-h83687n.html (accessed on 12 October 2019).
23. Clarke, E.M.; Grumberg, O.; Peled, D. Model Checking; MIT Press: Cambridge, MA, USA, 1999.
24. Pnueli, A. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations

of Computer Science (FOCS 1977), Providence, RI, USA, 31 October–1 November 1977; pp. 46–57.
25. Wu, Y.; Yamane, S. Model Checking of Embedded Systems Using RTCTL While Generating Timed Kripke

Structure. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), Tokyo, Japan, 23–27 July 2018; pp. 257.

http://dx.doi.org/10.1145/1592434.1592438
http://www.philipp.ruemmer.org/princess.shtml
https://robot.watch.impress.co.jp/cda/news/2006/07/12/81.html
http://dx.doi.org/10.1006/inco.1994.1060
http://dx.doi.org/10.1587/transinf.2016EDP7452
http://dx.doi.org/10.1145/1721695.1721702
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/TSE.2004.22
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1137/0207005
http://dx.doi.org/10.1016/0304-3975(91)90041-Y
http://dx.doi.org/10.1007/BF01700692
https://www.renesas.com/jp/ja/products/microcontrollers-microprocessors/h8/h8300h-tiny/h83687-h83687n.html
https://www.renesas.com/jp/ja/products/microcontrollers-microprocessors/h8/h8300h-tiny/h83687-h83687n.html


Electronics 2019, 8, 1163 16 of 16

26. Kamide, H.; Uemura, K.; Yamane, S. Model Check of Real-time Property of Embedded Assembly Program
Using CEGAR. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; pp. 799–800.

27. Gupta, A.; Popeea, C.; Rybalchenko, A. Predicate abstraction and refinement for verifying multi-threaded
programs. In Proceedings of the Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’11), Austin, TX, USA, 26–28 January 2011; pp. 331–344.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Outline of This Paper
	Related Work
	Theoretical Background of Program Verification Problem

	Computational Model of Embedded Assembly Program
	Embedded Hardware
	Computational Model
	Encoding from Assembly Program to Timed Computational Model

	Deductive Verification Using RTLTL
	Real-Time Linear Time Temporal Logic RTLTL
	Deductive Verification Using RTLTL

	Experiments of Deductive Verification of Real-Time Properties
	Conclusions and Future Work
	
	References

