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Abstract: High-performance packet classification algorithms have been widely studied during the
past decade. Bit-Vector-based algorithms proposed for FPGA can achieve very high throughput by
decomposing rules delicately. However, the relatively large memory resources consumption severely
hinders applications of the algorithms extensively. It is noteworthy that, in the Bit-Vector-based
algorithms, stringent memory resources in FPGA are wasted to store relatively plenty of useless
wildcards in the rules. We thus present a memory-optimized packet classification scheme named
WeeBV to eliminate the memory occupied by the wildcards. WeeBV consists of a heterogeneous
two-dimensional lookup pipeline and an optimized heuristic algorithm for searching all the wildcard
positions that can be removed. It can achieve a significant reduction in memory resources without
compromising the high throughput of the original Bit-Vector-based algorithms. We implement WeeBV
and evaluate its performance by simulation and FPGA prototype. Experimental results show that
our approach can save 37% and 41% memory consumption on average for synthetic 5-tuple rules and
OpenFlow rules respectively.

Keywords: packet classification; FPGA; bit-vector; wildcard compression

1. Introduction

Packet classification is one of the core functions required by popular network services such as
Quality of Service (QoS), Access Control List (ACL) and traffic monitoring. Besides, packet classification
is a core problem for OpenFlow-based [1] software-defined networking [2], which required many
packet header fields to be examined against thousands of rules in a ruleset. The growing number of
fields [3] and the expanding rulesets pose a great challenge to a practical packet classification solution
with high throughput and low memory consumption.

Many effective studies have been proposed for the classical problem in the past decade. Software
packet classification algorithms, such as decision-tree-based algorithms and tuple space search
algorithms [3–6] have been proposed for CPU processing platforms. However, the performance
of the software-based approaches is limited by the memory system of CPU. Ternary Content
Addressable Memory (TCAM)-based solutions have been widely adopted in the industrial field [7,8]
for implementing ACLs, as the TCAMs enable parallel lookups on rules for wire-speed classification.
However, they are expensive, power-hungry and capacity-limited. Field Programmable Gate Array
(FPGA) has been widely used to overcome performance problems of real-time network processing
applications [9–11]. Bit-Vector-based (BV-based) algorithms [12–14] have been proposed for packet
classification on FPGA by exploiting hardware parallelism based on rules decomposition. Although
the abovementioned algorithms require to store at least 2 ∗ L N-bit-vector in FPGA (L is the total
number of the bits of all match fields, and N is the number of the ruleset [13]), they can achieve
high throughput by utilizing a homogeneous pipeline structure consisting of classification Processing
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Engines (PEs). Nevertheless, with increasing matching fields and rulesets, the main clock frequency of
the FPGA degrades due to the expenditure incurred by placing and routing with FPGA.

To address the above issue, the state-of-the-art research [15] partitions N-bit-vector into smaller
sub-vectors to improve the overall performance of the classification PEs in FPGA. However,
the approach does not reduce the memory resources required. Instead, more overhead of memory and
logic resources are required due to the partition and the dynamic update function introduced.

In this paper, we present a memory-optimized scheme called Wildcard-removed Bit-Vector
(WeeBV) to accommodate larger rulesets for packet classification on FPGA. WeeBV removes the
memory storing the wildcards as much as possible by fully exploiting the characteristics of the rulesets.
Moreover, it can provide an efficient dynamic update by utilizing the intrinsic dynamic reconfiguration
capability of FPGA. Our contributions in this work include:

• Heterogeneous Two-dimensional Pipeline for matching rules, WeeTP. WeeTP converts some standard
PEs (proposed in [15]) with the memory storing BV and lookup logic to wildcard PEs. A wildcard
PE integrates only registers and fixed logic wires while the SRAM memory is eliminated.

• Optimized heuristic Maximum Covering algorithm for searching wildcards to be removed, WeeMC.
WeeMC tries to find the wildcard groups as much as possible by adjusting the order of the
rules, where each group occupies a whole SRAM block to be removed. The search space
is extremely large and the search problem is NP-hard. WeeMC utilizes a greedy idea for
a near-optimal solution.

• Dynamic Sink-Update strategy, WeeSU. WeeSU is proposed to support dynamic updates function
for WeeBV. Furthermore, it utilizes the dynamically reconfigurable feature of the state-of-the-art
FPGA for accommodating drastic updates.

We evaluate our scheme using synthetic 10 K 5-tuple rules from ClassBench [16] and 10 K
OpenFlow1.0 rules from ClassBench-ng [17]. Considering that the recent studies [18,19] have been
validated against dozens of thousands of rules, it is reasonable to choose rules around 10K. Compared
with StridBV [14], WeeBV can save on average 37% and 41% of storage resources on the two typical
rulesets respectively.

The rest of the paper is organized as follows. Section 2 reviews the BV-based approaches and
discusses the motivation of this paper. In Section 3, we detail the WeeBV including the WeeTP, WeeMC,
and WeeSU. Optimization techniques are proposed in Section 4. We present experimental results in
Section 5. Section 6 surveys the related works. Finally, the paper is concluded in Section 7.

2. Background and Motivations

2.1. BV-Based Approaches and Challenges

In the BV-based approaches, matching fields (e.g., source IP address) are split into L
s sub-fields,

where s (1 � s � L) denotes the length of a sub-field. We use Kj (j = 0, 1, . . . , L
s − 1) to denote the

s bits of sub-field j. The FSBV algorithm [13] is a special case where s is 1, which creates bit-level
subdimension partitioning. The s is increased in the StrideBV algorithm [14] for better performance.
Furthermore, the state-of-the-art research [15] splits a ruleset into N

n sub-rulesets for improving the
scalability on large rulesets.

An example of BV-based packet classification approach is illustrated in Figure 1a. A bit-vector
BVi

Kj is used to represent the matching result of Kj for the corresponding matching sub-fieldj of the
sub-ruleseti. The values of BVi

Kj can be calculated by algorithms in [14]. BV(i,j) is used to denote
a bit-vector table accommodating all values of BVi

Kj . In this example, s is set to 2 and n is set to 3.
For example, in Figure 1a, if the input packet header has K0 = 01 in the sub-field 0 of the sub-ruleset 1,
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we extract the BV1
K0 = 001; this indicates only the rule R5 of the sub-ruleset 1 matches the input in this

sub-field. The memory consumption of the BV tables can be calculated using the following equation:

MBV =
N
n
∗ L

s
∗ n ∗ 2s = L ∗ N ∗ 2s

s
(1)

According to Equation (1), memory usage increases as the number of rules increases. In this case,
BV-based algorithms can get the smallest memory consumption (i.e., 2 ∗ L ∗ N) when s = 1. Worse,
when s is increased to improve performance, the memory consumed by BV-based algorithms grows
exponentially with s, which poses a huge challenge for large rulesets.
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Figure 1. A matching example for a 4-bit ruleset with s = 2 and n = 3.

2.2. Motivation

As can be seen from Figure 1a, the matching result of packet classification is determined by
bit 0s and bit 1s (rather than wildcards) in a rule. Wildcards do not influence the matching process.
Furthermore, wildcards occupy a considerable percentage in typical rulesets. We show the statistical
results of the various rulesets generated by the CLassBench [16] and ClassBench-ng [17] in Figure 2,
including Accesses Control List (ACL), Firewall (FW), IP Chain (IPC) and OpenFlow1.0 9 (OF).
The traditional 5-tuple rulesets have an average of 39.13% wildcards in Figure 2. There are 22.90%
wildcards in the ACL rulesets, even if they are the least compared to other types of rulesets. The lately
OpenFlow1.0 rulesets have more than 40% wildcards.
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Figure 2. Percentages of wildcards in typical rulesets.

Based on the above observations, we are motivated to remove wildcards to reduce the memory
requirement of BV-based packet classification algorithms. The BV-based approaches implement
a pipelined architecture to maximize the performance of the hardware. At each stage of the pipeline,
a BV table is integrated for matching rules. By rearranging the rules, the wildcards scattered in the
rules can be aggregated to generate an All-1 BV table. Figure 1b shows an example of rearranging the
rules in Figure 1a. BV(0,1) is an All-1 BV table in Figure 1b. The All-1 BV table does not need to be
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stored at the corresponding stage of the pipeline. ANDing with All-1 BV will not change any other
bit-vector; we thus can fix the output of the PE without access memory. Removing the All-1 BV table
can save memory resources while also reducing the number of AND logic resources.

3. Architecture and Algorithms

3.1. WeeTP Design

The BV-based approaches utilized a two-dimensional pipeline with homogeneous processing
elements (PEs). Each PE integrates an SRAM-based memory for the BV table, which is called standard
PE. PE[i, j] is used to represent the PE located in the ith row and jth column. A standard PE[i, j] is
responsible for performing a match on the bit-vector table BV(i,j). WeeBV will remove the memory of
the BV table in some standard PEs. These PEs without BV tables is referred to a wildcard PE. Naturally,
we employ a heterogeneous two-dimensional pipeline named WeeTP. WeeTP uses heterogeneous PEs
to reduce the memory consumption of wildcards, which is significantly different from [15]. Figure 3
shows an architecture of WeeTP for the packet classification of the ruleset in Figure 1b. The last
component of the WeeTP is the priority encoder (PrEnc) [14]. Note that the reordering of the ruleset
does not affect the correctness of the final match results. At the end of each horizontal pipeline, a PrEnc
reports a local highest priority match, which does not limit the order in which rules are arranged. The
final match result is collected by the vertical pipeline of the priority encoders.

The structure of a standard PE [15] is shown in Figure 4a. The standard PE contains the following
components: (1) Controller, is responsible for writing the update rule into Memory; (2) Memory, storing
a BV table; (3) n-bit AND, a logical unit for performing AND operations; (4) Pkt Reg., s-bit register for
input packet header; (5) BV Reg., n-bit register for local matching result.

The structure of a wildcard PE is shown in Figure 4b. For an All-1 BV table, because ANDing
with an All-1 n-bit BV is equivalent to not making any changes to the BVIn, the Memory component
and AND logic can be safely removed. In this way, valuable FPGA resources can be saved. Note that
wildcard PE does not degrade the processing performance of the pipeline. Conversely, WeeTP saves
resources by eliminating AND logics.

There are two problems in which WeeBV should be considered for solutions:

(1) how to find as many standard PE as possible that can be converted into wildcard PE;
(2) a wildcard PE cannot support dynamic update effectively without memory of the BV table.

In order to solve these two problems, we proposed WeeMC and WeeSU respectively.
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3.2. WeeMC Algorithm

3.2.1. Problem Definition

There are four types of matching in multi-field packet classification: prefix matching, range
matching, wildcard matching, and exact matching. Source or destination port field typically require
range matching, such as the well-known system port range [0:1023]. To enable hardware to support
range matching, a widely used method is range-to-prefix [18]. Prefix matching is typically used for
source or destination IP addresses with a subnet mask. Wildcard matching and exact matching can be
handled as two particular cases of prefix matching: one matches any value and the other matches only
a specific value. Therefore, it is feasible to convert a rule to prefix matching on each matching field.
In this paper, we take only prefix matching into consideration.

After transformation, the entire ruleset becomes a Bit-Matrix (BM) with a size of L ∗ N, as shown
in Figure 5. The stride s and cluster n are used to decompose the BM into sub-BMs as introduced
before. Each sub-BM will correspond to a BV table as shown in Figure 1. A sub-BM consisting of
only wildcards (called wildcard sub-BM) corresponds to the All-1 BV table as shown in Figure 1b.
For the stride and cluster of fixed size, the number and location of sub-BMs are also fixed. A different
arrangement of the ruleset may result in a different number of wildcard sub-BMs, which may improve
the compression percentage. The memory compression problem for BV-based approaches can be
defined as follows: Given a BM with decomposition parameters s and n, find an arrangement with the
most wildcard sub-BMs that can maximize the compression percentage.

R0

R2

.

.

(s = 2, n = 2)

.

RN-2

RN-1

0

1

0

1

0

1

0

0

*

1

2

1

1

*

*

3

*

0

*

*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L-3

*

1

1

0

L-2

*

*

0

*

L-1

*

*

*

*

R0

R2

.

.

(s = 2, n = 2)

.

RN-2

RN-1

0

1

0

1

0

1

0

0

*

1

2

1

1

*

*

3

*

0

*

*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L-3

*

1

1

0

L-2

*

*

0

*

L-1

*

*

*

*

Figure 5. Example of sub-Bit-Matrix (BM) in bit-matrix of a ruleset.

There are altogether N! kinds of permutation schemes for N rules. Given an arrangement of
the ruleset, the number of wildcard sub-BMs can be quickly calculated. However, in the worst
case, you must traverse N! times to determine the minimum compression percentage, which means
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the time complexity is O(N!). It can be found that the memory compression problem is equal to
classical Traveling Saleman Problem (TSP) [20], which is an NP-hard problem. We propose a heuristic
greedy-based algorithm to find the approximate optimal solution in polynomial time, which is named
Wildcard-removed Maximum Covering (WeeMC). WeeMC performs the GreedySearch function on
a ruleset recursively to give the final arrangement.

3.2.2. Core Function of WeeMC

The pseudo-code of GreedySearch function is shown in Algorithm 1 . For the input ruleset,
GreedySearch finds rules that aggregate the largest area of wildcard sub-BMs in the bit-matrix.
The search processing takes advantage of the characteristics of prefix matching. Figure 6 shows
the distribution of wildcards in two different fields of typical 5-tuple rulesets. Comparing Figure 6a,b,
different fields have different numbers of wildcards. Wildcards in prefix matching appear consecutively
from the first occurrence to the end. We noticed that the tails of all domains are the most frequently
occurring wildcards. Therefore, we split the BM of the ruleset by field and search for the area of
wildcard sub-BMs from the end.

Algorithm 1 GreedySearch

Input: The set of fields for searching, FieldSet; The set of rules for searching, RuleSet; The length of
stride, s; The number of cluster, n;

Output: The set of remaining fields after searching, FieldSetElse; The set of selected rules,
RuleSetFound; Other helpful extra information, ResultItem;

1: for Fieldm IN FieldSet do
2: for p = s to Lm do
3: for i = 1 to Nm do
4: if Rule(i,p) → Rule(i,Lm) == Wildcards then
5: Np Array[p] + = 1;
6: end if
7: Aream Array[p] = p ∗ Np Array[p];
8: end for
9: end for

10: pm, Npm ← MAX(Aream Array);
11: AreaAll Array[pm] = (pm ∗ Npm)|(s ∗ n);
12: end for
13: pmax, Npmax ← MAX(AreaAll Array);
14: FieldSetElse = FieldSet− Fieldmax;
15: if pmax >= s and Npmax >= n then
16: RuleSetFound← Npmax rules f rom RuleSet;
17: else
18: RuleSetFound = NULL;
19: end if
20: ResultItem← Extra In f ormation;

We use pm and Npm to calculate the number of the wildcard sub-BMs covered in Fieldm,
Rule(i,p) → Rule(i,Lm) represents the last pm bits of a rule in Fieldm and Npm is the number of rules
that pm bits are wildcards in Fieldm. Our approach employs a greedy strategy: for a given ruleset and
fields, first find the largest combination of pm and Npm in each field, and then choose the permutation
scheme given by the field with the largest number of coverages. Note that the searching for each field
is independent of each other (always through the entire ruleset). In Fieldm, the largest combination of
pm and Npm satisfies the following conditions:

∀pi ∈ {p|s� p� Lm, p 6= pm},
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(pi ∗ Npi )|(s ∗ n)� (pm ∗ Npm)|(s ∗ n).

Lm indicates the number of bits in Fieldm, s is the stride, and n is the cluster. RuleSetFound, one
of the results returned by the GreedySearch function, is a sub-ruleset with the maximum number of
coverages on Fieldmax. Line 13 of GreedySearch ensures that at least one wildcard sub-BM is covered
in the worst case. The MAX function can be any sorting algorithm that returns the maximum value
in AreaAll Array. Here we assume that the MAX function is implemented using a binary search
with a time complexity of O(log n). The search time complexity of the GreedySearch function is
O(F ∗ (L ∗ N + log L) + log F). Given a ruleset for multi-field packet classification, N is usually much
larger than L and F. Therefore, the time complexity of the GreedySearch function is O(N).
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Figure 6. Wildcards distribution in two different fields of typical rulesets.

3.2.3. Combination Searching of WeeMC

The pseudo-code of WeeMC is shown in Algorithm 2. A greedy strategy can quickly find a partial
optimal solution, but it is usually not a global optimal solution. After performing the GreedySearch
function one time for the entire ruleset, the remaining rulesets can still be optimized. Our scheme
performs a combination search of the entire ruleset to obtain an approximate global optimal solution.
The GreedySearch function is executed multiple times from the vertical and horizontal directions
respectively. The number of searches is called cbN (abbreviation of combination number).

Vertical Search. First perform the GreedySearch function one time on the entire ruleset BM and
find RuleSetNewv. The GreedySearch function then continues iteratively on the remaining ruleset (i.e.,
line 23 of WeeMC). Vertical iterations stop in three cases:

(1) all rules have been covered;
(2) no wildcard BM can be found in the remaining rules;
(3) the number of iterations reaches cbN.

Horizontal Search. The RuleSetNewv is rearranged again after each vertical search. Search for
a compressible wildcard sub-BM in a field other than Fieldmax. The horizontal iteration stops in
two cases:

(1) no wildcard BM can be found in the remaining rules;
(2) the number of iterations reaches cbN.

Figure 7 demonstrates a combination search with cbN = 2. Searching for the sub-ruleset returned
by cv1 in the vertical direction can obtain 9 wildcard sub-BMs in Field1. After the first vertical search,
two horizontal searches (by rearranging the sub-rulesets) obtain an additional six wildcard sub-BMs
by ch1,1 in Field0 and ch1,2 in Field2, respectively.
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Figure 7. Example of sub-BMs to be removed with cbN = 2.

Algorithm 2 WeeMC

Input: The set of rules, DataFile; The number of combinations, cbN; The length of stride, s; The
number of cluster, n;

Output: An arrangement of the ruleset with maximum compression, RuleArrangement;
1: ALLRuleSet, ALLFieldSet = INIT(DataFile);
2: RuleSetOLDv, RuleElseSet = ALLRuleSet;
3: FieldSetOldv = ALLFieldSet;
4: for cv = 1 to cbN do
5: FieldSetNewv, RuleSetNewv, ResultItemv =
6: GreedySearch(FieldSetOldv, RuleSetOLDv, s, n)
7: if RuleSetNewv == NULL then
8: BREAK
9: end if

10: FieldSetOldh = FieldSetNewv
11: RuleSetOLDh = RuleSetNewv
12: ADD ResultItemv IN CombResulth
13: for ch = 1 to cbN − 1 do
14: FieldSetNewh, RuleSetNewh, ResultItemh =
15: GreedySearch(FieldSetOldh, RuleSetOLDh, s, n)
16: if RuleSetNewh == NULL then
17: BREAK
18: end if
19: FieldSetOldh = FieldSetNewh
20: RuleSetOLDh = RuleSetNewh
21: ADD ResultItemh IN CombResulth
22: end for
23: RuleSetOLDv = RuleElseSet− RuleSetNewv
24: if RuleSetOLDv == NULL then
25: BREAK
26: end if
27: ADD CombResulth IN CombResultv
28: end for
29: RuleArrangement← Extract f rom CombResultv

3.3. WeeSU Strategy

Dynamic updates are required to support three operations: modification, insertion, and deletion.
The Controller component in the standard PE with writable memory is self-reconfigurable. For inserts,
the Controller component in the standard PE can convert the new rules into the entire BV table
and rewrite the Memory component [15]. In addition, Valid-bit is used to support fast deletion.
A modification can be divided into a deletion and an insertion.
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The wildcard PEs pose a new challenge for supporting dynamic updates. Modification of the
rules may force a wildcard sub-BM to be converted to a standard sub-BM. Correspondingly, there will
be a Wildcard PE failure in WeeTP. Although FPGA supports reconfigure wildcard PEs, refactoring
all wildcard PEs is prohibitively expensive. To solve this problem, we consider two kinds of updates
separately:

(1) Update bit in standard PE: The Controller component can well support delete, add and modify
these three operations.

(2) Update bit in wildcard PE: The Controller component can still support the delete operation.
For inserts and modifications, we use a strategy called Wildcard-removed Sink-Update (WeeSU).
For each cbNj, the wildcard sub-BMs are congregated above the same field by the greedy
strategy. For a bit position, there will always be a standard PE below. Therefore, the insert
and modify operations first perform a delete operation in the original location. WeeSU will then
search a standard PE with unoccupied location (indexed by valid-bit) and perform an insert
operation. Therefore, the sink processing includes a deletion above, a downward searching and
a renewedly insertion.

Figure 8 shows an example of the WeeSU. Sink1 indicates that the modified bit of a rule is in
the second PE of Field0, which is a wildcard PE. Sink1 Delete this rule from the rith row horizontal
pipeline. Then Sink1 looks down to the r(i+1)th row to perform the insert operation, assuming that
there is a idle position in the corresponding position of the r(i+1)th row that can be reused. In the
process of Sink2, the rith row and the r(i+1)th row horizontal pipeline have conflicts in Field1, and the
rith row and the r(i+2)th row horizontal pipeline have conflicts in Field0. Therefore, the rule in Sink2

finally sinks from the rith row to the r(i+3)th row.
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.
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.

.

.

.

.

𝑟𝑖  
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𝑟𝑖+3 

𝑟𝑖+2 
𝑐𝑏𝑁𝑗  

Figure 8. Sinking operations of WeeSU.

The sinking strategy ensures that WeeTP still supports dynamic updates while maximizing
memory consumption reduction. The saved memory can provide space for inserting new rules.
Although this is a common method, we still have to find a better solution for the worst-case update
support. In the worst case, the ruleset can be substantially modified in a short period of time. A large
number of sinking rules will eventually fill the reserved space of the lowest level horizontal pipeline.
To solve this issue, we can utilize the state-of-the-art technology of FPGA, which is called dynamic
partial reconfiguration (DPR) [21].

DPR is a common technique to design adaptive and flexible hardware on FPGA. The main idea is
to substitute defined regions of programmable logic containing reconfigurable modules at runtime.
The partial reconfiguration process takes place without interfering with other parts of the system.
Filling the bottommost horizontal pipeline means that at least one horizontal pipeline above is “sparse”,
which can be defined as a threshold. Combined with DPR, we can quickly redistribute the rules of the
filled underlying pipeline to the different “sparse” pipelines in the upper layers. The state-of-the-art
230 research proves that the dynamic and partial reconfiguration of hardware takes only 10 ms [22],
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which is acceptable for WeeBV implementation. The time taken for partial reconfiguration is dependent
on the FPGA and the size of the region that is reconfigured. Each “sparse” pipeline occupies only
a small area and can be quickly reconfigured. Therefore, we believe that DPR technology is acceptable
for WeeBV implemention.

4. Optimization Techniques

In order to further increase the compression percentage of WeeTP, we propose optimization
techniques MaxPadding and UpstreamRule for two special cases. It should be noted that these two
optimization techniques are only fit for some special scenarios. Therefore, these two techniques
are optional.

4.1. MaxPadding Technique

In multiple horizontal searches, the greedy strategy ignores the suboptimal compression scheme
and only the optimal solution is selected. However, the discarded suboptimal choice might lead to
the overall optimality. When the ruleset presents obvious local aggregation, the optimal solution
and the suboptimal solution found by greedy strategy are usually close to each other. In this case,
the wildcard sub-BMs are ignored in many suboptimal solutions. To solve this issue, we propose
a method called MaxPadding. After each horizontal search, we compare the size of the RuleSetNewh
and the RuleSetOldh. If the FieldSetNewh is not greater than 2

3 (which is a threshold from experience)
of RuleSetOldh, we consider that there is a suboptimal solution that cannot be ignored as shown in
Figure 9. In the rules that RuleSetOldh subtracts RuleSetNewh, MaxPadding continues to perform
a horizontal search. The number of searches is MIN(LEN(FieldSetOldh), cbN− 1). Normally, cbN will
be larger than LEN(FieldSetOldh).
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(         : standard sub-BM,          : wildcard sub-BM,            : ignored wildcard sub-BM)

Figure 9. An example can apply MaxPadding with cbN = 2.

MaxPadding technology is helpful for some types of rulesets. MaxPadding technique
appropriately may increase the total search time overhead. Our experience has shown that MaxPadding
technique can reduce 37.42% memory consumption for FW4 rulesets while increasing search time by
2 to 3 times. The trade-off between search time and promotion effects should be considered.

4.2. UpstreamRule Technique

In order to calculate the maximum compression effect corresponding to pm, the greedy strategy
will also include some rules with wildcard suffixes longer than pm. These wildcard bits larger than pm

will eventually be ignored, which are shown in Figure 10. To solve this issue, we propose a technique
called UpstreamRule. It is assumed that the fields selected in the horizontal direction for c times are
Fieldm1 to Fieldmc, and the number of corresponding rules is Npm1 to Npmc , respectively. The reverse
order check is performed from Fieldmc, and the rules in which the wildcard length exceeds pmc in the
Npmc rules are arranged in descending order of the length of the wildcards. These wildcards beyond
pmc then overlap as many wildcard BMs as possible.
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The purpose of arranging from large to small is to ensure the correctness of dynamic updates.
UpstreamRule technique presents a challenge to the Sink-Update policy. In a horizontal pipeline,
more wildcard PEs may have a greater chance of update failure. A modified rule may need to sink
more horizontal pipelines. As an option, we recommend using UpstreamRule technology with fewer
dynamic updates.

𝐹𝑖𝑒𝑙𝑑1 

𝑐𝑣1 

          : standard sub-BM          : standard sub-BM

          : wildcard sub-BM          : wildcard sub-BM
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𝑟1 

𝑟3 

𝑟2 
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.

.

.

.

.
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𝐹𝑖𝑒𝑙𝑑1 

𝑐𝑣1 
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𝑐𝑏𝑁1 

𝑟0 

𝑟1 

𝑟3 

𝑟2 
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.

.

.

          :  ignored wildcard sub-BM

Figure 10. An example can apply UpstreamRule with cbN = 1.

5. Evaluation

5.1. Experimental Setup

Synthetic classifiers: To test the performance of our scheme and prior art, we generate the 5-tuple
rules with real parameters by the well-known ClassBench [16]. In our experiments, the 5-tuple rules
we have used contain Accesses Control List (ACL), Firewall (FW) and IP Chain (IPC). The seed
file which ClassBench provided from real-life 5-tuple rules can make the performance as close to
practice as possible. Besides, we used the OpenFlow1.0 rules from a data-center generated by the
ClassBench-ng [17], which is an excellent tool inherited from ClassBench.

Implementation platform: We verify the WeeTP with an Intelr STRATIX V GS 5SGSD5 FPGA,
which contains 39Mb Block RAM, 172,600 Adaptive Logic Modules (ALMs) and 690,400 registers.
Limited to the experimental platform, we use simulation software to test performance. Simulation is
also widely used in other high-level conferences and companies. WeeMC algorithm and optimization
techniques are run on a machine with Intel Xeon E5-3650 CPU and Ubuntu 16.04 LTS operation system.
More details and source codes are available at Github [23].

5.2. cbN for WeeMC

We compare our scheme WeeBV with the widely used algorithm: StrideBV. The StrideBV is the
de facto implementation for BV-based approaches. In fact, the majority of onchip memory of FPGAs
is organized in blocks. For example, the minimum size block memory on STRATIX V GS FPGAs is
20 Kb, programmable from 20 K × 1 bit to 512 × 40 bits [24]. In other words, the minimum memory
depth is 512, which requires the address width be at least 9 bits. Even though the theoretical BV table
occupation of FSBV is O(2L ∗ N), each bit of the matching field will occupy a block memory in the
implementation, which leads to a great waste of actual memory. The Two-dimensional Pipelined
BV-based algorithm (TPBV) in the state-of-the-art research [15] has the same memory consumption
of bit-vectors as StrideBV. According to Equation (1), the parameter n of the TPBV cannot affect the
memory consumption of the BV tables. Lots of homogeneous PE in TPBV can consume additional
logical resources. Given the inconsistencies between our own implementation of PE and the details in
the original, we only compare the memory footprint of the BV tables. We choose the parameter s to be
4 and n to be 8, which is the best solution in [15].
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Figure 11 shows the compression effect on the four type rulesets—up to 22%, 47%, 42% and 41%
for ACL, FW, IPC, and OpenFlow, respectively. When cbN is equal to the number of matching fields,
WeeMC searches in each field to achieve maximum compression. The iterative result is approximated
by iterating three times for the 5-tuple rulesets. This is because most rules retain at least two fields that
are exactly matched. The best compression percentages for different types of rulesets are also different
because the proportion of wildcards in the ruleset with different features appears differently. The FW
ruleset usually only cares about the combination of two fields of a source or destination IP address and
port, so the compression ratio is the largest in the 5-tuple rulesets. The compression percentages of the
Open flow rulesets are also high, since most rules only use 3–4 fields of 12 matching fields.

ACL1_10K ACL2_10K ACL3_10K ACL4_10K ACL5_10K0

200

400

600

800

1000

1200

K
B

StrideBV/TPBV

WeeBV−cbN=1

WeeBV−cbN=3

WeeBV−cbN=5

(a) ACL rules.
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(b) Firewall rules.

IPC1_5K IPC1_10K IPC2_5K IPC2_10K0

100

200

300

400

500

600

700

800

K
B

StrideBV/TPBV

WeeBV−cbN=1

WeeBV−cbN=3

WeeBV−cbN=5

(c) IPC rules.

OF1_5K OF1_10K OF2_5K OF2_10K0

200

400

600

800

K
B

StrideBV/TPBV

WeeBV−cbN=2

WeeBV−cbN=8

WeeBV−cbN=12

(d) OpenFlow1.0 rules.

Figure 11. Memory consumption of bit-vectors for the different rulesets.

5.3. Compression with MaxPadding and UpstreamRule

Since different types of rulesets have different characteristics, the number of wildcards that can
be compressed in the bit matrix transformed from the ruleset is also different. When the parameters
s and n are not equal to 1, the wildcards in the bit matrix cannot all be compressed. In this case,
there is a supremum of the compression percentage for the different arrangement schemes, which is
named MaxCompressed. MaxCompressed = Countw

L∗N , and Countw is the total number of wildcards in
the ruleset. Figure 2 shows the MaxCompressed for each ruleset. It can be observed that the average
MaxCompressed of OpenFlow is the largest, more than 40% in Figure 2. In other words, we can also
measure memory compression as a percentage of MaxCompressed.

We show the memory compression of the WeeMC algorithm and its optimization techniques
in Figure 12. MaxPadding has a significant memory compression increase for the ACL ruleset in
Figure 12a. This is because rules in the ACL ruleset typically aggregate heavily in the source IP
address field and the destination IP address field. These massive aggregations leave space for
optimization in MaxPadding. Interestingly, MaxPadding does not help the OpenFlow ruleset in
Figure 12d. We think this is related to the rule strategy in a certain data center. Note that for all types
of rule sets, UpstreamRule improves the WeeMC algorithm to varying degrees. Our solution can
eventually activate 80% of MaxCompressed for all types of rulesets. The UpstreamRule technique
helps the WeeMC algorithm get closer to the globally optimal solution.
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Figure 12. Normalized memory consumption relative to Maxcompressed.

5.4. Resource and Throughput

Multiple metrics can be used to select parameters s and n, such as throughput, latency,
and memory consumption. Our goal is to verify the impact of reducing the memory consumption
of wildcards on throughput. To maximize memory utilization, we use s = 9 and n = 40 to achieve
state-of-the-art research (TPBV) and WeeBV, respectively. That is because the size of the Block Memory
of the used FPGA is m20K, which is equal to 20× 1024 = 40× 29.

Table 1 shows the resource consumption and performance of TPBV and WeeBV for different sizes
and types of rulesets. We use the Clock Rate to reflect throughput. Note that we tested the Clock Rate
of a simple prototype system, which contains not only the packet classification module but also the
parser module. Since we did not optimize the parameters s and n for throughput, the Clock Rate does
not represent the maximum performance of the system. For different types of 5-tuple rulesets with the
same size, the resource consumption of the TPBV is equivalent. The traditional BV-based approach
is ruleset-feature independent. Each type of ruleset uses all of the seed files of this type to generate
a different number of rules. The resource consumption reduced by WeeBV in Table 1 is consistent
with the experimental results in section V.B. For rulesets of the same type and size, WeeBV does not
have significant damage throughput compared to the TPBV in state-of-the-art research. In addition,
the OpenFlow1.0 rulesets consume more resources and require more complex processing due to the
increased matching length, thus degrading performance. The wildcard PEs also reduce the number of
memory accesses, which will lower local latency and power consumption.

Table 1. Resource consumption and performance of WeeBV and TPBV u for s = 9 and n = 40.

RuleSet Type Rule Number
Block Memory ALMs Registers Clock Rate

(KB) Number Number (MHz)

TPBV WeeBV TPBV WeeBV TPBV WeeBV TPBV WeeBV

ACL

128 120 95 2690 2126 4221 3335 160.03 153.66
256 210 166 4492 3549 7085 5598 155.45 149.95
512 390 309 8015 6332 12,607 9960 151.54 142.80
1024 780 617 15,605 12,328 24,470 19,332 145.33 138.25

FW

128 120 65 2690 1453 4221 2280 160.03 153.13
256 210 114 4492 2426 7085 3826 155.45 149.43
512 390 211 8015 4329 12,607 6808 151.54 140.68
1024 780 422 15,605 8427 24,470 13,214 145.33 136.41
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Table 1. Cont.

RuleSet Type Rule Number
Block Memory ALMs Registers Clock Rate

(KB) Number Number (MHz)

TPBV WeeBV TPBV WeeBV TPBV WeeBV TPBV WeeBV

IPC

128 120 71 2690 1588 4221 2491 160.03 153.36
256 210 124 4492 2651 7085 4181 155.45 149.38
512 390 231 8015 4729 12,607 7439 151.54 141.29
1024 780 461 15,605 9207 24,470 14,438 145.33 136.29

OpenFlow1.0

128 320 192 5684 3411 8202 4922 153.14 149.28
256 560 336 9635 5782 13,860 8316 151.58 147.38
512 1040 624 17,537 10,523 25,176 15106 150.2 145.67
1024 2080 1248 34,658 20,795 49,694 29,817 147.71 144.01

u Two-dimensional Pipelined BV-based algorithm in [15].

6. Related Works

A rule is an individual predefined entry used for classifying a packet, which is associated with
a unique rule ID (RID), a priority and an action. Multi-field packet classification can be defined as:
Given a ruleset of size N and an input packet header that consists of F fields, find all the rules matching
the packet header and export the RID of the highest priority rule.

Current packet classifications can be classified into two main categories: algorithmic solutions
(usually using RAM) and Ternary Content Addressable Memory (TCAM)-based solutions [25,26].
Each storage unit in TCAM can have three different types of states: {0, 1, and *}, and TCAM can search
all rules in parallel in a single lookup cycle. TCAM suffers high cost and high power consumption,
and hard to perform range matching [26]. Anat Bremler-Barr et al. proposed gray code [27] and
layered interval code [28] to enable TCAM support range matching at the cost of entry explosion. Thus
in practice, the number of range fields is severely limited.

Decision-tree-based approaches [4,5] analyze all fields in a ruleset to construct decision trees for
packet classification. Decision-tree-based solutions traverse the tree by using individual field values
to make branching decisions at each node until a leaf is reached. Tree depth and rule duplication in
a decision tree affect the searching efficiency and memory requirement of one implementation. Both of
them increase with the growth of field numbers which results in an exponential increase of memory
requirement and increasing processing latency.

Tuple space solutions [3,6] are usually software-based and they leverage the fact that the number
of distinct tuples is much less than that of rules in a ruleset. A tuple defines the number of significant
bits in a prefix match field, the nesting level and range ID of a range field, and the existence of a value
for an exact match field in a ruleset. Tuple-space-based solutions efficiently compress a ruleset by
storing those valid bits of each field only. Besides, tuple-space-based solutions perform the search of
each tuple independently and take advantage of parallelism. With the growth field number in a ruleset,
both tuple number and tuple size increase. A longer processing latency could be expected.

Decomposition-based approaches [12,29] first search each packet header field individually. The
partial results are then merged to produce the final result. Bit-vector-based schemes [13–15] are detailed
earlier. Due to the limited hardware resources, they cannot support the growing rulesets. The rapidly
increasing matching fields consume memory resources dramatically.

7. Conclusions

In this paper, we present a memory-,optimized scheme named WeeBV to support a massive set of
rules while ensuring high throughput processing performance. WeeBV first constructs a heterogeneous
two-dimensional lookup pipeline called WeeTP. WeeTP processes each BV table by a modular PE
arranged in the two-dimensional array. In addition, WeeTP distinguishes PEs into standard PEs and
wildcard PEs. The wildcard PEs reduce Memory component and the n-bit and logic unit for saving



Electronics 2019, 8, 1159 15 of 16

memory resource. The WeeBV utilizes a greedy algorithm named WeeMC, which is used to maximize
the compression of the WeeTP by rearranging the ruleset. An update strategy called Sink-Update
is proposed to support real-time dynamic updates. Looking forward, we propose optimization
techniques MaxPadding and UpstreamRule for two special cases. Experimental results show that
WeeTP has an excellent compression effect on both 5-tuple and OpenFlow rulesets.
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